Exploring Hybrid Question Answering via Program-based Prompting

Qi Shi*, Han Cui*, Haofeng Wang, Qingfu Zhu, Wanxiang Che†, Ting Liu
Research Center for Social Computing and Information Retrieval
Harbin Institute of Technology, Harbin, China
{qshi,hcui,hfwang,qfzhu,car,tliu}@ir.hit.edu.cn

Abstract

Question answering over heterogeneous data requires reasoning over diverse sources of data, which is challenging due to the large scale of information and organic coupling of heterogeneous data. Various approaches have been proposed to address these challenges. One approach involves training specialized retrievers to select relevant information, thereby reducing the input length. Another approach is to transform diverse modalities of data into a single modality, simplifying the task difficulty and enabling more straightforward processing. In this paper, we propose HPROPn, a novel program-based prompting framework for the hybrid question answering task. HPROPn follows the code generation and execution paradigm. In addition, HPROPn integrates various functions to tackle the hybrid reasoning scenario. Specifically, HPROPn contains function declaration and function implementation to perform hybrid information-seeking over data from various sources and modalities, which enables reasoning over such data without training specialized retrievers or performing modal transformations. Experimental results on two typical hybrid question answering benchmarks HybridQA and MultiModalQA demonstrate the effectiveness of HPROPn: it surpasses all baseline systems and achieves the best performances in the few-shot settings on both datasets1.

1 Introduction

Question answering systems (Pasupat and Liang, 2015; Rajpurkar et al., 2016; Goyal et al., 2017) have attracted significant attention and made considerable progress in recent years. However, real-world data often exists in diverse formats and originates from multiple sources. Consequently, re-

Question
Where does the original owner’s railroad of the shield-shaped GE C30-7 intersect with the Central Pacific Railroad?

Table

<table>
<thead>
<tr>
<th>Railroad</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atchison, Topeka and Santa Fe Railway</td>
<td>157</td>
</tr>
<tr>
<td>Louisville and Nashville Railroad</td>
<td>44</td>
</tr>
<tr>
<td>Seaboard Coast Line Railroad</td>
<td>51</td>
</tr>
<tr>
<td>Union Pacific Railroad</td>
<td>148</td>
</tr>
</tbody>
</table>

Passages
1. Atchison, Topeka and Santa Fe Railway reached the Kansas-Colorado border in 1873 and Pueblo, Colorado, in 1876.
2. The two lines of Union Pacific Railroad were joined together at Promontory Summit, Utah on May 10, 1869.

Images

... Reasoning with Program

while scan over column "Railroad":
if the railroad in hyperlink has a "shield-shaped logo":
return information in hyperlink "where does the railroad meet the Central Pacific Railroad?"

Figure 1: Example of hybrid question answering task with the corresponding program.

searchers turn their focus to the hybrid question answering (HQA) task (Chen et al., 2020b; Talmor et al., 2020), which necessitates mixed reasoning across various types of data. The HQA task is challenging due to the vast amount of information and the organic coupling of heterogeneous data sources. Reasoning over such diverse data requires the ability to understand multiple data types simultaneously. For instance, as depicted in Figure 1, the model must engage in reasoning over both the table and the extensive passages and images linked in hyperlinks to make accurate predictions.

To tackle these challenges, recent approaches focus on training domain-specific models to retrieve or rank elements such as table rows, passages, or images, selecting the most relevant ones to
enhance the subsequent reasoning process (Eisen-
schlos et al., 2021; Kumar et al., 2021; Lei et al.,
2023). Since real-world heterogeneous data is vast
and constantly updated, even if these approaches
demonstrate promising performance on their fo-
cused datasets, their applicability to such intricate
data is still limited. Furthermore, some existing
approaches tend to transform diverse modalities
data into a single modality, such as image capt-
toning (Cheng et al., 2022; Liu et al., 2023), or
table-to-text generation (Li et al., 2021), to reduce
the task difficulty. However, such approaches are
constrained by the performance of modal transfor-
mation models, which often result in the loss of
information. In a word, these approaches highly
rely on data distribution, and the complexity of real-
world heterogeneous data makes them exorbitant.

In contrast to previous approaches, we argue that
the solution of solving the HQA task should be
gnostic to data distribution. Consequently, we
advocate for an optimal solution devising a proce-
dure for determining how to find an answer, rather
than merely generating the answer itself. Noticing
that the program could elucidate the reasoning pro-
cess employed to arrive at the answer (as depicted
in Figure 1), in the current era of large language
models (LLMs), leveraging a program can serve
as an advantageous solution since LLMs are an
excellent program generator. Moreover, the pro-
cess of program generation necessitates the incor-
poration of various functions into the program, en-
abling information-seeking across diverse sources
and modalities of data.

Based on the aforementioned considerations, in
this paper, we introduce a novel program-
based prompting framework HPROPro (Hybrid
Program-Based Prompting) for HQA task. HPRO-
Pro considers the solution as a process of code
generation and execution, integrating external cus-
tomized functions under the few-shot setting². To
facilitate the utilization of customized func-
tions, HPROPro incorporates two key components:
Function Declaration during the code generation
phase and Function Implementation during the
execution phase, which is shown in Figure 2.
During the function declaration stage, HPROPro de-
fines the function name and formal parameters,
utilizing them as prompts to generate code. Sub-
sequently, in the function implementation stage,

²In this work, we use Python code as the carrier of the
program.

HPROPro implements the declared functions, serv-
ing for the direct execution of the generated code.
By defining different functions, HPROPro can sup-
port reasoning over data from various modalities,
making it a flexible and scalable framework. Im-
portantly, HPROPro eliminates the need to convert
different modalities of data into a single modality
beforehand. Instead, it acquires information within
the origin modal by the functions themselves. To
the best of our knowledge, HPROPro is the first
work to explore the power of LLMs in handling het-
erogeneous data without requiring domain-specific
retrieval or modal transformation. Experiments
demonstrate that HPROPro significantly outper-
forms previous methods.

In summary, our contributions are as follows:

- We introduce HPROPro, a program-based
 prompting framework that enables reason-
 ing over heterogeneous data without domain-
 specific retrieval and modal transformation.

- We implement a few-shot code generation and
 execution pipeline, calling various functions
 by function declaration and implementation to
 perform information-seeking across data from
different sources and modalities.

- Experiments show the effectiveness that
 HPROPro achieves state-of-the-art perfor-
 mance under the few-shot settings on both
 HybridQA (Chen et al., 2020b) and Multi-
 ModalQA (Talmor et al., 2020).

2 Method

2.1 HPROPro Framework

Task Formulation In this paper, our focus is
on the task of hybrid question answering, which
involves answering questions based on heteroge-
neous information sources such as tables, text, and
images. The objective is to provide accurate an-
wers to questions based on the given heteroge-
neous data. Figure 2 provides the comparison be-
tween retrieval-based methods and our proposed
approach HPROPro. Similar to existing program-
based prompting approaches, HPROPro follows
a paradigm that involves generating code and ex-
ecuting it to obtain the final answer. Unlike the
previous approaches with a separate retriever, we
deal with the input data with external functions
but not the retriever module. As a result, we in-
troduce two key components: function declaration
and function implementation, which are required during the code generation stage and code execution stage, respectively. In the following sections, we will delve into both parts of the framework and discuss their roles and functionalities.

Function Declaration The function declaration process in HProPRO serves the purpose of defining appropriate functions that can be utilized during the code generation phase. During this stage, it is necessary to specify the function name and formal parameters. These declared functions are treated as input prompts for LLMs and are expected to be leveraged to generate code. In Figure 2, the functions with different highlight backgrounds on the left represent the declared functions. Each function has a specific role, which is described briefly alongside the table and query as the input prompts. These prompts are then fed into LLMs to generate the corresponding code. The LLMs will attempt to utilize the declared functions to generate the desired code. By providing function declarations as prompts, HProPRO enables the LLMs to have a better understanding of the expected structure and behavior of the code to be generated. This allows for more accurate and controllable code generation, ultimately facilitating the HQA task.

Function Implementation The generated code contains formally defined functions, rendering it incapable of direct execution. Consequently, the process of function implementation aims to implement the declared functions to make the code able to be executed by off-the-shelf interpreters. As discussed in Section 1, functions are expected to interact with data from various sources. However, conventional function structures cannot be accommodated in some scenarios, such as extracting information over unstructured texts or images. Therefore, we proceed with the initial implementation of the declared functions integrated with the ability of LLMs to ensure that each function encompasses comprehensive functionality. Specifically, to achieve this process, we pre-design function-related prompts, which are expected to be fed into LLMs when executing the generated code.

2.2 Function Instantiation

In this section, we introduce several functions and elaborate on the declaration and implementation of each function to support HProPRO.

Extract information from external source To facilitate reasoning across heterogeneous information sources, we introduce the function "extract_info". Since data from these sources is often unstructured, the process of extracting information can be likened to a reading comprehension task. In the function declaration, "extract_info" is defined as "extract_info(cell, target_information)". Here, "cell" refers to a specific cell in a table, and "target_information" represents the infor-
information that is required to be extracted, as shown in Figure 3. The function's purpose is to extract the relevant information from the paragraph or image associated with the "cell" based on the specified "target_information". It should return the extracted information as a textual string. All the necessary information, including the function name and its parameters, will be part of the generated code and are expected to be generated by LLMs. During the function implementation process, we utilize an automatically constructed dictionary to locate the corresponding paragraphs or images based on the provided cell. Subsequently, we construct prompts to invoke LLMs based on the data types, which can be categorized into text-based extraction and image-based extraction. The detailed prompts are introduced in Appendix A.

Compare two pieces of information Code often includes rich comparisons between two objects using operators like ">", "<", or "==". However, when dealing with heterogeneous data, the information extracted from various sources may not adhere to a strict format. The form of information obtained from functions like "extract_info" cannot be predetermined. As a result, the traditional comparison operators cannot be directly applied to compare two objects, such as comparing the values "20,000" and "ten thousand", or comparing "Beijing" and "the capital of China". To address this issue, we propose a more flexible function called "check". In the function declaration process, "check" can be defined as "check(obj1, obj2, op)". As shown in Figure 3, "obj1" and "obj2" are two strings representing pieces of information. These strings can be the contents of table cells, information obtained from other functions, or directly generated by LLMs based on natural language questions. The "op" parameter represents one of three operators: ">", "<", or "==". The purpose of the "check" function is to compare whether "obj1" and "obj2" are semantically consistent under the specified "op" operator. In other words, it evaluates if the semantic relationship between the two objects aligns with the given operator. Similar to the "extract_info" function, all the relevant information, including the function name and its actual parameters, will be part of the generated code and are expected to be generated by LLMs. During the function implementation process, we provide some few-shot cases as prompts to guide LLMs on how to compare the objects. The detailed prompts are introduced in Appendix A.

2.3 Code Refinement

In HPROPRO, the final answer is obtained by executing the generated code using a standard Python interpreter. Any error in the code will terminate the execution process. However, since the model cannot predict the results returned by each function during code generation, there is a possibility that the model may generate code with mismatched processing methods. This can lead to execution errors or empty results when running the code. Since initial outputs from LLMs can be improved through iterative feedback and refinement (Madaan et al., 2023), we perform code refinement by re-calling...
the LLMs and incorporating error codes and trace-
back information into the prompts to generate new
code. Figure 3 illustrates the prompts used for code
geneneration. By providing the above information to
LLMs, the models are expected to reconsider the
code generation process and generate new code that
can alleviate the issues encountered. The detailed
prompts are introduced in Appendix A.

2.4 Query Simplification

In the HQA task, code generation is often per-
formed based on the input of a table and a question
since including all relevant data as input would
result in an extensive input length. However, the
reasoning process often involves linked passages
or images, which are not directly visible during the
code generation phase. This increases the burden
of the code generation process. To address this is-
ssue, we employ query simplification to simplify the
question and establish links between the question
and the table cells before conducting code genera-
tion. Figure 4 illustrates the schematic diagram of
the query simplification process. Taking "Among
animated TV shows, who was the original voice
actor on the show whose poster features a charac-
ter in yellow gloves" as an example, we utilize a
general retriever³ initially to retrieve relevant infor-
mation from passages or images in the hyperlinks.
Query simplification involves using LLMs that take
as input the retrieved passage or image, the origi-
nal question, and the table. The goal is to replace
the span in the question (such as "the show whose
poster features a character in yellow gloves") with
the corresponding content in the table cell (such as
"Kick Buttowski: Suburban Daredevil"). The
detailed prompts are introduced in Appendix A.

3 Experiments

3.1 Datasets

We conduct experiments on two typical HQA
datasets: HybridQA(Chen et al., 2020b) and Mul-
tiModalQA(Talmor et al., 2020). Both datasets
involve the task of mixed reasoning over diverse
sources of data. HybridQA necessitates reasoning
over hybrid contexts that consist of both tables and
texts. On the other hand, MultiModalQA requires
reasoning over tables, texts, and images. To eval-
uate HPROPRO, we follow the official evaluation

³The general retriever stands for either a naive retriever or
a neural retriever trained on a general corpus, rather than a
customized retriever trained on a specific task.

3.2 Experimental Settings

In all our experiments, we utilize different versions
of the GPT language models for different compo-
nents. Specifically, we use gpt-4-0613
as the backbone model for code generation, code
reformulation, and query simplification. For imple-
menting the function "extract_info", we employ
gpt-4-0613 and gpt-4-vision-preview to ex-
tract information in the passages and images respec-
tively. For implementing the function "check", we
employ gpt-3.5-turbo. In the process of query
simplification, for the HybridQA task, we employ a
hybrid retriever that combines TF-IDF and longest-
substring matching (Chen et al., 2020b) as the re-
triever. For the MultiModalQA task, we utilize sen-
tence transformers (Reimers and Gurevych, 2020)
as the retriever respectively. The temperature pa-
rameter for all models is set to 0. All few-shot ex-
periments for code generation are in the settings of
4 shots. Furthermore, in the oracle settings of Mul-
tiModalQA, where the golden passage and image
are provided, we remove the query simplification
module. This allows us to directly feed all relevant
data to the language models without encountering
issues related to excessive input length.

3.3 Baseline Systems

We compare HPROPRO to various methods on Hy-
bridQA and MultiModalQA, which can be mainly
divided into with(w) and without(w.o.) fine-tuning
approaches. For HybridQA, approaches w: fine-
tuning stand for the method that trained on the
training set, including MAFiD (Lee et al., 2023),
S³HQA (Lei et al., 2023), etc, and approaches
w.o. fine-tuning include the Unsupervised-QG (Pan
et al., 2021) and End-to-End QA with retriever
on GPT-4. For MultiModalQA, baseline meth-
ods consist of approaches w: fine-tuning including
SKURG(Yang et al., 2023), PReasM-Large(Yoran
et al., 2022), etc, and approaches w.o. fine-tuning
including Binder(Cheng et al., 2022), MMHQA-
ICL (Liu et al., 2023), etc.

3.4 Main Results

Results on HybridQA According to the results
presented in Table 1, it is evident that HPRO-
PRO outperforms all baseline systems among ap-
Table 1: Experimental results on HybridQA. † stands for running on 200 sampled cases from the validation set.

<table>
<thead>
<tr>
<th>Approaches w.o. Fine-tuning</th>
<th>Total Dev EM F1 Test EM F1</th>
<th>Total Dev EM F1 Test EM F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYBRIDER (Chen et al., 2020b)</td>
<td>54.3 61.4</td>
<td>56.2 63.3</td>
</tr>
<tr>
<td>DocHopper (San et al., 2021)</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>MuGER (Wang et al., 2022)</td>
<td>60.9 69.2</td>
<td>58.7 66.6</td>
</tr>
<tr>
<td>POINTR (Eiseneschlos et al., 2021)</td>
<td>68.6 74.2</td>
<td>66.9 72.3</td>
</tr>
<tr>
<td>DEHG (Feng et al., 2022)</td>
<td>– – –</td>
<td>– – –</td>
</tr>
<tr>
<td>MITQA (Kumar et al., 2021)</td>
<td>68.1 73.3</td>
<td>68.5 74.4</td>
</tr>
<tr>
<td>MAFbD (Lee et al., 2023)</td>
<td>69.4 75.2</td>
<td>68.5 74.9</td>
</tr>
<tr>
<td>S1HQA (Lei et al., 2023)</td>
<td>70.3 75.3</td>
<td>70.6 76.3</td>
</tr>
</tbody>
</table>

Table 2 summarizes the results obtained on the MultiModalQA dataset, where HPROPRO achieves state-of-the-art performances across all experimental settings. When considering systems w.o. fine-tuning, HPROPRO outperforms the previous system MMHQA-ICL by 4.2% and 0.9% in terms of EM and F1 scores, respectively. In comparison to the baseline systems Binder and MMHQA-ICL, which utilize modal transformation modules to convert images into texts, HPROPRO employs various functions to directly extract information from different modalities. This approach avoids information loss and is more suitable for real-world scenarios involving heterogeneous data. It is important to note that the improvements achieved by HPROPRO are non-trivial, considering that MMHQA-ICL leverages domain-specific fine-tuned classifiers and retrievers to obtain the type and relevant passages of each question respectively, which heavily relies on the distribution of the targeted benchmark. In contrast, HPROPRO is performed without any supervised signals from the training set, resulting in a more universal approach.

In the oracle setting which golden passages and images are provided as the input, HPROPRO achieves comparable results to the previous state-of-the-art system MMHQA-ICL in terms of EM. Demonstrating that regardless of the retriever (only focus on the reasoning part), the results prove that their work highly relies on the retrievers to gain the performances. Besides, compared to their approach, HPROPRO follows a code generation and execution paradigm, which provides enhanced interpretability and generalizability.
Table 2: Experimental results on MultiModalQA.

<table>
<thead>
<tr>
<th>Models</th>
<th>HybridQA</th>
<th>MultiModalQA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EM</td>
<td>F1</td>
</tr>
<tr>
<td>HPROPRO</td>
<td>48.0</td>
<td>54.6</td>
</tr>
<tr>
<td>HybridQA</td>
<td>56.0</td>
<td>62.8</td>
</tr>
<tr>
<td>MultiModalQA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Ablation studies on HybridQA and MultiModalQA. All ablation studies are performed on 200 randomly sampled subsets from validation sets.

3.5 Ablation Study

Effect of the function "check" The function "check" is designed to compare the semantic relations between two objects, offering greater flexibility compared to arithmetic operators such as ">", "<", and "=". To demonstrate the effectiveness of the "check" function, we conduct ablation studies by removing its definition in both the function declaration and function implementation processes. Table 3 presents the results of these ablation studies, highlighting the impact of the "check" function. When the "check" function is removed, there is a noticeable drop of 35% and 21% points in terms of EM and F1 scores, respectively, in the HybridQA dataset. Moreover, the removal of the "check" function has an even more substantial impact on the MultiModalQA dataset. Specifically, the results drop by more than 20% for both EM and F1 scores. This is because constraints from images are weaker than those from passages since LLMs can copy spans from the passages as the answer, which improves the need for the "check" function in this set of experiments.

Effect of query simplification The purpose of query simplification is to alleviate the burden of the code generation process by simplifying the question and establishing links between the question and the table cells. In Table 3, we present the effectiveness of query simplification on both the HybridQA and MultiModalQA datasets. When query simplification is removed, the results demonstrate a decrease of approximately 2% on the HybridQA dataset and a substantial drop of about 20% on the MultiModalQA dataset. These findings highlight the effectiveness of query simplification in the HQA task. It is important to note that the removal of the query simplification module leads to a significant drop specifically in the MultiModalQA dataset. We posit that this drop is due to the presence of passages and images that are necessary to answer the question but are not linked in the table, which couldn’t be accessed by the model from the prompt. Therefore, performing query simplification becomes crucial in handling such scenarios in the MultiModalQA task.

Effect of code refinement The code refinement module aims to enable LLMs to reconsider the code generation process based on previous execution traceback. In Table 3, we can observe the impact of removing the code refinement module on both the HybridQA and MultiModalQA datasets. When the code refinement module is removed, there is a noticeable decrease in performance. In the HybridQA dataset, the EM and F1 scores drop by 4.5% and 3.7% respectively. Similarly, in the MultiModalQA dataset, the EM and F1 scores drop by 2.0% and 2.3% respectively. The drop in performance demonstrates the effectiveness of the code refinement module in HPROPRO. By enabling LLMs to refine their code generation process based on previous execution errors, the code refinement module plays a vital role in generating accurate code, thereby enhancing the overall ability of HPROPRO in the HQA task.

Figure 5: Error percentage of HPROPRO on HybridQA and MultiModalQA.
3.6 Error Analysis

We analyze the errors that occurred within randomly selected subsets of 200 cases from the validation sets of HybridQA and MultiModalQA. Our examination reveals that the main errors can be classified into four distinct types, with the corresponding percentages depicted in Figure 5.

The first type of error involves predicted answers that possess similar meanings to the golden answers but differ in their expressions (25.0% for HybridQA and 26.1% for MultiModalQA). For instance, an instance may present the predicted answer as "the Southeastern Conference (SEC)", while the correct answer is simply "Southeastern Conference". From a technological perspective, we contend that such cases have already been resolved, as the underlying code solution is entirely accurate.

The second type of error observed is related to execution failure (11.5% for HybridQA and 5.7% for MultiModalQA). This error arises due to the inherent complexity of the heterogeneous data, which lacks a standardized format and therefore cannot be effectively addressed using a uniform solution.

The third type of error pertains to failures in the information-seeking from heterogeneous data sources (37.5% for HybridQA and 29.5% for MultiModalQA). These errors occur when the "extract_info" function fails to produce a valid result. This may be attributed to a mismatch between the generated code and the expected solution for answering the given question, or it could be indicative of instability in the implementation of the "extract_info" function.

The last type of error involves wrong predicted answers (26.0% for HybridQA and 38.7% for MultiModalQA). Due to the similarity between contents in different columns, the model encounters difficulty in discerning the appropriate location to locate the answer when generating code solely based on the provided table. Addressing this challenge remains a topic for future research.

For the detailed visualization results of this analysis, please refer to Appendix C.

4 Related Work

4.1 Hybrid Question Answering

The first line of our related work introduces the HQA task, which focuses on answering questions that require reasoning over diverse information sources. Currently, HQA can be broadly categorized into three subtasks based on the nature of the information sources: table-text question answering (Chen et al., 2020b,a; Zhu et al., 2021), image-text question answering (Reddy et al., 2022; Singh et al., 2021), and table-image-text question answering (Hannan et al., 2020; Talmor et al., 2020). Numerous approaches have been explored for reasoning over heterogeneous data in the context of HQA. Many of these methods primarily focus on supervised fine-tuning over specific benchmarks. This includes training dedicated retrievers (Wang et al., 2022; Kumar et al., 2021; Lei et al., 2023), rankers (Kumar et al., 2021), reasoners (Wang et al., 2022; Kumar et al., 2021; Eisenschlos et al., 2021; Lee et al., 2023; Lei et al., 2023), or transforming different modalities of data into a unified modality (Cheng et al., 2022; Liu et al., 2023; Li et al., 2021).

In contrast to existing works, HProPRO performs reasoning over heterogeneous data without relying on domain-specific retriever and modal transformation modules. Instead, it integrates various functions to facilitate information-seeking across data from different sources and modalities. Parallel to HProPRO, Glenn et al. (2024) propose BlendSQL, which also focuses on HQA task and shares the similar point with HProPRO that encodes the full decomposed reasoning roadmap into a single interpretable program-based query.

4.2 Program-based Prompting

The second line of our related work focuses on the program-based prompting strategy, with two closely related works: Program-of-Thought-Prompting (Chen et al., 2022; Gao et al., 2023) and Binder (Cheng et al., 2022). Program-of-Thought-Prompting (Chen et al., 2022; Gao et al., 2023) generates code and executes it using an interpreter. However, their approach is not designed to handle heterogeneous data. In contrast, HProPRO integrates function declaration and implementation to specify different functions, enabling effective handling of heterogeneous data. On the other hand, Binder (Cheng et al., 2022) converts images into passages and pre-retrieves relevant passages. These passages, along with the table and question, are then fed into LLMs to generate SQL and Python code for solving the question. In comparison, HProPRO does not rely on a modal transformation module or a retriever. Instead, it utilizes various functions to directly interact with data from different sources and modalities.
5 Conclusion

In this work, we propose HPROPRO, a novel program-based prompting framework for HQA tasks, which does not require domain-specific retriever and modal transformation, but integrates various functions to interact with heterogeneous data instead. Experimental results on two typical HQA benchmarks HybridQA and MultiModalQA show the effectiveness of HPROPRO that HPROPRO achieves the best performances under the few-shot settings. For future work, we hope to further utilize the coding capabilities of the LLMs, allowing the model to judge and self-create more customized functions based on different scenarios.

Limitations

The main limitation of this paper is that the performance of HPROPRO relies on the abilities of LLMs, which vary according to the different choices of LLMs. Model updates and server status may affect our experimental results. In addition, the existing benchmarks only focus on heterogeneous data containing tables, passages, and images. More types of data including knowledge graphs and charts are expected to be explored in the future.

Ethics Statement

In this paper, we propose HPROPRO, a program-based prompting framework for the HQA task. We conduct experiments on two benchmarks, namely, HybridQA and MultiModalQA. Both datasets are free and open for research use, which means no ethics issues.

Acknowledgements

We gratefully acknowledge the support of the National Natural Science Foundation of China (NSFC) via grant 62236004, 62206078 and 62441603.

References

Yue Feng, Zhen Han, Mingming Sun, and Ping Li. 2022. Multi-hop open-domain question answering over structured and unstructured knowledge. In Findings of the Association for Computational Linguistics: NAACL 2022, pages 151–156.

Fangyu Lei, Xiang Li, Yifan Wei, Shizhu He, Yiming Huang, Jun Zhao, and Kang Liu. 2023. S

A Detail Prompts of of HPROPRO
The system prompt and detail prompts of the function "extract_info", function "check", code refinement, and query simplification are shown in Figure 7, Figure 8, Figure 9 and Figure 10.

B Data Statistics for Each Dataset
The statistics of HybridQA and MultiModalQA are presented in Table 4 and Table 5.

C Error Analysis
The error analysis results are presented in Figure 6.
<table>
<thead>
<tr>
<th>Type</th>
<th>Question</th>
<th>Generated Code</th>
<th>Result Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM Not Match</td>
<td>What conference does the team won in 2016 belong to?</td>
<td>def solve(table) -> str: for index, row in table.iterrows(): if '2016' in row['Years won']: return extract_info(row['Team'], 'What conference does this team belong to?')</td>
<td>The predicted answer is "the Southeastern Conference (SEC)", while the golden answer is "Southeastern Conference". The code has the completely correct solution but has different expressions with the golden answer.</td>
</tr>
<tr>
<td>Execution Error</td>
<td>Who was the older person involved in writing the book from 2000?</td>
<td>def solve(table) -> str: older_author, older_age = None, 0 for index, row in table.iterrows(): if check(row['Year'], '2000', '=='): for author in row['Author'].split(','): age = int(extract_info(author, 'age')) if check(older_age, age, '<'): older_age, older_author = age, author for (author, age) in zip(row['Author'].split(','), row['Age'].split(',')): if check(older_age, age, '<'): older_age, older_author = age, author return older_author</td>
<td>The golden answer is "Sally Jenkins", while the existence of function "split" and "int" make the code fail to execute since the heterogeneous data is complex.</td>
</tr>
<tr>
<td>Failed Information Seeking</td>
<td>What shipbuilder designed the ship that the delivery voyage was the longest by a patrol boat?</td>
<td>def solve(table) -> str: if 'HMAS Fremantle' in row['Name'] and 'patrol boat' in row['Type']: return extract_info(row['Name'], 'Who is the shipbuilder?')</td>
<td>The golden answer is "Brooke Marine", while the code cannot locate the answer since the "extract_info" returns "None".</td>
</tr>
<tr>
<td>Wrong Predicted Answer</td>
<td>At which air force base did the pilot who graduated in 1968 serve?</td>
<td>def solve(table) -> str: for index, row in table.iterrows(): if check(row['ClassYear'], '1968', '=='): result = extract_info(row['Notability'], 'At which air force base did the pilot serve?') return result</td>
<td>The prediction answer is "Hurlburt Field", while the golden answer is "Hickam". The model cannot distinguish where to find the answer between the columns "ClassYear" and "Notability" since the information in the two columns is similar.</td>
</tr>
</tbody>
</table>

Table 6: Main error types of HPROPRO in HybridQA and MultiModalQA.