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Abstract

Large language models (LLMs) have achieved
remarkable performance in natural language
understanding and generation tasks. However,
they often suffer from limitations such as diffi-
culty in incorporating new knowledge, gener-
ating hallucinations, and explaining their rea-
soning process. To address these challenges,
we propose a novel prompting pipeline, named
MindMap, that leverages knowledge graphs
(KGs) to enhance LLMs’ inference and trans-
parency. Our method enables LLMs to com-
prehend KG inputs and infer with a combina-
tion of implicit and external knowledge. More-
over, our method elicits the mind map of LLMs,
which reveals their reasoning pathways based
on the ontology of knowledge. We evaluate our
method on diverse question & answering tasks,
especially in medical domains, and show sig-
nificant improvements over baselines. We also
introduce a new hallucination evaluation bench-
mark and analyze the effects of different com-
ponents of our method. Our results demonstrate
the effectiveness and robustness of our method
in merging knowledge from LLMs and KGs for
combined inference. To reproduce our results
and extend the framework further, we make our
codebase available at https://github.com/wyl-
willing/MindMap.

1 Introduction

Scaling large language models (LLMs) to billions
of parameters and a training corpus of trillion
words was proved to induce surprising performance
in various tasks (Brown et al., 2020; Chowdhery
et al., 2022). Pre-trained LLMs can be adapted
to domain tasks with further fine-tuning (Sing-
hal et al., 2023) or be aligned with human prefer-
ences with instruction-tuning (Ouyang et al., 2022).
Nonetheless, several hurdles lie in the front of steer-
ing LLMs in production:

*These authors contributed equally to this work.

Doctor, I have been feeling very fatigued lately and my abdomen feels swollen and
tender. I am also experiencing jaundice in my eyes. Could it be a liver problem?  
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Figure 1: A conceptual comparison between our method
and the other prompting baselines: LLM-only, docu-
ment retrieval + LLM, and KG retrieval + LLM.

• Inflexibility. The pre-trained LLMs possess out-
dated knowledge and are inflexible to parameter
updating. Fine-tuning LLMs can be tricky be-
cause either collecting high-quality instruction
data and building the training pipeline can be
costly (Cao et al., 2023), or continually fine-
tuning LLMs renders a risk of catastrophic for-
getting (Razdaibiedina et al., 2022).

• Hallucination. LLMs are notoriously known to
produce hallucinations with plausible-sounding
but wrong outputs (Ji et al., 2023), which causes
serious concerns for high-stake applications such
as medical diagnosis.

• Transparency. LLMs are also criticized for their
lack of transparency due to the black-box nature
(Danilevsky et al., 2020). The knowledge is im-
plicitly stored in LLM’s parameters, thus infeasi-
ble to be validated. Also, the inference process
in deep neural networks remains elusive to be
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Figure 2: A conceptual demonstration of evidence query sub-graphs, merged reasoning sub-graphs, and mind map.
The entity inputs Vq is identified from the input. Lines and circles of the same color indicate that they correspond.
The red dashed lines in the MindMap box illustrate the augmentation operation based on the knowledge of LLM.

interpretable.

As a classic way to build large-scale structural
knowledge bases, knowledge graphs (KG) are es-
tablished by the triples of entities and relations, i.e.,
{head,relation,tail}. They can provide ex-
plicit knowledge representation and interpretable
reasoning paths. Besides, KGs are amenable to con-
tinual modifications to debug the existing knowl-
edge or add new knowledge. Due to their flexibility,
preciseness, and interpretability, KGs emerged as a
promising complement to the drawbacks of LLMs
(Pan et al., 2023). For instance, KG triples were
added to the training of LLMs (Zhang et al., 2019b)
or KG encoders were entangled with LLM layers
for joint inference and optimization on graph and
text data (Zhang et al., 2022). By contrast, our work
pivots on the synergistic inference of KGs and fixed
LLMs, which is applicable to powerful pre-trained
LLMs, such as commercial LLM-as-service APIs.
In general, the prior arts in this venue can be cate-
gorized into two genres:

• Retrieval-Augmented LLM Inference. Re-
searchers tried to retrieve documents to augment
LLM inference (Lewis et al., 2020) while suf-
fering from inaccurate retrieval and lengthy doc-
uments (Liu et al., 2023a). Recently, several
attempts were made to incorporate extracted KG
triples into the prompt to LLMs to answer KG-
related questions (Baek et al., 2023). However,
this approach treats KG inputs as plain text and
ignores their graphical structure, which causes
the generated response to be hard to validate and
vulnerable to hallucinations.

• Graph Mining with LLMs. There were also

attempts to prompt LLMs to comprehend graph-
ical inputs, while they primarily experimented
with graph mining tasks, e.g., edge detection and
graph summarization (Guo et al., 2023; Chen
et al., 2023). It was rarely explored in text gener-
ation tasks that require complex reasoning across
multiple evidence graphs grounded on KGs.

The goal of this work is to build a plug-and-play
prompting approach to elicit the graph-of-thoughts
reasoning capability in LLMs. We call our method
MindMap because it enables LLMs to comprehend
graphical inputs to build their own mind map that
supports evidence-grounded generation. A con-
ceptual demonstration of our framework is in Fig-
ure 2. Specifically, MindMap sparks the graph
of thoughts of LLMs that (1) consolidates the re-
trieved facts from KGs and the implicit knowledge
from LLMs, (2) discovers new patterns in input
KGs, and (3) reasons over the mind map to yield
final outputs. We conducted experiments on three
datasets to illustrate that MindMap outperforms
a series of prompting approaches by a large mar-
gin. This work underscores how LLM can learn to
conduct synergistic inference with KG. By integrat-
ing both implicit and explicit knowledge, LLMs
can achieve transparent and dependable inference,
adapting to different levels of correctness in addi-
tional KG information.

2 Related Work

Prompt Engineering. The “pre-train, prompt, and
predict" paradigm has become the best practice for
natural language processing in few-shot or zero-
shot manners (Liu et al., 2023b). The core insight
is LLMs are able to adapt to new tasks following
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the input context and instructions via in-context
learning (Brown et al., 2020), especially with in-
struction tuning (Wei et al., 2022a) and alignment
(Ouyang et al., 2022). Retrieval-augmented gener-
ation emerged as a way to dynamically inject ad-
ditional evidence for LLM inference (Lewis et al.,
2020). The common practice is to query a dense
embedding database to find the relevant document
pieces to the input user questions, then put the re-
trieved corpus back to the prompt input. However,
documents can be lengthy, thus not fitting into the
context length limit of LLM. It was also identi-
fied even though we can build long documents as
prompts, LLMs usually fail to capture information
in the middle of the prompt and produce hallucina-
tions (Liu et al., 2023a). Another line of research
looks to prompt to elicit the intermediate reason-
ing steps of LLMs in chains (Wei et al., 2023) and
trees (Yao et al., 2023a), while these approaches
all focus on eliciting the implicit knowledge from
LLMs. Nonetheless, our work explores sparking
the reasoning of LLMs on graph inputs, with an em-
phasis on joint reasoning with implicit and external
explicit knowledge.
Knowledge Graph Augmented LLM. Re-
searchers have explored using knowledge graphs
(KGs) to enhance LLMs in two main directions:
(1) integrating KGs into LLM pre-training and (2)
injecting KGs into LLM inference. For (1), it is a
common practice to design knowledge-aware train-
ing objectives by either putting KG entities and
relations into the training data (Zhang et al., 2019b;
Sun et al., 2021) or applying KG prediction tasks,
e.g., link prediction, as additional supervision (Ya-
sunaga et al., 2022). However, when scaling the
pre-training data to a web-scale corpus with trillion
words, it is intractable to find or create KGs with
approximate scale. More importantly, although
these methods directly compress KG knowledge
into LLM’s parameters via supervision, they do
not mitigate the fundamental limits of LLMs in
flexibility, reliability, and transparency.

For (2), the early efforts were centered around
fusing KG triples into the inputs of LLMs via atten-
tion (Liu et al., 2020; Sun et al., 2020) or attaching
graph encoders to LLM encoders to process KG
inputs (Wang et al., 2019). The follow-ups fur-
ther adopted graph neural networks in parallel to
LLMs for joint reasoning (Yasunaga et al., 2021)
and added interactions between text tokens and KG
entities in the intermediate layers of LLMs (Zhang
et al., 2022; Yao et al., 2023b). Witnessing the

recent success of pre-trained LLMs, the research
paradigm is shifting to prompting fixed pre-trained
LLMs with graphical inputs. Some of this line of
research includes prompting LLMs for KG entity
linking prediction (Choudhary and Reddy, 2023;
Sun et al., 2023), graph mining (Guo et al., 2023).
While these approaches permit LLMs to compre-
hend graph inputs, they take graphs as a text and
lose the graph index information. Some more usu-
ally focus on targets KG tasks, like KG question
answering (Baek et al., 2023). Most importantly,
these methods often rely heavily on the factual cor-
rectness of the KG and ignore the situation where
the KG does not match the question.

3 Method

We show the framework of MindMap in Figure 5,
which comprises three main components:

1. Evidence graph mining: We begin by identi-
fying the set of entities Vq from the raw input
and query the source KG G to build multiple
evidence sub-graphs Gq.

2. Evidence graph aggregation: Next, LLMs are
prompted to comprehend and aggregate the re-
trieved evidence sub-graphs to build the reason-
ing graphs Gm.

3. LLM reasoning on the mind map: Last, we
prompt LLMs to consolidate the built reasoning
graph and their implicit knowledge to generate
the answer and build a mind map explaining the
reasoning process.

3.1 Step I: Evidence Graph Mining
Discovering the relevant evidence sub-graphs Gq

from the external KG breaks down into two main
stages.

3.1.1 Entity Recognition
We first use LLM to identify key entities from the
question query Q. Specifically, we use a prompt
that consists of three parts: the question to be ana-
lyzed, the template phrase "The extra entities are",
and two examples. The full prompt is given in
Table 9 of Appendix D. We then apply BERT simi-
larity to match entities and keywords. Specifically,
we encode all the keyword entities M extracted
by LLM and all the entities G from the external
knowledge graph into dense embeddings HM and
HG respectively, and then compute the cosine sim-
ilarity matrix between them. For each keyword,
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 SystemMessage(content= """You are an excellent AI doctor, and you can diagnose diseases and recommend medications based on the symptoms in the conversation."""), 
 HumanMessage(content"""Patient input:"""+ Question), 
 AIMessage(content=f """Combine the knowledge you already have, you have some extra medical knowledge information in the following:\n\n ### """+ path_reasoning_graph + """\n\n###""" + neighbor_reasoning_path), 
 HumanMessage(content="""What disease does the patient have? What tests should patient take to confirm the diagnosis? What recommened medications can cure the disease? Think step by step.\n\n\n
    Output1: The answer includes disease and tests and recommened medications.\n\n 
    Output2: Show me inference process as a string about extract what knowledge from which Path-based Evidence or Neighor-based Evidence, and in the end infer what result. \n Transport the inference process into the
following format:\n Path-based Evidence number('entity name'->'relation name'->...)->Path-based Evidence number('entity name'->'relation name'->...)->Neighbor-based Evidence number('entity name'->'relation name'->...)-
>Neighbor-based Evidence number('entity name'->'relation name'->...)->result number('entity name')->Path-based Evidence number('entity name'->'relation name'->...)->Neighbor-based Evidence number('entity name'->'relation
name'->...). \n\n 
    Output3: Draw a decision tree. The entity or relation in single quotes in the inference process is added as a node with the source of evidence, which is followed by the entity in parentheses.\n\n 
    There is a sample:\n ... """) 
   

Figure 3: The prompt template for final input to LLM. Its input is the question and reasoning graphs.

we obtain the entity set Vq with the highest simi-
larity scores, which we use to build the evidence
subgraph in the next step.

3.1.2 Evidence Sub-graphs Exploration
We define the extra source knowledge graph by
G = {⟨u, r, o⟩ |u ∈ ψ, r ∈ φ, o ∈ L}, where ψq,
φq, and Lq represent the entity set, relation set,
and textual set, respectively. The objective of
this stage is to build the evidence sub-graphs
Gq = {Gpath

q ,Gnei
q } based on the extracted en-

tities Vq. An evidence sub-graph is defined by
G∗
q =

(
N ∗

q , Eq∗, ψ∗
q , φ

∗
q ,L∗

q

)
, where N ∗

q is the
node set, E∗

q is the edge set where each edge
e = ⟨n, n′⟩ , n, n′ ∈ N ∗

q .
As shown in Figure 5, we use two approaches to

build the evidence sub-graph set Gq from the source
knowledge graph. (1) Path-based exploration traces
intermediary paths within G to connect important
entities from the query. We form path segments by
exploring connected nodes from a chosen node in
V0
q for at most k hops. The process continues until

all segments are connected, creating a set of sub-
graphs stored in Gpath

q . (2) Neighbor-based explo-
ration adds related knowledge by expanding each
node n in Nq by 1-hop to its neighbors, adding
triples {(n, e, n′)} to Gnei

q . This approach incor-
porates additional query-related evidence into Gq.
After exploration, we update Vq with newly added
intermediate nodes from bridging pathways. To
manage information overhead and maintain diver-
sity, we prune Gpath

q and Gnei
q by clustering and

sampling sub-graphs based on their head entities.
These pruning steps result in the final evidence
graph Gq, optimizing information while preserving
diversity. Specific details are shown in Appendix
E. We show the hallucination influence of results
using path-based exploration and neighbor-based
exploration components in the experiment part.

3.2 Step II: Evidence Graph Aggregation

In this phase, LLM is instructed to consolidate the
diverse evidence sub-graphs G∗

q into a unified rea-
soning graph Gm. This reasoning graph Gm, upon
completion, serves as an external augmented graph

input for Step III, providing a holistic perspective
on all evidence sub-graphs to enhance the output
generation process.

To generate the final additional knowledge sub-
graph input, we first extracted at least k path-based
and k neighbor-based evidence subgraphs from the
previous part, each representing a possible connec-
tion between the query entities. Then, we formatted
each subgraph as an entity chain, such as “(Fa-
tigue, Nausea) - IsSymptomOf - LiverProblem",
and assigned a sequence number, such as P1, P2,
N1 , N2. Next, we prompted LLM to convert each
entity chain into a natural language description, us-
ing a template that can be found in Table 10 of
Appendix D, and defined them as reasoning graph
Gm. This design had two benefits: (a) It simplified
the subgraphs into a concise and consistent format
that captured the essential information. (b) It lever-
aged LLM’s natural language understanding and
generation abilities to unify semantically similar
entities and resolve potential ambiguities.

3.3 Step III: LLM Reasoning with Mind Map

In this step, LLMs are prompted with two reasoning
graphs Gpath

m and Gnei
m in Step II to produce the final

outputs.

3.3.1 Prompting for Graph Reasoning

To generate a mind map and find final results, we
provide LLMs with a prompt that has five compo-
nents: a system instruction, a question, evidence
graphs Gm, a graph-of-thought instruction, and ex-
emplars. The graph-of-thought instruction uses
the Langchain technique to guide LLMs to com-
prehend and enhance the input, build their own
mind map for reasoning, and index the knowledge
sources of the mind map. The prompt template
is detailed in Figure 3. The final answers consist
of a summary answer, an inference process, and a
mind map that shows the graph reasoning pathways.
The entities in the mind map are from the evidence
graphs Gm and LLM’s own retrieval enhancement,
as shown in the right red box in Figure 5 in Ap-
pendix D.
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Table 1: The statistics of the used datasets.

Dataset GenMedGPT-5k CMCQA ExplainCPE
Domain English Clinical Q&A Chinese Long Dialogue 5-way Choice Question

Multi-task Disease, Drug, Test Disease, Drug, Test, Food Option, Explanation
KG dataset EMCKG CMCKG CMCKG
Question 714 468 400

Node 1122 62282 62282
Triple 5802 506490 506490

Relationship 6 12 12

Table 2: The BERTScore and GPT4 ranking of all meth-
ods for GenMedGPT-5k.

BERT Score GPT4 Ranking Hallucination
Precision Recall F1 Score (Average) Quantify

MindMap 0.7936 0.7977 0.7954 1.8725 0.6070
GPT-3.5 0.7612 0.8003 0.7800 4.8571 0.5563
Tree-of-thought(TOT) 0.7202 0.7949 0.7554 - 0.5483
GPT4 0.7689 0.7893 0.7786 4.1764 0.5577
BM25 Retriever 0.7693 0.7981 0.7831 3.5546 0.5834
Embedding Retriever 0.7690 0.8038 0.7857 3.1232 0.5886
KG Retriever 0.7717 0.8030 0.7868 3.4159 0.5871

3.3.2 Synergistic Inference with LLM and KG
Knowledge

We find that previous retrieval-augmented LLMs
tend to rephrase the retrieved facts without ex-
ploiting the knowledge of LLM itself. However,
MindMap enables LLM to synergistically infer
from both the retrieved evidence graphs and its
own knowledge. We attribute this ability to three
aspects: (1) Language Understanding, as LLM can
comprehend and extract the knowledge from Gm

and the query in natural language. We show an
example of entity disambiguation in Section 4.6.3
where nodes like ‘vaginitis’ and ‘atrophic vagini-
tis’ have the same meaning but appear in different
evidence sub-graphs (Figure 7 in Appendix F). (2)
Knowledge Reasoning, as LLM can produce the
final answer based on the mind map constructed
from Gm. We show the final result of a CMCQA
question in Section 4.6.4 (Figure 8 in Appendix F).
(3) Knowledge Enhancement, as LLM can leverage
its implicit knowledge to expand, connect, and im-
prove the information relevant to the query. This
ability is especially valuable when the external
knowledge input is inaccurate. We illustrate an
example of wrong external knowledge in Section
4.6.2 and 4.6.5, where the question in Figure 6 (Ap-
pendix F) contains misleading symptom facts, such
as ‘jaundice in my eyes’, that lead baseline models
to retrieve irrelevant knowledge linked to ‘eye’.

4 Experiments

We evaluate our method for a suite of question &
answering tasks that require sophisticated reason-
ing and domain knowledge and compare it with

retrieval-based baselines.

4.1 Experimental Setup

We evaluate the utilization of external knowl-
edge graphs by MindMap in complex question-
answering tasks across three medical Q&A
datasets: GenMedGPT-5k, CMCQA, and Ex-
plainCPE. These datasets cover patient-doctor
dialogues, multi-round clinical dialogues, and
multiple-choice questions from the Chinese Na-
tional Licensed Pharmacist Examination, respec-
tively. To support KG-enhanced methods, we con-
struct two knowledge graphs (EMCKG and CM-
CKG) containing entities and relationships related
to medical concepts. The ExplainCPE dataset uti-
lizes CMCKG with knowledge mismatches to as-
sess the impact of incorrect retrieval knowledge
on model performance. We compare MindMap’s
ability to integrate implicit and explicit knowledge
with various baselines, including vanilla GPT-3.5
and GPT-4, as well as the tree-of-thought method
(TOT) (Yao et al., 2023a), which uses a tree struc-
ture for reasoning. Additionally, we consider three
retrieval-augmented baselines: BM25 retriever,
Text Embedding retriever, and KG retriever, see
instruction details in Appendix D. These base-
lines leverage different methods and sources for
evidence retrieval, with gpt-3.5-turbo-0613 as the
backbone for all retrieval-based methods. Detailed
descriptions of these baselines are provided in Ap-
pendix C.

4.2 Medical Question Answering

We used GenMedGPT-5K to test how LLMs deal
with question-answering in the medical domain,
where LLMs need to answer with disease diagnosis,
drug recommendation, and test recommendation.

4.2.1 Evaluation Metrics
We used two metrics, BERTScore(Zhang et al.,
2019a) and GPT-4 Rating, for quantitative eval-
uation. BERTScore measures semantic similarity
between the generated and reference answers. GPT-
4 was employed to (1) rank answer quality against
ground truth and (2) compare pairs of answers on
four criteria: response diversity and integrity, over-
all factual correctness, correctness of disease diag-
nosis, and correctness of drug recommendation. In
addition, we introduce a new metric for hallucina-
tion quantification, which estimates the degree of
deviation from the facts in the generated answers
(Liang et al., 2023). To compute this metric, we
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Table 3: The pair-wise comparison by GPT-4 on the winning rate of MindMap v.s. baselines on diversity & integrity
score (%), fact total match score (%), and disease diagnosis (%), on GenMedGPT-5k.

MindMap vs Baseline GPT-3.5 BM25 Retriever Embedding Retriver KG Reriever GPT-4 TOT
Metries Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose
Diversity & integrity 100 - - 100 - - 100 - - 100 - - 100 - - - - -
Total factualness 80.11 - 19.89 66.67 - 33.33 76.05 - 23.95 73.53 - 26.47 75.77 - 24.23 78.5 - 21.5
Disease diagnosis 84.73 0.14 15.13 75.91 1.26 22.83 77.03 1.96 21.01 66.67 2.94 30.39 73.11 1.40 25.49 75 24.6 0.3
Drug recommendation 88 5 7 87 8 5 72 13 15 74 19 7 83 8 9 87 5 8
Average 88.21 1.285 10.505 82.395 2.315 15.29 81.27 3.74 14.99 78.55 5.485 15.965 82.97 2.35 14.68 80.17 14.8 9.93

Table 4: The BERTScore and GPT-4 ranking of all
methods for CMCQA dataset.

BERT Score GPT-4 Ranking
Precision Recall F1 Score (Average)

MindMap 0.9415 0.9321 0.9367 2.3
GPT-3.5 0.9385 0.9361 0.9372 3.4
GPT-4 0.9355 0.9358 0.9356 3.6
BM25 Retriever 0.9365 0.9348 0.9356 3.7
Embedding Retriever 0.9357 0.9334 0.9345 5.4
KG Retriever 0.9318 0.9348 0.9332 2.3

first use the question-extra entities data generated
by Step I and train a keyword extraction model
(NER-MT5) based on mT5-large. Then, we input
the outputs of MindMap, other baselines, and la-
bels into the NER-MT5 model to obtain the lists
of keywords for each answer. Finally, we concate-
nate the keywords with commas as ner-sentences,
and calculate the tfidf similarity score between the
ner-sentences of different outputs. A lower score
indicates more hallucination in the answer.

4.2.2 Results
In Table 2, various methods are evaluated based on
BERTScore, GPT-4 ranking scores, and hallucina-
tion quantification scores.

While BERTScore shows similar results among
methods, MindMap exhibits a slight improvement,
possibly due to the shared tone in medical re-
sponses. However, for medical questions, com-
prehensive domain knowledge is crucial, not well-
captured by BERTScore. GPT-4 ranking scores and
hallucination quantification reveal that MindMap
significantly outperforms others, with an average
GPT-4 ranking of 1.8725 and low hallucination
scores. This underscores MindMap’s ability to
generate evidence-grounded, plausible, and accu-
rate answers compared to baseline models like GPT-
3.5 and GPT-4, which may produce incorrect re-
sponses due to reliance on implicit knowledge. Ad-
ditionally, Table 3 demonstrates MindMap’s con-
sistent superiority over other methods, emphasiz-
ing the value of integrating external knowledge to
mitigate LLM hallucinations and provide accurate

answers.

4.3 Long Dialogue Question Answering

In our experiments on the CMCQA dataset, char-
acterized by lengthy dialogues requiring complex
reasoning, Table 4 showcases MindMap consis-
tently ranking favorably compared to most base-
lines, albeit similar to KG Retriever. Addition-
ally, in Table 5, MindMap consistently outper-
forms baselines in pairwise winning rates as judged
by GPT-4. Despite a narrower performance gap
compared to GenMedGPT-5K, attributed to the in-
adequacy of the knowledge graph (KG) in cov-
ering all necessary facts for CMCQA questions,
MindMap still outshines all retrieval-based meth-
ods, including KG Retriever. This suggests previ-
ous retrieval-based approaches might overly rely
on retrieved external knowledge, compromising
the language model’s (LLM) ability to grasp intri-
cate logic and dialogue nuances using its implicit
knowledge. Conversely, MindMap leverages both
external and implicit knowledge in graph reasoning,
yielding more accurate answers.

4.4 Generate with Mismatch Knowledge from
KG

In addressing the robustness of MindMap concern-
ing the factual correctness of KG, we leverage
the identical KG dataset employed in the second
dataset - ExplainPE. Consequently, the knowledge
retrieved may tend to be redundant or devoid of
accurate information. This aspect is particularly
crucial since it mirrors a common scenario in pro-
duction, where LLM often needs to generate an-
swers by amalgamating both its implicit knowledge
and the knowledge retrieved from external sources.

4.4.1 Evaluation Metrics

We evaluate all methods based on the accuracy of
the generated choice and the quality of the expla-
nations. For assessing explanation quality, we use
BERTScore and GPT-4 ranking. We specifically
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Table 5: The pair-wise comparison by GPT-4 on the winning rate of MindMap v.s. baselines on disease diagnosis
and drug recommendation on CMCQA.

MindMap vs Baseline GPT-3.5 BM25 Retriever Embedding Retriver KG Reriever GPT-4
Metrics Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose Win Tie Lose
Disease diagnosis 35.68 39.96 24.36 30.98 50.21 18.80 37.18 42.74 20.08 34.40 45.51 20.09 27.99 47.22 24.79
Drug recommendation 47.32 30.62 22.06 47.11 29.34 23.55 44.97 32.12 22.91 44.33 31.26 24.41 44.11 29.76 26.12
Average 41.5 35.29 23.21 39.045 39.775 21.175 41.075 37.43 21.495 39.365 38.385 22.25 36.05 38.49 25.455

属于持续大剂量应用糖皮质激素引起
的不良反应是
A: 生长迟滞 
B: Cushing综合征体型 
C: 青光眼 
D: 胰腺炎 
E: 糖尿病

B:  (✔）

B: (✔)

MindMap

KG Retriever

(b) Question 396

GPT-3.5 A: (❌)

GPT-4 A,B,C,E: (❌)

BM25 Retriever E: (❌)

Embedding Retriever E: (❌)

D:  (✔）

C: (❌)

MindMap

KG Retriever

(f) Question 118

GPT-3.5 B: (❌)

GPT-4 A: (❌)

BM25 Retriever B: (❌)

Embedding Retriever D: (✔)

可使尿比重升高的疾病是
A: 慢性肾小球肾炎 
B: 尿崩症 
C: 急性肾衰竭多尿期 
D: 糖尿病 
E: 慢性肾功能不全

C:  (✔）

D: (❌)

MindMap

KG Retriever

(e) Question 171

GPT-3.5 D: (❌)

GPT-4 C: (✔)

BM25 Retriever D: (❌)

Embedding Retriever B: (❌)

m患者，男，42岁，于晨起跑步时突感
前胸闷痛，伴心悸、大汗，休息10分钟
后自行缓解，之后检查心电图无异常。
心肌酶在正常范围内，既往有高血压病
史7年，临床考虑为稳定型心绞痛发作，
患者自述昨晚曾应用枸橼酸西地那非
片，则该患者应避免应用的药物为
A: 阿司匹林肠溶片 
B: 琥珀酸美托洛尔缓释片 
C: 硝酸甘油片 
D: 硝苯地平控释片 
E: 盐酸贝那普利片

D:  (✔）

C: (❌)

MindMap

KG Retriever

(a) 

GPT-3.5 C: (❌)

GPT-4 B: (❌)

两种药物配伍之后效价降低的
是
A: 头孢唑林与0.9%氯化钠注射
液
B: 头孢曲松与复方氯化钠注射
液
C: 胰岛素与0.9%氯化钠注射液 
D: 青霉素与5%葡萄糖注射液
E: 维生素C与氯化钠注射液

BM25 Retriever C: (❌)

Embedding Retriever C: (❌)

C:  (✔）

B: (❌)

MindMap

KG Retriever

(c) Question 283

GPT-3.5 C: (✔)

GPT-4 A: (❌)

BM25 Retriever B: (❌)

Embedding Retriever B: (❌)

烟酸主要会造成
A: 中性粒细胞减少 
B: 嗜酸性粒细胞增多 
C: 嗜酸性粒细胞减少 
D: 嗜碱性粒细胞增多 
E: 淋巴细胞增多

D:  (✔）

A: (❌)

MindMap

KG Retriever

(d) Question 385

GPT-3.5 C: (❌)

GPT-4 A: (❌)

BM25 Retriever D: (✔)

Embedding Retriever A: (❌)

可诱发新生儿脑组织黄染的药
物是
A: 苯巴比妥 
B: 碳酸氢钠 
C: 呋塞米片 
D: 磺胺嘧啶 
E: 链霉素

Figure 4: Case examples of multi-choice in ExplainCPE, comparing predictions by Baselines and MindMap.

Table 6: The accuracy scores for ExplainCPE. We cal-
culate the rates of correct, wrong, and failed responses.

Method Accuracy Rate(%)
Correct Wrong Failed

GPT-3.5 52.2 47.2 0.5
BM25 Retriever 50 44.2 5.7
Embedding Retriever 54.2 45.2 0.5
KG Retriever 42 44 14
GPT-4 72 27.7 0.2

MindMap 61.7 37.7 0.5
w/o prompt template p1 53.5 46 0.5

instruct the GPT-4 rater to prioritize the correctness
of the explanation over its helpfulness or integrity.

4.4.2 Results

In Table 6, our method (MindMap) demonstrates
superior accuracy compared to various baselines,
affirming its effectiveness over document retrieval
prompting techniques. Interestingly, we observed
that directly incorporating retrieved knowledge into
prompts sometimes degrades answer quality, as
seen with KG Retriever and BM25 Retriever per-
forming worse than the vanilla GPT-3.5 model.
This discrepancy arises from mismatched external
knowledge, leading to misleading effects on the
language model (LLM). The model tends to rely
on retrieved knowledge, and when inaccurate, the
LLM may generate errors. Ablation analysis on in-

Table 7: Quantitative comparison with BERTScore and
GPT-4 preference ranking between MindMap and base-
lines in ExplainCPE dataset.

BERT Score GPT-4 Ranking
Precision Recall F1 Score (Average)

MindMap 0.9335 0.9376 0.9354 2.98
GPT-3.5 0.9449 0.9487 0.9467 3.0425
GPT-4 0.9487 0.9529 0.9507 3.0075
BM25 Retriever 0.9413 0.9411 0.9411 3.6675
Embedding Retriever 0.9440 0.9459 0.9449 4.3175
KG Retriever 0.9354 0.9373 0.9362 3.985

Table 8: The BERTScore and hallucination qualification
of different component for GenMedGPT-5k.

Tokens BERT Score Hallucination
(Average) Precision Recall F1 Score Quantify

Path-only 1028 0.6310 0.7885 0.7002 0.3854
Neighbor-only 1236 0.6393 0.7930 0.7072 0.3894

MindMap 1431 0.7938 0.7987 0.7960 0.5890
Improved-path +403 +0.1628 +0.0102 +0.0957 +0.2036
Improved-neigh +195 +0.1545 +0.0057 +0.0888 +0.1996

struction prompts revealed that prompting the LLM
to "combine with the knowledge you already have"
(p1) improved performance by 8.2%. Moreover,
Table 7 highlights MindMap’s ability to generate
rationales for answers, earning a ranking of 2.98
by GPT-4.
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4.5 Ablation Study

In our study, we compared our method (MindMap)
with two variants: Neighbor-only and Path-only.
Neighbor-only focuses on neighbor-based evidence
exploration, while Path-only concentrates on path-
based evidence exploration. Despite using addi-
tional tokens, MindMap showed significant im-
provements in hallucination quantification com-
pared to both Neighbor-only and Path-only meth-
ods. This highlights the importance of combining
both path-based and neighbor-based approaches to
reduce hallucinations. Notably, the neighbor-based
method proved more effective in enhancing factual
accuracy compared to the path-based method. For
tasks involving medical inquiries, path-based meth-
ods are better at finding relevant external informa-
tion, though they struggle with multi-hop answers
such as medication and test recommendations.

4.6 In-depth Analysis

We further conducted an in-depth analysis of the
cases by MindMap, focusing on the discussion of
the following aspects.

4.6.1 How does MindMap perform without
correct KG knowledge?

In Figure 4(c) (Appendix F), when faced with a
question where GPT-3.5 is accurate but KG Re-
triever errs, MindMap achieves an accuracy rate
of 55%. We attribute the low accuracy of the KG
Retriever to its inability to retrieve the necessary
knowledge for problem-solving. MindMap effec-
tively addresses such instances by leveraging the
LLM inherent knowledge, identifying pertinent ex-
ternal explicit knowledge, and seamlessly integrat-
ing it into a unified graph structure.

4.6.2 How robust is MindMap to unmatched
fact queries?

The question in Figure 6 (Appendix F) contains
misleading symptom facts, such as ‘jaundice in my
eyes’ leading baseline models to retrieve irrelevant
knowledge linked to ‘eye’. This results in failure
to identify the correct disease, with recommended
drugs and tests unrelated to liver disease. In con-
trast, our model MindMap accurately identifies
cirrhosis’ and recommends the relevant ‘blood test’
showcasing its robustness.

4.6.3 How does MindMap aggregate evidence
graphs considering entity semantics?

In Figure 7 of Appendix F, nodes like ‘vaginitis’
and ‘atrophic vaginitis’ are present in different
evidence sub-graphs but share a semantic iden-
tity. MindMap allows LLMs to disambiguate and
merge these diverse evidence graphs for more ef-
fective reasoning. The resulting mind maps also
map entities back to the input evidence graphs. Ad-
ditionally, Figure 7 illustrates the GPT-4 rater’s
preference for total factual correctness and disease
diagnosis factual correctness across methods. No-
tably, MindMap is highlighted for providing more
specific disease diagnosis results compared to the
baseline, which offers vague mentions and lacks
treatment options. In terms of disease diagnosis
factual correctness, the GPT-4 rater observes that
MindMap aligns better with the ground truth.

4.6.4 How does MindMap visualize the
inference process and evidence sources?

Figure 8 in Appendix F presents a comprehensive
response to a CMCQA question. It includes a sum-
mary, an inference process, and a mind map. The
summary extracts the accurate result from the mind
map, while the inference process displays multiple
reasoning chains from the entities on the evidence
graph Gm. The mind map combines all the infer-
ence chains into a reasoning graph, providing an in-
tuitive understanding of knowledge connections in
each step and the sources of evidence sub-graphs.

4.6.5 How does MindMap leverage LLM
knowledge for various tasks?

Figure 4 in Appendix F illustrates MindMap’s per-
formance on diverse question types. For drug-
related questions (a) and (d), which demand in-
depth knowledge, MindMap outperforms other
methods. Disease-related questions (b) and (f)
show comparable results between retrieval methods
and MindMap, indicating that incorporating exter-
nal knowledge mitigates errors in language model
outputs. Notably, for general knowledge questions
(c), LLMs like GPT-3.5 perform better, while re-
trieval methods lag. This suggests that retrieval
methods may overlook the knowledge embedded
in LLMs. Conversely, MindMap performs as well
as GPT-3.5 in handling general knowledge ques-
tions, highlighting its effectiveness in synergizing
LLM and KG knowledge for adaptable inference
across datasets with varying KG fact accuracies.
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5 Conclusion

This paper introduced knowledge graph (KG)
prompting that 1) endows LLMs with the capabil-
ity of comprehending KG inputs and 2) facilitates
LLMs inferring with a combined implicit knowl-
edge and the retrieved external knowledge. We then
investigate eliciting the mind map, where LLMs
perform the reasoning and generate the answers
with rationales represented in graphs. Through
extensive experiments on three question & answer-
ing datasets, we demonstrated that our approach,
MindMap, achieves remarkable empirical gains
over vanilla LLMs and retrieval-augmented genera-
tion methods, and is robust to mismatched retrieval
knowledge. We envision this work opens the door
to fulfilling reliable and transparent LLM inference
in production.
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A Construction of Datasets

• GenMedGPT-5k is a 5K generated dialogue be-
tween patients and GPT-3.5 grounded on a dis-
ease database1. The question describes the symp-
toms of the patient during the consultation, which
comes from the iCliniq database. Based on the
database, the generated answers cover the diag-
nosis, symptoms, recommended treatments, and
medical tests. We sampled 714 dialogues as the
test set.

• CMCQA contains multi-round dialogues be-
tween patients and doctors in Chinese. It covers
materials from 45 clinical departments such as
andrology, gynecology, and obstetrics and gyne-
cology. We simplified the setup by merging the
patient’s questions and the clinician’s answers to
build the one-round Q&A. We sampled 468 from
all to build the test set.

• ExplainCPE is a 5-way choice question dataset
from the Chinese National Licensed Pharmacist
Examination. Answering the questions requires a
series of capabilities, including logical reasoning,
drug knowledge, scenario analysis, mathemati-
cal calculation, disease knowledge, and general
knowledge. The answers include the correct op-
tions and the explanations. We extracted 400
samples related to disease diagnosis and treat-
ment recommendations from the original dataset
for testing.

B Implementation of Knowledge Graph

• EMCKG We utilized a disease database2 to
build the KG from scratch to support the knowl-
edge source for the inference on GenMedGPT-5k.
This database encompasses a diverse set of dis-
eases and the corresponding symptoms, medical
tests, treatments, etc. The entities in the EMCKG
include disease, symptom, drug recommendation,
and test recommendation. The relationships
in the EMCKG include ‘possible_disease’,

‘need_medical_test’, ‘need_medication’,
‘has_symptom’, ‘can_check_disease’,
‘possible_cure_disease’. In total, the yielded KG
contains of 1122 nodes and 5802 triples.

1https://github.com/Kent0n-Li/
ChatDoctor

2https://github.com/Kent0n-Li/
ChatDoctor/blob/main/format_dataset.csv

• CMCKG We established a KG based on QASys-
temOnMedicalKG3 to support KG-augmented
inference on CMCQA and ExplainCPE. The CM-
CKG includes various entities such as disease,
symptom, syndrome, recommendation drugs,
recommendation tests, recommendation food,
and forbidden food. The relationships in the CM-
CKG include ‘has_symptom’, ‘possible_disease’,

‘need_medical_test’, ‘has_syndrome’,
‘need_recipe’, ‘possible_cure_disease’,
‘recipe__is_good_for_disease’,
‘food__is_good_for_disease’,
‘food__is_bad_for_disease’, ‘need_medication’,
‘need_food’, and ‘forbid_food’. In total, the KG
contains 62282 nodes, 12 relationships, and
506490 triples.

C Implementation of Baselines

• GPT-3.5 & GPT-4 We evaluate the performance
of the recent dominant LLM models as two base-
lines, using gpt-3.5-turbo (Wang et al., 2023;
Ateia and Kruschwitz, 2023) and gpt-44 (Ali
et al., 2022; Guo et al., 2023) API respectively.

• BM25 document retriever + GPT-3.5 We com-
pare with existing BM25 document retriever
methods (Roberts et al., 2020; Peng et al., 2023),
which use BM25 retrieval scores (Robertson
et al., 2009) as logits when calculating p(z|x).
For fair comparisons, we use the same KG
database as our method to generate different doc-
ument files. Specifically, we use the GPT-3.5
API to convert all knowledge data centered on
one disease into natural language text as the con-
tent of a document. For GenMedGPT-5k, we
make 99 documents based on English medical
KG GEnglish. For CMCQA and ExplainCPE, we
make 8808 documents based on Chinese medi-
cal KG GChinese. For each question query, we
retrieve the top k gold document contexts based
on bm25 scores.

• Text embedding document retrieval + GPT-3.5
Same as BM25 document retriever methods, text
embedding document retrieval methods (Sharma
and Kumar, 2023; Lewis et al., 2020) retrieve the
top k documents for each question query. The dif-
ference is that in this method we train a word2vec

3https://github.com/liuhuanyong/
QASystemOnMedicalKG/blob/master/data/
medical.json

4https://openai.com/gpt-4
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Sharp  
abdominal

pain

possible 
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has 
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possible 
disease has symptom possible disease
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has symptompossible disease

possible 
disease

need  
medical  
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Reasoning graph

P1: Fatigue may be a symptom of Cirrhosis, which in turn may have Stomach
bloating as a symptom. Stomach bloating may be a symptom of Liver cancer, which
may have Swollen abdomen as a symptom. Swollen abdomen may also be a
symptom of Liver cancer, which may have Sharp abdominal pain ...\n P2: ...\nP3: ..
N1: ...

Output1: (Summary) 
Based on the symptom described,  
the patient may have cirrhosis,  
need blood test.... Recommended 
 medications include antiviral medications.... 

Output2: (Inference process) 
P1('Patient'->'has been feeling' 
->'fatigue') 
->P2('fatigue'->'may be a  
symptom of'->'Cirrhosis') 
->P3('Cirrhosis'->''can leadto'->'Stomach bloating')) 
->...->result1('liver problem') 
->N1('liver problem'->'requires'->'blood tests')-> 
...->N5(recommended medications' 
->'depend on'->...)->... 

Output3: (Decision tree) 
Patient (P1) 
 └──has been feeling (P1) 
        └──fatigue (P1)(P2) 
              └──may be a symptom of (P2) 
                   └──cirrhosis (P2)(P3)(result 1） 
                        └──can lead to (P3) 
                           └──Stomach bloating (P3) 
                                 └── ....... 
                                     └── jaundice (P8)(N1) 
                                        |  └──requires(N1) 
                                        |       └── blood test(N1) 
                                        |  └──requires(N3) 
                                          ....... 

LLM Reasoning 
 with mind map

Figure 5: An overview of the architecture of our proposed MindMap. The left part illustrates the components of
evidence graph mining, while the right part shows the evidence graph aggregation and LLM reasoning with mind
map.

embedding (Dai, 2020) on the document corpus
as the evidence source for document ranking.

• KG retrieval + GPT-3.5 We compare with exist-
ing KG retrieval methods (Jia et al., 2021; Sun
et al., 2023), which aim to find the shortest KG
path between every pair of question entities. The
final prompt is then retrieved from KG to guide
GPT-3.5 model to answer questions. For fair
comparisons, we use the same preliminary pro-
cess as our method to recognize the entities in
question query. The key differences between
MindMap and these are that they do not think
on multiple evidence KG sub-graphs with multi-
thought in LLM, and without backtracking evi-
dence sources.

• Tree-of-thought (TOT) We compare TOT as a
typical Chain-of-thought (Wei et al., 2022b) base-
line with MindMap. TOT is a method that uses
a tree structure to solve complex problems(Yao
et al., 2023a). By extending one inference path
into multiple inference paths, the model can syn-
thesize the results of multiple inference paths to
obtain the final conclusion.

D Prompt Engine

• The instructions of MindMap components.
Table 9 shows the instruction of Step I: en-
tity recognition, which aims to identify and

label medical entities in the user query. Table
10 shows the templates of Step II (Evidence
Graph Aggregation), which generates natural
language sentences from the evidence graph
nodes and edges.

• The instructions of baseline methods: Table
11 shows the prompt template of two docu-
ment retrieval methods (BM25 Retrieval and
Embedding Retrieval). The input is the ques-
tion and the most related document context.

• The instructions of evaluation: Figure 3
presents the final prompt used by MindMap
for generating results and constructing a mind
map. The prompt consists of a system mes-
sage acknowledging the AI’s expertise as a
doctor, a user message representing the pa-
tient’s input, and an AI message incorporating
knowledge obtained from an external KG. The
Langchain technique is employed to create the
prompt, which guides the generation of step-
by-step solutions. The response consists of a
summary answer to the query, the inference
process, and a mind map. Table 12 illustrates
an example of the pairwise ranking evaluation
using the GPT-4 rater, which compares the
quality of different responses based on vari-
ous criteria.
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E Evidence Subgraphs Exploration

We provide more details on the path-based and
neighbor-based exploration methods as follows:

• Path-based Evidence Graph set Gpath
q Ex-

ploration connects entities in Vq by tracing
their intermediary pathways within G: (a)
Choose one node in N 0

q as the start node n1.
Place the remaining nodes in a candidate node
set Ncand. Explore at most k hops from n1 to
find the next node n2, where n2 ∈ Ncand. If
n2 is successfully reached within k hops, up-
date the start node as n2 and remove n2 from
Ncand. If n2 cannot be found within k hops,
connect the segments of paths obtained so far
and store them in Gpath

q . Then choose another
node n1′ from Ncand as the new start node,
and remove both n1 and n2 from Ncand. (b)
Check if Ncand is empty. If it is not empty,
iterate step 1 to find the next segment of the
path. If it is empty, connect all segments to
build a set of sub-graphs and put them into
Gpath
q .

• Neighbor-based Evidence Graph set Gq Ex-
ploration aims to incorporate more query-
related evidence into Gq. It has two steps:
(a) Expand for each node n ∈ Vq by 1-hop to
their neighbors {n′} to add triples {(n, e, n′)}
to Gnei

q . (b) For each v′, check if it is semanti-
cally related to the question. If so, further ex-
pand the 1-hop neighbors of n′, adding triples
(nnei, e

′, n′) to Gnei
q .

F In-depth Analysis

We select four examples for in-depth analysis, as
shown in Figure 6, 7, 8, and 4.

• Figure 6 presents an example from
GenMedGPT-5k. It includes the ques-
tion, reference response, the response
generated by MindMap, responses from base-
lines, and the factual correctness preference
determined by the GPT-4 rater. This example
is used to discuss the robustness of MindMap
in handling mismatched facts.

• Figure 7 illustrates another example from
GenMedGPT-5k. It displays the question
query, reference response, summary responses
from both MindMap and baseline models, a

mind map generated by MindMap, and spe-
cific preferences in terms of factual correct-
ness and sub-task disease fact match deter-
mined by the GPT-4 rater. This example
shows the ability of MindMap to aggregate
evidence graphs.

• Figure 8 showcases an example from CM-
CQA. It includes the question query, a sum-
mary answer, the inference process, and the
generated mind map by MindMap. This ex-
ample provides insights into the visualization
of the final output produced by MindMap.

• Figure 4 demonstrates an example from Ex-
plainCPE. It consists of six questions catego-
rized into three different question types and
evaluates the accuracy of MindMap and base-
line models. This example allows us to ex-
amine the performance of MindMap across
various tasks.

G Pairwise Ranking Evaluation

For each pair of answers, as an example in Table 12,
raters were asked to select the preferred response or
indicate a tie along the following axes (with exact
instruction text in quotes):

• Diversity and integrity: “According to the
result in reference output, which output is bet-
ter."

• Total factual correctness: “According to the
facts of disease diagnosis and drug and tests
recommendation in reference output, which
output is better match."

• Disease diagnosis: “According to the disease
diagnosis result in reference output, which
output is better match."

• Drug recommendation: “According to the
drug recommendation result in reference out-
put, which output is better match."

Note that for the second dataset CMCQA, since the
reference label is derived from the actual dialogue
answer, it may not contain facts. When the GPT-4
rater performs pairwise ranking evaluation, it is
very easy to judge it as a tie. Therefore, we add an
additional instruction: “If they are the same, output
"2". Try to output "1" or "0"”, so as to force the
rater to make a preference judgment.
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H Limitations and Potential Risks

The integration of knowledge graphs (KGs) with
large language models (LLMs), particularly in med-
ical contexts, presents several potential challenges.
One significant concern is the risk of replicating
any existing biases or errors in the knowledge
graphs. These graphs, often built from pre-existing
data sources, might contain outdated or partial in-
formation, which could inadvertently influence the
LLM’s outputs. Another issue lies in the integra-
tion complexity between KGs and LLMs, which
could lead to unexpected errors or logical incon-
sistencies, especially when addressing intricate or
vague queries. This aspect is critically important
in the medical field, where precision is paramount.
Moreover, there’s a possibility that the LLMs might
become excessively dependent on the KGs, which
could hinder their performance in scenarios where
KGs are not accessible or are lacking in infor-
mation. Additionally, the use of "mind maps" to
trace the LLMs’ reasoning paths, while innovative,
raises questions about the models’ interpretability.
If these visual representations are complex or ob-
scure, it may be difficult for users to understand
how conclusions were reached, potentially dimin-
ishing trust in these advanced systems. In summary,
while the merger of KGs with LLMs is a promising
development, it is crucial to address these poten-
tial issues to ensure the responsible and efficacious
application of this technology.
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(b) 
Reference

(c) 
Output 

MindMap GPT-3.5

(a) 
Question 

BM25 Retriever: Based on the symptoms described by the patient (fatigue, swollen and tender abdomen, and jaundice in the eyes), it is possible that the patient is suffering from a liver problem.
However, the information provided about a disease characterized by eye alignment disorder, with symptoms such as eye deviation, diminished vision, double vision, cross-eyed, pain in the eye, abnormal
movement of eyelid, foreign body sensation in eye, lack of growth, irregular appearing scalp, and swollen lymph nodes, is not relevant to the patient's current symptoms. Therefore, the information
provided is not sufficient to make a diagnosis or recommend medications. In order to properly diagnose the patient, a physical examination and medical tests may be necessary, including blood tests to
check liver function, ultrasound to examine the liver and other abdominal organs, and potentially a liver biopsy. Treatment for liver disease can vary depending on the specific diagnosis, but may include
lifestyle changes, medications, or in severe cases, liver transplant. Therefore, I recommend that the patient schedule an appointment with a medical professional for further evaluation and diagnosis.

Doctor, I have been feeling very fatigued lately and my abdomen feels swollen and tender. I am also experiencing jaundice in my eyes. Could it be a liver problem?

Based on your symptoms, it is possible that you may have cirrhosis, a liver disease. We will need to run a battery of medical tests to confirm the diagnosis, including hematologic tests, complete blood
count, glucose measurement, an electrolyte panel, a lipid panel, liver function tests, and hemoglobin A1c measurement.

 I'm not a doctor, but your symptoms could
possibly be related to a liver problem. It's
important to consult with a healthcare
professional for an accurate diagnosis. They
will be able to evaluate your symptoms,
conduct any necessary tests, and provide you
with proper guidance and treatment.

Based on the symptoms described, the patient may have a liver problem,
possibly cirrhosis or liver cancer, which can cause fatigue, swollen and tender
abdomen, and jaundice. To confirm the diagnosis, the patient should undergo blood
tests to check liver function and imaging tests such as an ultrasound or CT scan.
Recommended medications depend on the underlying cause of the liver problem,
and may include antiviral medications for viral hepatitis, immunosuppressants for
autoimmune hepatitis, or diuretics for fluid buildup.

KG Retriever: Based on the symptoms described by the patient, it is possible that they have a liver problem. The combination of fatigue, swollen and tender abdomen, and jaundice in the eyes suggests
that the patient may have choledocholithiasis, which is a condition where gallstones block the bile ducts in the liver. This can lead to an inflamed and swollen liver, causing the symptoms the patient is
experiencing. To confirm the diagnosis, the patient should undergo a blood test to check for elevated levels of bilirubin and liver enzymes. An ultrasound or CT scan may also be necessary to visualize
the bile ducts and liver. The recommended medication for choledocholithiasis is typically a procedure called an ERCP (Endoscopic Retrograde Cholangiopancreatography) to remove the gallstones from
the bile ducts. Pain medication may be prescribed to help manage any discomfort during this procedure. It is important for the patient to seek medical attention as soon as possible to prevent further
damage to the liver and to manage symptoms.

Embedding Retriever: Based on the patient's symptoms of fatigue, swollen and tender abdomen, and jaundice in the eyes, it is possible that the patient has a liver problem. However, the provided
medical information is not related to liver problems, but rather to a medical condition called Chalazion, which affects the eyes. Therefore, it is recommended that the patient consults a medical doctor
to undergo further tests and examinations to determine the cause of their symptoms and receive an accurate diagnosis. Some tests that a doctor may recommend include liver function tests,
ultrasound, CT scan, or MRI of the abdomen. As for the medications to cure Chalazion, some of the options mentioned in the medical information include dexamethasone-tobramycin ophthalmic,
erythromycin ophthalmic, and loteprednol-tobramycin ophthalmic. However, these medications are not related to the patient's current symptoms and are not recommended for the treatment of liver
problems. The appropriate medications for liver problems depend on the specific diagnosis and should be prescribed by a medical doctor.

GPT-4

As an AI, I can suggest that these symptoms might indicate a liver
problem, such as Hepatitis, Cirrhosis, or Liver disease. But, fatigue
could also be linked to many other conditions. It's critical to speak
directly to a healthcare provider who can accurately diagnose your
condition based on a comprehensive medical evaluation. This could
involve answering detailed questions about your symptoms and
possibly undergoing lab tests or imaging studies.

GPT-4  
Rater

MindMap > KG Retriever > BM25 Retriever > KG Retriever > GPT-4 > GPT-3.5

Figure 6: A case compares MindMap and baselines with mismatched retrieved knowledge, evaluated by the
GPT factual correctness preference rater.

(b) 
Reference

(c) 
Output 

Based on the symptoms described, the patient may
have vaginal atrophy, which is a thinning, drying, and
inflammation of the vaginal walls due to a decrease in
estrogen levels. To confirm the diagnosis, the patient
should undergo a pelvic exam and possibly a Pap smear
or urinalysis. Recommended medications for vaginal
atrophy include estrogen therapy in the form of
vaginal creams, tablets, or rings.

Output1

MindMap

It is possible that you may have a vaginal infection or a condition known
as vaginitis. The best way to determine the cause of your symptoms is
to visit your doctor for a physical examination and some tests. Your
doctor may order a pelvic exam, a culture of the vaginal discharge, or a
Pap smear to check for any signs of infection. They may also order
blood tests to check for any underlying medical conditions that could
be causing the symptoms. Treatment will depend on the cause of your
symptoms, so it is important to get a proper diagnosis.

Output2

Baseline

Based on your symptoms, it sounds like you may have atrophic vaginitis. To confirm this, we would need to perform a pelvic exam, a
pap smear and a urinalysis. Additionally, to rule out any underlying conditions and ensure comprehensive preventive care, I would
recommend a mammogram, breast examination, rectal examination and a complete physical skin exam.

(a) 
Question 

Doctor, I've been having discomfort and dryness in my vagina for a while now. I also experience pain during sex. What could be the
problem and what tests do I need?

(d) 
Total

Based on the provided reference, Output 1 appears to be a better match as it specifically mentions atrophic vaginitis, which is
characterized by thinning, drying, and inflammation of the vaginal walls due to decreased estrogen levels. It also suggests
treatments such as estrogen therapy in the form of vaginal creams, tablets, or rings. Output 2 mentions vaginitis and the need for a
physical examination and tests, which is relevant, but it does not specifically address atrophic vaginitis or provide information about
treatment options.

Based on the disease facts in the reference output, Output 1 is a better match. The reference specifically mentions atrophic
vaginitis, which is characterized by thinning, drying, and inflammation of the vaginal walls due to decreased estrogen levels. Output 1
also suggests the need for a pelvic exam, pap smear, and urinalysis to confirm the diagnosis. It further provides information about
recommended medications for vaginal atrophy, such as estrogen therapy in the form of vaginal creams, tablets, or rings. While
Output 2 mentions the possibility of a vaginal infection or vaginitis, it does not specifically address atrophic vaginitis or provide
detailed information about the condition and its treatment.

(d) 
Disease

Figure 7: Factually correctness evaluation in GenMedGPT-5k using GPT-4 preference ranking: MindMap
shows a strong ability in fact-matching subtasks of question-answering by generating a mind map.
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template = """
There are some samples:
\n\n
### Instruction:\n’Learn to extract entities from the following

medical questions.’\n\n### Input:\n
<CLS>Doctor, I have been having discomfort and dryness in my vagina

for a while now. I also experience pain during sex. What could be
the problem and what tests do I need?<SEP>The extracted entities
are\n\n ### Output:

<CLS>Doctor, I have been having discomfort and dryness in my vagina
for a while now. I also experience pain during sex. What could be
the problem and what tests do I need?<SEP>The extracted entities
are Vaginal pain, Vaginal dryness, Pain during intercourse<EOS>

\n\n
Instruction:\n’Learn to extract entities from the following medical

answers.’\n\n### Input:\n
<CLS>Okay, based on your symptoms, we need to perform some diagnostic

procedures to confirm the diagnosis. We may need to do a CAT scan
of your head and an Influenzavirus antibody assay to rule out any
other conditions. Additionally, we may need to evaluate you

further and consider other respiratory therapy or physical therapy
exercises to help you feel better.<SEP>The extracted entities are

\n\n ### Output:
<CLS>Okay, based on your symptoms, we need to perform some diagnostic

procedures to confirm the diagnosis. We may need to do a CAT scan
of your head and an Influenzavirus antibody assay to rule out any
other conditions. Additionally, we may need to evaluate you

further and consider other respiratory therapy or physical therapy
exercises to help you feel better.<SEP>The extracted entities are
CAT scan of head (Head ct), Influenzavirus antibody assay,

Physical therapy exercises; manipulation; and other procedures,
Other respiratory therapy<EOS>

\n\n
Try to output:
### Instruction:\n’Learn to extract entities from the following

medical questions.’\n\n### Input:\n
<CLS>{input}<SEP>The extracted entities are\n\n ### Output:
"""

Table 9: The prompt template of Entity Recognition. The input is the question.
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我有一颗阻生齿埋在牙肉里,靠近磨牙的后面,磨牙前面有颗蛀牙拔掉了,所以是空的,现在唯一的一颗磨牙被后面的阻生齿顶歪了,请问我是该先拔智齿,再
补牙,还是先补牙再拔后面的智齿？（女,23岁） 看到了吗？ 对了,肉里的智齿老是长包发炎 对 就是那独立的一颗磨牙,后面牙肉里长了一颗智齿,前面
蛀牙拔掉了前几年拍过,是倒着长的 那颗磨牙被顶歪了,所以我不知道该拔牙还是先补前面的 那拔多久才可以补 长在肉里的阻生齿不拔  会怎样呢 哦,谢
谢","

根据患者的描述，您可能患有智齿阻生症。为了确认诊断，建议您进行
口腔X光片检查。治疗阻生齿的推荐药物包括人工牛黄甲硝唑胶囊。建
议您先拔除阻生齿，然后再进行补牙。忌吃辛辣食物和粘糕食物。

路径证据1('阻生齿'->'可能导致'->'牙列拥挤')->路径证据2('牙列拥
挤'->'并发症为'->'龋齿')->邻居证据1('龋齿'->'常用药品'->'丁硼乳膏
和布洛芬片')->邻居证据2('阻生齿'->'常用药品'->'人工牛黄甲硝唑胶
囊')->结果标号('智齿阻生症')->邻居证据3('阻生齿'->'诊断检查'-
>'口腔X光片检查')->结果标号('口腔X光片检查')->路径证据3('智齿
阻生症'->'常用药品'->'人工牛黄甲硝唑胶囊')->结果标号('人工牛黄
甲硝唑胶囊')->邻居证据4('智齿阻生症'->'常用药品'->'复方盐酸阿替
卡因注射液')->结果标号('复方盐酸阿替卡因注射液')->邻居证据5('智
齿阻生症'->'常用药品'->'丁硼乳膏和布洛芬片')->结果标号('丁硼乳
膏和布洛芬片')

(a) 
Question 

Output1

Output2

Output3

(b) 
MindMap 

Figure 8: An example to show the visualization of MindMap. By generating mind maps, MindMap guides LLM
to obtain the correct factual outputs for different subtasks.

template = """
There are some knowledge graph path. They follow entity->

relationship->entity format.
\n\n
{Path}
\n\n
Use the knowledge graph information. Try to convert them to

natural language, respectively. Use single quotation marks for
entity name and relation name. And name them as Path-based

Evidence 1, Path-based Evidence 2,...\n\n

Output:
"""

template = """
There are some knowledge graph. They follow entity->relationship

->entity list format.
\n\n
{neighbor}
\n\n
Use the knowledge graph information. Try to convert them to

natural language, respectively. Use single quotation marks for
entity name and relation name. And name them as Neighbor-

based Evidence 1, Neighbor-based Evidence 2,...\n\n

Output:
"""

Table 10: The prompt templates of transfering path-based evidence subgraphs and neighbor-based evidence
subgraphs to natural language.
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template = """
You are an excellent AI doctor, and you can diagnose diseases and

recommend medications based on the symptoms in the
conversation.\n\n

Patient input:\n
{question}
\n\n
You have some medical knowledge information in the following:
{instruction}
\n\n
What disease does the patient have? What tests should patient

take to confirm the diagnosis? What recommened medications can
cure the disease?

"""

Table 11: The prompt templates of BM25 Retrieval and Embedding Retrieval. The input is the question and the
most related document context.

def prompt_comparation(reference,output1,output2):
template = """
Reference: {reference}
\n\n
output1: {output1}
\n\n
output2: {output2}
\n\n
According to the facts of disease diagnosis and drug and tests

recommendation in reference output, which output is better
match. If the output1 is better match, output ’1’. If the
output2 is better match, output ’0’. If they are same match,
output ’2’.

"""
prompt = template.format(reference=reference, output1=output1,

output2=output2)
response = openai.ChatCompletion.create(
model="gpt-4",
messages=[

{"role": "system", "content": """You are an excellent AI
doctor."""},

{"role": "user", "content": prompt}
]

)
response_of_comparation = response.choices[0].message.content
return response_of_comparation

Table 12: The prompt template for GPT-4 rater to evaluate the factual correctness between our method and baselines,
the reference is the answer or explanation label.
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