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Abstract
Temporal knowledge graph completion aims to
infer the missing facts in temporal knowledge
graphs. Current approaches usually embed fac-
tual knowledge into continuous vector space
and apply geometric operations to learn po-
tential patterns in temporal knowledge graphs.
However, these methods only adopt a single op-
eration, which may have limitations in captur-
ing the complex temporal dynamics present in
temporal knowledge graphs. Therefore, we pro-
pose a simple but effective method, i.e. TCom-
poundE, which is specially designed with two
geometric operations, including time-specific
and relation-specific operations. We provide
mathematical proofs to demonstrate the ability
of TCompoundE to encode various relation pat-
terns. Experimental results show that our pro-
posed model significantly outperforms existing
temporal knowledge graph embedding models.
Our code is available at https://github.com/nk-
ruiying/TCompoundE.

1 Introduction

A knowledge graph (KG) comprises a collection of
structured knowledge presented in triples, offering
a simple and effective means of describing factual
information (Tiwari et al., 2021; Liu et al., 2023).
In a KG, a triplet is conventionally represented as
(s, r̂, o), where s, o and r̂ correspond to the head
entity, tail entity and the relation linking between
the head and tail entities, respectively. However,
knowledge is not static in the real world (Li et al.,
2023). Temporal knowledge graph (TKG) repre-
sents knowledge (s, r̂, o) occurring at timestamp τ ,
denoted as a quadruple (s, r̂, o, τ), thereby adding
a temporal dimension to knowledge graphs. The
introduction of the timestamp τ enables TKG to
delineate the temporal scope of knowledge more
accurately and helps us better uncover the potential
information within it (Zhang et al., 2022). There-
fore, TKG is widely applied in downstream tasks
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Figure 1: An illustration of temporal evolution patterns.
It can be observed that the relationships between head
entity and tail entity are dynamically determined by both
relation and time.

such as question answering (Jia et al., 2018), infor-
mation retrieval (Campos et al., 2014), and recom-
mendation systems (Lathia et al., 2010) due to its
temporal characteristics.

However, TKG usually does not cover all the
facts. The incompleteness of TKG hinders the per-
formance of its downstream tasks. To enhance
the overall completeness of TKG, the temporal
knowledge graph embedding (TKGE) model uti-
lizes existing knowledge to predict and estimate
missing facts. Specifically, the TKGE model em-
ploys distinct score functions to acquire effective
vector space representations for entities, relations
and timestamps, thus utilizing these representations
to predict missing facts in TKG. Furthermore, how
to enhance the expressive capabilities of the TKGE
model is also an important issue that has received
widespread attention.

Geometric operations such as translation and
scaling are widely used operations in the field of
graphics. These operations help to distinguish
between these different classes of entities and to
model different relational patterns. Models like
TTransE (Leblay and Chekol, 2018), TComplEx
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(Lacroix et al., 2020) and TNTComplEx (Lacroix
et al., 2020) all use these operations and achieve
good performance. Previous TKGEs often use
a single type of operation for embedding. This
approach is not conducive to modeling different
relation patterns and temporal evolution patterns
(shown in Fig. 1) since each operator may have
modeling limitations. Ge et al. (2022) show that
using complex geometry operations in knowledge
graphs can effectively model different relational
patterns. Inspired by them, we work on com-
pound geometric operations that fit relationships
and timestamps in TKGs.

In this paper, we present a model called TCom-
poundE based on CompoundE (Ge et al., 2022).
Different from CompoundE’s work, we discuss the
effects of representing relations and timestamps
as different geometric operations, which we call
relation-specific operations and time-specific oper-
ations. More specifically, we use composite opera-
tions involving translation and scaling as relation-
specific operations and time-specific operations.
We integrate time-specific operations within the
framework of relation-specific operations, aiming
to capture both time-varying and time-invariant fea-
tures within the low-dimensional representations of
relations. Relation-specific operations, incorporat-
ing temporal information, are applied to the head
entity embedding. Subsequently, the confidence
of the quadruple is expressed by computing the
semantic similarity between the head entity embed-
ding and the tail entity embedding.

In summary, the main contributions of our work
are as follows:

• We present a novel TKG embedding
model called TCompoundE, which introduces
relation-specific and time-specific compound
geometric operations.

• We substantiate the suitability of our model
for important relation patterns through mathe-
matical formulations.

• Our experimental results on three benchmark
datasets demonstrate that our method both
meets and surpasses the performance of exist-
ing TKGE methods.

2 Related Work

2.1 Knowledge Graph Embedding
Alternatively referred to as static knowledge graph
embedding, knowledge graph embedding com-

monly involves embedding entities and relations
into low-dimensional vector spaces. This low-
dimensional embedding is employed to enhance
the representation of entities and relations through
score functions. The model can be categorized into
a translation model and a bilinear model based on
the distinct score functions employed. In trans-
lation model, TransE (Bordes et al., 2013) orig-
inally introduces a straightforward and efficient
score function ϕ(s, r̂, o) = ∥es+er̂−eo∥2, where
es, er̂, eo represent the lower dimensional embed-
ding of head entity, relation and tail entity respec-
tively, utilizing relations to denote the translation
distance from head entities to tail entities. Sub-
sequent models, including TransH (Wang et al.,
2014), TransR (Lin et al., 2015) and TransD (Ji
et al., 2015) adopt distinct projection strategies to
implement a relation-specific representation of en-
tities. RotatE (Sun et al., 2019) introduces the
concept of relations into knowledge graph embed-
ding through a rotation operation in complex space.
The PairRE (Chao et al., 2020) model suggests im-
plementing separate relation-specific scaling opera-
tions on the head and tail entities. HAKE (Zhang
et al., 2020) operates by mapping the embeddings
into polar coordinate space. CompoudE (Ge et al.,
2022) employs a combination of translation, scal-
ing and rotation to form a low-dimensional repre-
sentation of the relation, addressing the limitations
associated with individual operations. In bilinear
model, DisMult (Yang et al., 2014) represents re-
lationships through a symmetric matrix, deriving
a scoring function ϕ(s, r̂, o) =< es,Wr̂, eo > by
evaluating the semantic similarity between head
and tail entities, where Wr̂ represents the symmet-
ric matrix of relation. ComplEx (Trouillon et al.,
2016) operates within complex spaces. TuckER
(Balazevic et al., 2019) employs Tucker decompo-
sition to assess the plausibility of fact triples.

2.2 Temporal Knowledge Graph Embedding

Temporal knowledge graph embedding closely re-
sembles static knowledge graph embedding. There-
fore, the majority of TKGE are adapted from
knowledge graph embeddings to accommodate dy-
namic changes in facts. For instance, TTransE
(Leblay and Chekol, 2018) represents timestamp
through a translation operation, following the con-
cept introduced by TransE (Bordes et al., 2013).
Its score function is denoted by ϕ(s, r̂, o, τ) =
∥es + er̂ + eτ − eo∥2, where eτ represents the
lower-dimensional embedding of timestamp. TA-
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DistMult (García-Durán et al., 2018) integrates the
timestamp through the application of the DistMult
(Yang et al., 2014) method. TComplEx (Lacroix
et al., 2020) and TNTComplEx (Lacroix et al.,
2020) expand the tensor decomposition method-
ology introduced by the ComplEx (Trouillon et al.,
2016) model to encompass four dimensions, fa-
cilitating the embedding of TKGs. ChronoR
(Sadeghian et al., 2021) employs the rotation opera-
tion from RotatE (Sun et al., 2019) to comprehend
the influence of the combination between times-
tamp and relation on the entity’s rotation operation.
RotateQVS (Chen et al., 2022) employs QuatE
(Zhang et al., 2019) quaternion rotation to depict
the temporal impact on entities. BoxTE (Messner
et al., 2022) embeds TKGs using the box embed-
ding model, BoxE (Abboud et al., 2020). In addi-
tion to this, DE-Simple (Goel et al., 2020) incorpo-
rates diachronic embedding, expanding the static
knowledge graph embedding methods into TKGE
models capable of handling temporal information.
TeAST (Li et al., 2023) employs timestamp as a
mapping operation for the Archimedean spiral axis,
associating relations with the spiral axis to capture
the dynamic evolution of relations over time.

3 Background and Notation

In subsequent sections of this article, the Com-
poundE (Ge et al., 2022) methodology is employed
to elucidate translation, scaling, and rotation op-
erations. The ensuing discussion provides a com-
prehensive account of the representation of these
operations, followed by an introduction to the Com-
poundE model.

3.1 Translation, Rotation, and Scaling

Translation, rotation and scaling transformations
are fundamental operations in graphics, frequently
employed in various engineering applications. In
the processing of robot motion (LaValle, 2006),
the cascade application of translation, rotation and
scaling operations constitutes a method for precise
position determination. The translation, rotation
and scaling operations are illustrated in Fig. 2.
Expressing these operations in matrix form proves
to be both more efficient and straightforward. The
translation operation in Fig. 2 is represented in 2D
as follows:

T =




1 0 tx
0 1 ty
0 0 1


 (1)

Figure 2: An illustration of translation, rotation and
scaling. Where v is the original vector, T · v is the
vector after the translation operation, R · v is the vector
after the rotation operation, and S · v is the vector after
scaling.

while 2D rotation matrix can be written as:

R =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1


 (2)

And 2D scaling matrix can be expressed as:

S =




sx 0 0
0 sy 0
0 0 1


 (3)

3.2 CompoundE

CompoundE (Ge et al., 2022) encompasses a range
of models that integrate various translation, rota-
tion and scaling operations. In this discussion, we
focus on a specific combination approximating our
model. This involves applying a blend of transla-
tion, rotation and scaling to the head entity. The
ultimate score is determined by computing the dis-
tance between the transformed head and the initial
tail entity embeddings. The corresponding score
function is formally defined as follows:

ϕ(s, r̂, o) = ∥Tr̂ ·Rr̂ · Sr̂ · es − eo∥ (4)

where Sr̂, Rr̂, Tr̂ denote the translation, rotation
and scaling operations for the head entity embed-
ding. These constituent operators are specific to
relations. It is essential to highlight that the scal-
ing, rotation and translation operations employed
here are sequential, and altering their order yields
distinct outcomes (Ge et al., 2022).
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3.3 Problem formulation

For a temporal knowledge graph G, we use E to
denote the set of entities. R and T represent the
set of relations and the set of timestamps in the
temporal knowledge graph respectively. A fact in
the temporal knowledge graph is represented by
the quadruple (s, r̂, o, τ), where s, o ∈ E , r̂ ∈ R̂
and τ ∈ T . The task of knowledge graph com-
pletion is to predict the missing facts through the
existing facts in the knowledge graph. We train the
data in the training set through the score function
ϕ(s, r̂, o, τ) in the model. When predicting a fact,
we give either the head entity, relation and times-
tamp or the tail entity, relation and timestamp in
the quadruple. We input these missing quadruples
(s, r̂, ?, τ) or (?, r̂, o, τ) and candidate entities into
the score function, taking the highest score to form
a new fact quadruple for the entity.

4 Methodology

4.1 TCompoundE Model

In this section, we present our model, TCom-
poundE, which employs compound geometric op-
erations on both relations and timestamps. For a
quadruple (s, r̂, o, τ) in TKG. We utilize the no-
tations es, eo to represent the embeddings of the
head entity s and tail entity o. We utilize Sr̂ and
Tr̂ to represent relation-specific scaling, translation
operations. Integrate temporal information into
relation-specific operations before applying them
to entity embeddings. This merging involves time-
specific translation Tτ and scaling Sτ operations
in a relationship-specific process. In our model, we
employ translation and scaling operations to repre-
sent relation-specific operations and time-specific
operations. To facilitate a comprehensive introduc-
tion to our model, we categorize it into two distinct
sections: Time-Specific Operation and Relation-
Specific Operation; The initial section elucidates
the utilization of time-specific operations in con-
junction with relation-specific operations within a
quadruple. In the subsequent section, we elaborate
on the impact of relation-specific operations on the
embedding of the head entity.

Time-Specific Operation. In our model, we em-
ploy time-specific translation Tτ and scaling Sτ

operations to imbue temporal information into the
relation. We exclusively apply these operations to
the relation-specific scaling operation Sr̂. It is cru-
cial to highlight that we scale the relation-specific
operation by first applying translation and then scal-

ing. This sequencing is intentional, as the order of
operations can influence the outcome. However,
for the relation-specific translation operation, we
refrain from integrating time information. This ap-
proach aims to capture features of relations that
remain constant over time. Subsequently, we ob-
tain relation-specific operations that integrate tem-
poral information. Herein, Sr̂τ and Tr̂τ denote the
relation-specific scaling and translation operations,
respectively, after incorporating time information.
These operations can be precisely described by the
following formula:

Sr̂τ = Sτ · Tτ · Sr̂ (5)

Tr̂τ = Tr̂ (6)

Relation-Specific Operation. We denote the
relation-specific translation and relation-specific
scaling operations for the head entity as Tr̂ and
Sr̂ respectively. To capture temporal information
within the TKG, we refrain from applying these op-
erations directly to the head entity embeddings. In-
stead, we execute relation-specific operations sub-
sequent to the time-specific operations. Specifi-
cally, we utilize Sr̂τ and Tr̂τ to conduct relation-
specific operations incorporating time information
on the head entity embedding. This operation is
formally represented as:

er̂τs = Sr̂τ · Tr̂τ · es (7)

We obtain the head entity representation er̂τs
incorporating fused time and relation information
using Formula 7. Unlike CompoundE (Ge et al.,
2022), our chosen score function is not a distance
metric; instead, it is determined by the semantic
similarity between er̂τs and the tail entity eo. This
decision is grounded in our belief that semantic sim-
ilarity offers more advantages than distance metrics
in the context of TKG (proof in Appendix G). The
score function for TCompoundE is expressed as:

ϕ(s, r̂, o, τ) =< er̂τs , eo > (8)

4.2 Loss Function

Building upon TNTComplEx (Lacroix et al., 2020)
and TeAST (Li et al., 2023), we adopt reciprocal
learning for training our model, with the loss func-
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tion defined as follows:

Lu = − log(
exp(ϕ(s, r̂, o, τ))∑

o′∈ε exp(ϕ(s, r̂, o
′, τ))

)

− log(
exp(ϕ(o, r̂−1, s, τ))∑

s′∈ε exp(ϕ(o, r̂
−1, s′, τ))

)

+λu

k∑

i=1

(∥es∥33 + ∥Tr̂τ + Sr̂τ∥33 + ∥eo∥33)

(9)

where λu is the weight of the N3 regularization,
and r−1 denotes the inverse relation. We use the
smoothing temporal regularizer in TNTComplEx
(Lacroix et al., 2020) to make neighboring times-
tamps having close representations. It is defined
as:

Lτ =
1

Nτ−1

Nτ−1∑

i=1

∥eτ(i+1) − eτ(i)∥33 (10)

The total loss function of TCompoundE is de-
fined as:

L = Lu + λτLτ (11)

where λτ represents temporal regularization.

4.3 Modeling Various Relation Patterns
TCompoundE can model crucial relation patterns,
encompassing symmetric, asymmetric, inverse and
temporal evolution patterns (detail in Appendix
A). We enumerate all the propositions in this sec-
tion, with corresponding proofs provided in the
Appendix.

Proposition 1 TCompoundE can model the sym-
metric relation pattern. (proof in Appendix B)

Proposition 2 TCompoundE can model the asym-
metric relation pattern. (proof in Appendix C)

Proposition 3 TCompoundE can model the in-
verse relation pattern. (proof in Appendix D)

Proposition 4 TCompoundE can model the tempo-
ral evolution relation pattern. (proof in Appendix
E)

5 Experiments

5.1 Datasets
We assess the performance of TCompoundE on
three benchmark datasets for TKGE. The datasets
include ICEWS14 and ICEWS05-15 (García-
Durán et al., 2018), both derived from the In-
tegrated Crisis Early Warning System (ICEWS)

ICEWS14 ICEWS05− 15 GDELT

#E 7,128 10,488 500
#R̂ 230 251 20
#T 365 4017 366

#Train 72,826 386,962 2,735,685
#Dev 8,963 46,092 31,961
#Test 8,941 46,275 31,961

Table 1: Data statistics. #E , #R̂ and #T denote the num-
ber of entities, the number of relations and the number
of timestamps respectively.

(Lautenschlager et al., 2015). The ICEWS database
system records significant political events, with
ICEWS14 capturing events from the year 2014,
and ICEWS05-15 encompassing major political
events spanning from 2005 to 2015. Additionally,
we evaluate TCompoundE on GDELT (Leetaru and
Schrodt, 2013), a subset of the extensive Global
Database of Events, Language, and Tone (GDELT)
Temporal Knowledge Graph dataset. GDELT in-
corporates information from diverse sources, com-
prising facts with daily timestamps between April
1, 2015, and March 31, 2016. Notably, GDELT is
limited to the 500 most common entities and 20
most frequent relations. More information about
the datasets can be found in Table 1.

5.2 Baselines

We conduct a comprehensive comparison of our
model with state-of-the-art Temporal Knowledge
Graph Embedding (TKGE) models, which include
TTransE (Leblay and Chekol, 2018), DE-SimplE
(Goel et al., 2020), TA-DisMult (García-Durán
et al., 2018), ChronoR (Sadeghian et al., 2021),
TComplEx (Lacroix et al., 2020), TNTComplEx
(Lacroix et al., 2020), BoxTE (Messner et al.,
2022), RotateQVS (Chen et al., 2022), and TeAST
(Li et al., 2023).

Among these existing TKGE methods, TeAST
achieves state-of-the-art results on the ICEWS14,
ICEWS05-15, and GDELT datasets. Consequently,
we consider TeAST (Li et al., 2023) as the primary
baseline for our comparative analysis. In addition,
we also used a variant of the TCompoundE model
for ablation experiments. A detailed description of
the variant model can be found in Appendix F.

5.3 Evaluation Protocol

This paper evaluates our temporal knowledge graph
embedding (TKGE) model using the aforemen-
tioned benchmarks. Following established base-
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Methods ICEWS14 ICEWS05− 15 GDELT
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TTransE 0.255 0.074 - 0.601 0.271 0.084 - 0.616 0.115 0.0 0.160 0.318
DE-SimplE 0.526 0.418 0.592 0.725 0.513 0.392 0.578 0.748 0.230 0.141 0.248 0.403
TA-DisMult 0.477 0.363 - 0.686 0.474 0.346 - 0.728 0.206 0.124 0.219 0.365
ChronoR 0.625 0.547 0.669 0.773 0.675 0.596 0.723 0.820 - - - -
TComplEx 0.610 0.530 0.660 0.770 0.660 0.590 0.710 0.800 0.340 0.294 0.361 0.498
TNTComplEx 0.620 0.520 0.660 0.760 0.670 0.590 0.710 0.810 0.349 0.258 0.373 0.502
BoxTE 0.613 0.528 0.664 0.763 0.667 0.582 0.719 0.820 0.352 0.269 0.377 0.511
RotateQVS 0.591 0.507 0.642 0.754 0.633 0.529 0.709 0.813 0.270 0.175 0.293 0.458
TeAST 0.637 0.560 0.682 0.782 0.683 0.604 0.732 0.829 0.371 0.283 0.401 0.544

TCompoundE 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837 0.433 0.347 0.469 0.595

Table 2: Knowledge graph completion results on ICEWS14, ICEWS05-15 and GDELT. ALL results are taken from
the original papers.

lines, we assess the ranking quality of each test
triplet by computing all possible substitutions for
both the head and tail entities. Specifically, for
a missing quadruple (s, r̂, ?, τ) or (?, r̂, o, τ), we
calculate the scores for all entities and rank them
accordingly. We then filter out other correct quadru-
ples to make predictions about the current missing
entity. Performance is evaluated using standard
metrics, including mean reciprocal rank (MRR)
and Hits@n. Hits@n measures the percentage of
correct entities within the top n predictions. Higher
values of MRR and Hits@n indicate superior per-
formance. The Hits ratio is calculated with cut-off
values n = 1, 3, 10, denoted as H@n for conve-
nience in this paper.

5.4 Experimental Setup
We implement our proposed model TCompoundE
via pytorch based on the TeAST training frame-
work. All experiments are trained on a single
NVIDIA RTX A6000 with 48GB memory. We use
the Adagrad optimizer and conduct a lot of experi-
ments to find the optimal parameter configuration
on each dataset. The learning rate is set to 0.01 and
the embedding dimension d is set to 6000 and the
batch size is set to 4000 in the ICEWS14 dataset
and the max epoch is set to 400. In the ICEWS05-
15 dataset, we set the learning rate to 0.08, d to
8000, the batch size to 6000 and the max epoch to
100. In GDELT, the learning rate, d, the batch size
and the max epoch are set to 0.35, 6000, 2000 and
50 respectively. The optimal hyperparameters for
TCompound are as follows:

• ICEWS14: λu = 0.0025, λτ = 0.01

• ICEWS05-15:λu = 0.002, λτ = 0.1

• GDELT:λu = 0.001, λτ = 0.001

We report the average results on the test set for five
runs.

6 Results and Analysis

6.1 Main Results

Table 2 presents the results of knowledge graph
completion for ICEWS14, ICEWS05-15 and
GDELT datasets. The best-performing results are
highlighted in bold font. Our observations indi-
cate that TCompoundE outperforms all baseline
models across all metrics for t datasets. As TCom-
poundE exclusively applies the time-specific op-
eration to the relation-specific scaling operation,
this enables relations occurring simultaneously to
utilize the same time-specific operation, facilitat-
ing the evolution of all relations over time. For
the relation-specific translation operation, we main-
tain the timestamps unchanged to preserve the fea-
tures of relations that remain constant over time.
This demonstrates the significance of applying the
time-specific operation exclusively to the relation-
specific scaling operation. Additionally, Table 2
reveals that TCompoundE has achieved significant
improvements over TKGE models utilizing a sin-
gle operation for both relation-specific and time-
specific operations, such as translation (TTransE)
and scaling (TComplEx). This confirms that em-
ploying compound geometric operations for both
relation-specific and time-specific operations is an
effective strategy for designing TKG embeddings.
Furthermore, BoxTE (Messner et al., 2022) high-
lights that GDELT necessitates a considerable level
of temporal inductive capacity to achieve effec-
tive encoding. This is because GDELT displays a
notable degree of temporal variability, wherein cer-
tain facts endure across multiple consecutive times-
tamps, while others are momentary and sparse. The

11079



Model Mapping on Relation ICEWS14 ICEWS05− 15
Tr̂ Sr̂ Rr̂ MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TCompoundE Sr̂ ✔ ✔ 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837

V1
Tr̂

✔ 0.304 0.128 0.412 0.632 0.374 0.194 0.490 0.702
V2 ✔ ✔ 0.576 0.476 0.639 0.755 0.623 0.521 0.690 0.809
V3 ✔ ✔ ✔ 0.571 0.468 0.636 0.757 0.620 0.517 0.686 0.807

V4
Sr̂

✔ 0.602 0.518 0.650 0.762 0.676 0.595 0.727 0.824
V5 ✔ ✔ ✔ 0.576 0.485 0.630 0.746 0.652 0.571 0.702 0.801

V6
Rr̂

✔ 0.601 0.515 0.651 0.761 0.634 0.555 0.680 0.781
V7 ✔ ✔ ✔ 0.582 0.491 0.638 0.752 0.638 0.550 0.690 0.804

Table 3: Results of different relation-specific operations on ICEWS14 and ICEWS05-15.

Model Mapping on Time ICEWS14 ICEWS05− 15
Tτ Sτ Rτ MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TCompoundE Sr̂ ✔ ✔ 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837

V8

Tr̂

✔ 0.578 0.478 0.640 0.756 0.621 0.519 0.685 0.807
V9 ✔ 0.577 0.478 0.639 0.754 0.620 0.517 0.685 0.807

V10 ✔ 0.559 0.460 0.619 0.737 0.584 0.482 0.646 0.771
V11 ✔ ✔ ✔ 0.564 0.462 0.628 0.747 0.606 0.505 0.670 0.794

V12

Sr̂

✔ 0.634 0.548 0.687 0.791 0.693 0.607 0.750 0.846
V13 ✔ 0.638 0.558 0.685 0.783 0.682 0.606 0.735 0.832
V14 ✔ 0.587 0.499 0.642 0.743 0.639 0.557 0.688 0.786
V15 ✔ ✔ ✔ 0.582 0.505 0.627 0.734 0.673 0.595 0.723 0.815

Table 4: Results of different time-specific operations on ICEWS14 and ICEWS05-15.

performance of our model demonstrates it can cap-
ture the dynamic evolution of relations. The results
across all three datasets indicate the effectiveness
of our combined approach in addressing the tempo-
ral knowledge graph completion problem.

6.2 Different Combinations

We investigate the impact of various combinations
on ICEWS14 and ICEWS05-15. And we also
compare the performance of TCompoundE with
its variants. More comprehensive experimental
results can be found in Appendix H. We classify
these variants into two groups: the first group in-
volves maintaining the time-specific operation un-
changed while modifying the relation-specific op-
eration, and the second group involves maintain-
ing the relation-specific operation unchanged while
modifying the time-specific operation. The results
of the ICEWS14 and ICEWS05-15 variants from
the aforementioned two groups are presented in Ta-
ble 3 and Table 4. The best results are highlighted
in bold font, while the second best are underlined.

In Table 3, we can observe that TCompoundE
outperforms its variants across all metrics on
ICEWS14 and ICEWS05-15. As TCompoundE uti-
lizes translation and scaling operations as relation-
specific operations, this enables TCompoundE to

model critical relation patterns. We can observe
from Table 3 that TCompoundE has significantly
outperformed its variants when employing a sin-
gle operation for relation-specific operations, in-
cluding translation (V1), scaling (V4) and rotation
(V6). It confirms that utilizing a single operation as
relation-specific has drawbacks in TKGs. We also
observe that TCompoundE outperforms its vari-
ants across all geometric operations, including V3,
V4 and V7. These variant models employ transla-
tion, scaling, and rotation as relation-specific op-
erations. The distinction among these models lies
in the usage of time-specific operations in differ-
ent relation-specific operations, such as translation
(V3), scaling (V5) and rotation (V7). This under-
scores that incorporating too many geometric oper-
ations as relation-specific operations is not optimal
in TKGs. Conversely, V2 utilizes the same relation-
specific operation as TCompoundE, while applying
the time-specific operation to the relation-specific
translation operation. This indicates that more fea-
tures that remain constant over time can be learned
from relation-specific translation operations.

Table 4 displays the results of the second group
of TCompoundE variants. In Table 4, V8, V9, and
V10 employ single translation, scaling and rotation
as time-specific operations. V12, V13 and V14 are
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(a) The initial state of es and eo (b) es apply Tr̂τ (c) es apply Tr̂τ and Sr̂τ

Figure 3: Visualisations of the learned entity embeddings on ICEWS14. The circle in the figure represents the head
entity and the triangle represents the tail entity; Circles and triangles of the same color indicate that the head and tail
entities come from the same quadruple.

Figure 4: MRR scores on ICEWS14 dataset.

identical to V8, V9 and V10, respectively. From
the results, we observe that TCompoundE remains
highly competitive compared to its variant mod-
els when employing a single operation as a time-
specific operation. V11 and V15 use translation,
scaling and rotation as time-specific operations,
applying them to relation-specific translation and
relation-specific scaling operations, respectively. It
is evident from Table 4 that TCompoundE demon-
strates significant improvements compared to its
variants when employing all geometric operations
as time-specific operations. This confirms that in-
corporating too many operations is often subopti-
mal.

6.3 Effects of Operation

We randomly select 100 quadruples from
ICEWS14 and employ t-SNE (Van der Maaten and
Hinton, 2008) to visualize the head and tail entity
embeddings of TCompoundE. The visualization

results are depicted in Fig. 3. We note that the
initial state of the head entity and tail entity em-
beddings appears chaotic and irregular. However,
when the head entity embeddings undergo Tr̂τ and
Sr̂τ transformations, the distribution of the head
and tail entity embeddings becomes more regular.
The reason for this phenomenon, we think head
entity is mapped to a space close to tail entity by
relation-specific operation merging the temporal
information. This is due to the design of the scor-
ing function and illustrates the effectiveness of the
composite operation. Specifically, the head and tail
entities in the same quadruple exhibit a high degree
of proximity. This confirms the effectiveness of
employing both relation-specific and time-specific
operations. In addition, we have a case study of
the quadruple we use. Details can be found in the
appendix I.

6.4 Effects of Embedding Dimension

We investigate the effect of embedding dimension
on TCompoundE. In Fig. 4, we compare the MRR
scores of TCompoundE and previous state-of-the-
art (SOTA) embedding models on the ICEWS14
dataset across different dimension settings d ∈
1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000.
According to the experimental results, TCom-
poundE is suboptimal in low dimensions, but
it outperforms benchmarking methods when
d ≥ 2000.

7 Conclusion

This paper introduces a novel method, TCom-
poundE, designed to address the challenge of
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knowledge graph completion in TKGs. TCom-
poundE applies a compound of translation and scal-
ing as relation-specific and time-specific operations.
Our experimental results demonstrate that TCom-
poundE effectively manages both relation and time
information in TKGs. Furthermore, we provide
mathematical evidence supporting TCompoundE’s
capability to handle various relational patterns. Ad-
ditionally, we explore the effectiveness of different
combinations of relation-specific and time-specific
operations.

Limitations

Similar to many temporal knowledge graph embed-
ding models, our proposed method, TCompoundE,
faces limitations during the training phase as it
cannot learn about invisible entities and time. Con-
sequently, TCompoundE cannot directly perform
temporal knowledge graph extrapolation tasks. Ad-
ditionally, our model excels at high embedding
dimensions, leading to its larger size compared to
others.
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Appendix

A Definition of Relation Patterns

Definition 1 A relation r̂ is symmetric, if
∀s, o, τ, (s, r̂, o, τ) ∧ (o, r̂, s, τ) ∈ G
Definition 2 A relation r̂ is asymmetric, if
∀s, o, τ, (s, r̂, o, τ) ∈ G ∧ (o, r̂, s, τ) /∈ G
Definition 3 Relation r̂1 is the inverse of r̂2, if
∀s, o, τ, (s, r̂1, o, τ) ∧ (o, r̂2, s, τ) ∈ G
Definition 4 Relation r̂1 and r̂2 are evolving
over time from timestamp τ1 to timestamp τ2, if
∀s, o, (s, r̂1, o, τ1) ∧ (s, r̂2, o, τ2) ∈ G.

The above describes various relational patterns
from a mathematical point of view. We will il-
lustrate various relational patterns next. For sym-
metric patterns, (Canada, Consult, France) and
(France, Consult, Canada) show that Consult is
symmetric. For asymmetric patterns, is father of is
an asymmetric relation, because (personA, is father
of, personB) and (personB, is father of, personA)
can’t both be true. is father of and is son of are in-
verse relations. Temporal evolution patterns detail
can be found at Figure 1.

B Proof of Propositions 1

Let M denote the compound operation for head
entity. Following ComplEx, we employ the stan-
dard dot product < a, b >= a ◦ b =

∑
k akbk.

For symmetric pattern, we can get ϕ(s, r̂, o, τ) =
ϕ(s, r̂, o, τ) based on definition of symmetric pat-
tern. According to score function of TCompoundE,
we get:

< Mes, eo >=< Meo, es >⇒
Mes ◦ eo = Meo ◦ es

(12)
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If the matrix M is invertible,then we can get:

Mes ◦ eo = Meo ◦ es ⇒
es ◦ eo = M−1Meo ◦ es ⇒

es ◦ eo = eo ◦ es
(13)

Therefore, TCompoundE can model symmetric pat-
tern when matrix M is invertible.

C Proof of Propositions 2

By definition of asymmetric pattern, we can get
ϕ(s, r̂, o, τ) ̸= ϕ(s, r̂, o, τ). By similar proof for
Propositions 1, TCompoundE can model asymmet-
ric pattern when matrix is not invertible.

D Proof of Propositions 3

Based on definition of inverse pattern, we have
ϕ(s, r̂1, o, τ) = ϕ(s, r̂2, o, τ). Hence, we get

M1es ◦ eo = M2eo ◦ es (14)

If the matrix M1 or M2 is invertible, the we can
get:

es ◦ eo = M−1
1 M2eo ◦ es ⇒

M−1
1 M2 = I or M−1

2 M1 = I
(15)

Therefore, TCompoundE can model symmetric pat-
tern when M1 and M2 are inverse matrices.

E Proof of Propositions 4

For temporal evolution pattern, we can get
ϕ(s, r̂1, o, τ1) = ϕ(s, r̂2, o, τ2) based on definiton
of temporal evolution pattern. Then through the
score function, we can get:

Mr̂1τ1es ◦ eo = Mr̂2τ2eo ◦ es (16)

where Mr̂1τ1 = Sτ1Tτ1Sr̂1Tr̂1 and Mr̂2τ2 =
Sτ2Tτ2Sr̂2Tr̂2 . Then we can get:

es ◦ eo = M−1
r̂1τ1

Mr̂2τ2 ◦ es ⇒
M−1

r̂1τ1
Mr̂2τ2 = I or M−1

r̂2τ2
Mr̂1τ1 = I

(17)

We can observe from the above formula: TCom-
poundE can model temporal evolution pattern when
Mr̂1τ1 and Mr̂2τ2 are inverse matrices.

F Introduction of Variant Models

We introduce Rr̂ and Rτ in the variant model to
represent the relation-specific and time-specific ro-
tation operation. To better explain the differences
between variant models, we introduce a more gen-
eral formula instead of Formula 7:

er̂τs = Rr̂τ · Sr̂τ · Tr̂τ · es (18)

where Rr̂τ represents relation-specific rotation
operation that incorporates temporal information.
Next we will look at the formula differences be-
tween TCompoundE and its variant models in ob-
taining the Rr̂τ , Sr̂τ and Tr̂τ .

Rr̂τ Sr̂τ Tr̂τ

TCompoundE I Sτ · Tτ · Sr̂ Tr̂

V1 I I Sτ · Tτ · Tr̂

V2 I Sr̂ Sτ · Tτ · Tr̂

V3 Rr̂ Sr̂ Sτ · Tτ · Tr̂

V4 I Sτ · Tτ · Sr̂ I

V5 Rr̂ Sτ · Tτ · Sr̂ Tr̂

V6 Sτ · Tτ ·Rr̂ I I

V7 Sτ · Tτ ·Rr̂ Sr̂ Tr̂

Table 5: Variant models of the first group.

Rr̂τ Sr̂τ Tr̂τ

TCompoundE I Sτ · Tτ · Sr̂ Tr̂

V8 I Sr̂ Tτ · Tr̂

V9 I Sr̂ Sτ · Tr̂

V10 I Sr̂ Rτ · Tr̂

V11 I Sr̂ Rτ · Sτ · Tτ · Tr̂

V12 I Tτ · Sr̂ Tr̂

V13 I Sτ · Sr̂ Tr̂

V14 I Rτ · Sr̂ Tr̂

V15 I Rτ · Sτ · Tτ · Sr̂ Tr̂

Table 6: Variant models of the second group.

In keeping with section 6.2, the variant model
is also divided into two groups, where the variant
model in the first group keeps the time-specific
operations unchanged, and changes the relation-
specific operations; The second group keeps the
relation-specific operations of the same and change
the time-specific operations.
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Mapping on Relation ICEWS14 ICEWS05− 15
Tr̂ Sr̂ Rr̂ MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Sr̂ ✔ ✔ 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837

Tr̂

✔ 0.304 0.128 0.412 0.632 0.374 0.194 0.490 0.702
✔ ✔ 0.576 0.476 0.639 0.755 0.623 0.521 0.690 0.809
✔ ✔ 0.547 0.442 0.612 0.740 0.606 0.522 0.655 0.760
✔ ✔ ✔ 0.571 0.468 0.636 0.757 0.620 0.517 0.686 0.807

Sr̂

✔ 0.602 0.518 0.650 0.762 0.676 0.595 0.727 0.824
✔ ✔ 0.580 0.478 0.644 0.770 0.649 0.556 0.713 0.818

✔ ✔ ✔ 0.576 0.485 0.630 0.746 0.652 0.571 0.702 0.801

Rr̂

✔ 0.601 0.515 0.651 0.761 0.634 0.555 0.680 0.781
✔ ✔ 0.587 0.491 0.644 0.763 0.636 0.546 0.687 0.804

✔ ✔ 0.548 0.445 0.607 0.742 0.606 0.522 0.655 0.760
✔ ✔ ✔ 0.582 0.491 0.638 0.752 0.638 0.550 0.690 0.804

Table 7: Supplementary results of different relation-specific operations on ICEWS14 and ICEWS05-15

Mapping on Time ICEWS14 ICEWS05− 15
Tτ Sτ Rτ MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Sr̂ ✔ ✔ 0.644 0.561 0.694 0.795 0.692 0.612 0.743 0.837

Tr̂

✔ 0.578 0.478 0.640 0.756 0.621 0.519 0.685 0.807
✔ 0.577 0.478 0.639 0.754 0.620 0.517 0.685 0.807

✔ 0.559 0.460 0.619 0.737 0.584 0.482 0.646 0.771
✔ ✔ 0.563 0.461 0.629 0.746 0.601 0.494 0.670 0.795

✔ ✔ 0.565 0.466 0.623 0.763 0.607 0.505 0.672 0.793
✔ ✔ ✔ 0.564 0.462 0.628 0.747 0.606 0.505 0.670 0.794

Sr̂

✔ 0.634 0.548 0.687 0.791 0.693 0.607 0.750 0.846
✔ 0.638 0.558 0.685 0.783 0.682 0.606 0.735 0.832

✔ 0.587 0.499 0.642 0.743 0.639 0.557 0.688 0.786
✔ ✔ 0.620 0.538 0.670 0.768 0.680 0.598 0.734 0.826

✔ ✔ 0.577 0.498 0.621 0.722 0.671 0.592 0.720 0.814
✔ ✔ ✔ 0.582 0.505 0.627 0.734 0.673 0.595 0.723 0.815

Table 8: Supplementary results of different relation-specific operations on ICEWS14 and ICEWS05-15

From the first group of variant models introduced
in Table 5, we can see that V1, V2 and V3 all apply
time-specific operations to relation-specific trans-
lation operations; V4 and V5 apply time-specific
operations to relation-specific scaling operations;
V6 and V7 apply it to relationship-specific rotation
operations.

A formula introduction for the second set of vari-
ant models can be viewed in Table 6. Where V8,
V9, V10 and V11 all make time-specific operations
specific to relation-specific translation operations;
V12, V13, V14 and V15 apply it to relationship-
specific scaling operations.

G Different Scoring Function

The semantic similarity scoring function is shown
in function 8. The distance scoring function is
defined as follows:

ϕ(s, r̂, o, τ) = ∥er̂τs − eo∥2 (19)

From the definition of the distance scoring func-

tion, we can see that in the distance scoring func-
tion, we use the L2 norm to find the Euclidean
distance of er̂τs and eo.

MRR H@1 H@3 H@10

Distance 0.446 0.333 0.506 0.667
Similarity 0.644 0.561 0.694 0.795

Table 9: Distance and similarity scoring function result
on ICEWS14.

We can observe that the semantic similarity scor-
ing function is more advantageous in Table 9. In
addition, the broadcast mechanism of the tensor
can be better utilized by using the semantic simi-
larity scoring function. It takes up less memory at
runtime and has a shorter run time.

H More result of variant of TCompound

In the experimental analysis section, we exam-
ined the utilization of single operations as well as
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variants incorporating all operations. This section
presents additional experimental results, encom-
passing variants employing various combinations
of two geometric operations, such as translation
and rotation, and scaling and rotation. These com-
binations are applied to both relation-specific and
time-specific operations. Our model consistently
outperforms all aforementioned variants across
all metrics on the ICEWS14 and ICEWS05-15
datasets, as illustrated in Tables 7 and 8. These
findings confirm the soundness of TCompoundE’s
design.

I Case Study

We have selected some of the quadruples used in
Section 6.3 experiments as examples in the case
study. The experimental results are shown in the
table 10, where es, Tr̂τes, and Sr̂τTr̂τes respec-
tively represent the three stages in Section 6.3.

es Tr̂τes Sr̂τTr̂τes

C1 72 38 1
C2 6 4 1
C3 72 38 1
C4 7100 7072 2
C5 431 152 3
C6 87 17 1
C7 65 99 1
C8 300 9 1
C9 47 41 1
C10 216 105 1

Table 10: Case study on ICEWS14.

The table shows the ranking in each stage.
We can observe from the table that the ranking
of the sampled quadruples will have a greater
improvement after the two stages than in the
initial stage. The details of C1 - C10 are shown as
follows:
(South Korea, Express intent to meet or negotiate,
China, 2014-09-30)
(South Korea, Criticize or denounce, North
Korea,2014-07-03)
(South Korea, Express intent to meet or negotiate,
China, 2014-09-30)
(South Korea, Host a visit, Barack Obama,
2014-04-23)
(South Korea, Express intent to cooperate, North
Korea, 2014-03-27)
(South Korea, Express intent to cooperate, North
Korea, 2014-03-27)
(South Korea, Host a visit, North Korea, 2014-10-
08)

(South Korea, Express intent to cooperate, China,
2014-07-20)
(South Korea, Make an appeal or request, China,
2014-06-25)
(South Korea, Consult, Head of Government
(Egypt), 2014-11-23)
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