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Abstract

While large language models (LLMs) have
been pre-trained on multilingual corpora, their
performance still lags behind in most languages
compared to a few resource-rich languages.
One common approach to mitigate this issue
is to translate training data from resource-rich
languages into other languages and then con-
tinue training. However, using the data ob-
tained solely relying on translation while ignor-
ing the original capabilities of LLMs across lan-
guages is not always effective, which we show
will limit the performance of cross-lingual
knowledge transfer. In this work, we propose
SDRRL, a method based on Self-Distillation
from Resource-Rich Languages that effectively
improve multilingual performance by lever-
aging the internal capabilities of LLMs on
resource-rich languages. We evaluate on differ-
ent LLMs (LLaMA-2 and SeaLLM) and source
languages (English and French) across various
comprehension and generation tasks, experi-
mental results demonstrate that SDRRL can
significantly enhance multilingual capabilities
while minimizing the impact on original perfor-
mance in resource-rich languages.1

1 Introduction

Contemporary large language models (LLMs; Ope-
nAI, 2022, 2023; Touvron et al., 2023a,b; Jiang
et al., 2023; Google et al., 2023) are predominantly
trained on multilingual corpora. However, the lan-
guage distribution in the data is highly imbalanced.
For instance, LLMs like LLaMA-2 (Touvron et al.,
2023b), with English as the primary language, have
also been trained on Japanese text, yet the quantity

∗Corresponding authors.
1The source code is available at https://github.

com/THUNLP-MT/SDRRL.
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Figure 1: Comparison between vanilla supervised fine-
tuning (SFT), translate-then-SFT, and our proposed
method. Besides using the translated question-answer
pairs in the target language (e.g., Japanese), SDRRL
further leverages the generated answer A⋆

EN by LLMs
in the resource-rich language (e.g., English) and collects
self-distillated data (in green box) to help enhance its
multilingual capabilities.

of English tokens used during pre-training exceeds
that of Japanese by a factor of 897.

The imbalanced data distribution above has led
to significant limitations in the capabilities of
LLMs across most languages. To enhance the
multilingual capabilities, a common approach fol-
lows the translating and then supervised fine-tuning
(SFT; Ouyang et al., 2022) paradigm, as shown in
Figure 1(b). Specifically, training data is translated
into the target language using either the model itself
or an external machine translation (MT) system be-
fore continuing the training process, thereby offer-
ing more data in the target language and improving
multilingual capabilities.

However, the translate-then-SFT method encoun-
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ters several challenges: First, the multilingual
enhancement gained from translated “question-
answer” pairs is limited and may sometimes even
degrade the capabilities in the original primary lan-
guage (Zhu et al., 2024). Second, constrained by
the accuracy of machine translation (especially for
the low-resource languages), the translated texts
used for training can be highly noisy, containing
numerous awkward sentences and incorrect con-
tent, adversely affecting the quality of the gener-
ated text and the multilingual abilities of the LLMs.
Therefore, we explore a new question along this
trajectory: Besides translating the training pairs,
can we enhance the abilities in other languages by
leveraging the original relatively strong capabili-
ties of LLMs in resource-rich language?

In this paper, we introduce SDRRL, a method
that uses Self-Distillation from Resource-Rich
Languages) to achieve the goal mentioned above.
Specifically, as illustrated in Figure 1(c), SDRRL
comprises two parts: (1) Self-Distillation: Instead
of the ground-truth answer, responses from LLMs
in resource-rich languages are collected to con-
struct a transfer set. These are then translated
into other languages using machine translation sys-
tems and code-switching tools, forming “question-
answer” pairs that are semantically identical but
linguistically varied, and conducting sentence-level
knowledge self-distillation within the same batch.
(2) Incorporating External Parallel Corpus: We
further involve a small amount of machine transla-
tion data in the distillation, aiming to align the lin-
guistic representation spaces better and mitigate the
negative impact of the noise in machine translation
systems on the generative capabilities of LLMs.

Our experiments, based on LLaMA-2-7B (Tou-
vron et al., 2023b) and SeaLLM-7B (Nguyen et al.,
2023) with English as the resource-rich language,
demonstrate that even with a smaller set of English
instruction data as the transfer set, SDRRL can ef-
fectively distill English capabilities into 14 other
languages, showing effectiveness in both multilin-
gual comprehension and generation tasks. Further
analysis indicates that SDRRL helps preserve the
original capabilities in high-resource languages and
improves the quality of generated responses.

2 Related Work

Multilingual Language Models. Using multilin-
gual data during the pre-training is a common ap-
proach to enhance the multilingual capabilities of

LLMs (Li et al., 2022; Lample and Conneau, 2019;
Workshop et al., 2022; Lin et al., 2022; Xue et al.,
2021). Despite being pre-trained and fine-tuned
targeting a few resource-rich languages, recent
instruction-following LLMs (Touvron et al., 2023b;
Jiang et al., 2023; Wang et al., 2023a) have been
found to still possess significant multilingual un-
derstanding and generation capabilities (Bandarkar
et al., 2023; Niklaus et al., 2023). However, limited
by the imbalanced training data distribution (Yang
et al., 2023), the multilingual capabilities of these
popular LLMs lag behind those of languages with
abundant resources (Pahune and Chandrasekharan,
2023).

Cross-Lingual Transfer. To enhance the capabili-
ties in languages with scarce resources, one line of
work is cross-lingual transfer, where skills learned
from one source language can be readily transferred
to other languages (Etxaniz et al., 2023; Huang
et al., 2023; Ranaldi and Zanzotto, 2023). This has
been approached by designing prompts that lever-
age LLMs to self-translate questions into resource-
rich languages (Qin et al., 2023), or by utilizing
external machine translation systems for assistance
(Zhao et al., 2024). Efforts have also been made to
distill synthetic data from high-resource languages
to low-resource ones (Chai et al., 2024). Shaham
et al. (2024) and Kew et al. (2023) leverage similar-
ities between languages to stimulate capabilities in
others. Compared to their work, we focus on profi-
ciency in the resource-rich language and leverage
it to improve performance in other languages.

Cross-Lingual Alignment. Another line of work
is cross-lingual alignment (Schuster et al., 2019a).
Given the scarcity of multilingual data, the con-
struction of alignment data or loss functions of vary-
ing granularity can align mid- and low-resource
languages with those that are resource-rich. This
includes the construction of pre-training tasks
using multilingual aligned lexicons (Chi et al.,
2021), alignment of word embeddings (Wen-Yi
and Mimno, 2023; Schuster et al., 2019b), us-
ing aligned data on one side of a problem to im-
prove mathematical reasoning processes (Zhu et al.,
2024), and encouraging language switching in
chain-of-thought (CoT; Wei et al., 2022) reason-
ing (Chai et al., 2024). Mao and Yu (2024a) have
leveraged the LLM’s own capabilities to generate
aligned data, while others have constructed it with
the aid of external systems (Ranaldi and Pucci,
2023; Chen et al., 2023a). Deriving and construct-
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ing multilingual supervision signals from existing
datasets overlooks the fact that the model’s own re-
sponses in high-resource languages can also serve
as effective supervision signals. We show in our
experiments that self-distillation not only improves
the LLM’s multilingual performance but also helps
maintain the performance in the original resource-
rich languages.
Knowledge Distillation. Knowledge distilla-
tion (Hinton et al., 2015) is a widely used method
for transferring knowledge (Gou et al., 2021). In
the text generation domain, sequence-level knowl-
edge distillation (Kim and Rush, 2016) has been
used as a means of data augmentation in areas such
as machine translation (Gordon and Duh, 2019).
In particular, self-distillation (Zhang et al., 2019,
2022b; Pham et al., 2022) is often utilized to dis-
till knowledge from one component of a model to
another (Zhang et al., 2022a), or from one stage
of a model to another (Yang et al., 2019). In this
work, we apply distilling knowledge between the
different linguistic representation spaces within the
same LLM to enhance multilingual capabilities.

3 Method

In this section, we first revisit the supervised fine-
tuning (SFT) and translate-then-SFT paradigm,
subsequently dividing the discussions into two
parts of our proposed SDRRL. In the first part,
we construct a transfer set using responses in
the resource-rich language from LLMs through
sentence-level self-distillation. In the second part,
we employ parallel translation-based instruction
data to further improve multilingual generation ca-
pabilities.

3.1 SFT and Translate-then-SFT Paradigm

We consider the given instruction dataset com-
prised of N entries D = {(xi,yi)}Ni=1, where xi

symbolizes the input sentence (question) for the
i-th data point, and yi signifies the corresponding
ground-truth response (answer).
Supervised Fine-Tuning. For a LLM Mθ param-
eterized by a set of parameters θ, which produces
a response denoted as ŷ = Mθ(x) for the given
input question x, the objective of SFT is to align
the output sentence ŷ as closely as possible with
the ground-truth response y. Specifically, the cross-
entropy (CE) loss is employed to assess the discrep-
ancy between the model output ŷ and the ground-
truth output y for a single sample (x,y), defined

as:

ℓCE(y, ŷ) = −
|V|∑

j=1

yj log(ŷj) (1)

where yj is the one-hot encoding of the ground
truth output y at position j, ŷj is the probability of
the model output ŷ at position j, and |V| is the size
of the vocabulary in the LLM.

For the entire dataset D, the total loss is calcu-
lated as the average of all sample losses:

LSFT =
1

N

N∑

i=1

ℓCE(yi,Mθ(xi)) (2)

Translate-then-SFT. For the translation-then-SFT
paradigm, we define the machine translation sys-
tem as a function T , which accepts text in one
language as the source language (Src) and out-
puts equivalent text in the target language (Tgt).
Using the machine translation system T , each
pair (xi,yi) is translated into the target lan-
guage, resulting in the translated dataset DMT =
{(xMT

i ,yMT
i )}Ni=1 = {T (xi,yi)}Ni=1.

Similar to Eq. 1, the LLM Mθ is then trained
on the translated dataset D′, where the loss for a
single sample (xMT,yMT) is computed as:

ℓCE(y
MT, ŷMT) = −

|V|∑

j=1

yMT
j log(ŷMT

j ) (3)

where ŷMT = Mθ(x
MT) is the response of mod-

els to the question xMT in target language.

3.2 Self-Distillation from Resource-Rich
Languages (SDRRL)

LLMs exhibit superior comprehension and genera-
tion capabilities in resource-rich languages, which
we suppose can be a learning reference for other
languages to enhance the multilingual capabilities
of LLMs. To achieve this, we propose sentence-
level knowledge distillation from resource-rich lan-
guage responses. The core motivation is that the
responses of LLMs in the resource-rich language
serve as samples from the resource-rich language
representation space. By adding these responses
and their translations to the transfer set, the gap for
cross-linguistic learning is reduced, facilitating the
improvement of multilingual capabilities.

3.2.1 Transfer Set Construction
We construct a transfer set for sentence-level distil-
lation by collecting LLM responses in the resource-
rich language. For the original instruction dataset
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D = {(xi,yi)}Ni=1, LLM Mθ generates responses
for each question xi, yielding ŷi = Mθ(xi), then
we get the generated dataset G = {(xi, ŷi)}Ni=1 =
{(xi,Mθ(xi))}Ni=1. The synthesized transfer set
Dsynth is obtained by equally probable random sam-
pling from both datasets D and G:

Dsynth = Sample(D) ∪ Sample(G) (4)

3.2.2 Transfer Set Translation
The above constructed transfer set Dsynth contains
question xi, ground-truth answer yi, and response
ŷi by LLM Mθ. We consider translating them
into the target language using the machine transla-
tion system T , resulting in xMT

i = T (xi),y
MT
i =

T (yi), and ŷMT
i = T (ŷi). Moreover, we use

WMT22-cometkiwi-da (Rei et al., 2022b) as a
reference-free metric to assess the translation qual-
ity where the translation quality with scores below
a threshold τ = 0.8 is rejected.

In particular, four sub-datasets are generated,
each containing different language combinations
of questions and responses:

• DLL: Both the questions and responses
remain in the resource-rich language, i.e.,
{xi,yi} or {xi, ŷi}.

• DTL: The questions are translated into the
target language, while responses remain in the
resource-rich language, i.e., {T (xi),yi} or
{T (xi), ŷi}.

• DLT: The questions remain in the resource-
rich language, while responses are translated
into the target language, i.e., {xi, T (yi)} or
{xi, T (ŷi)}.

• DTT: Both the questions and responses
are translated into the target language, i.e.,
{T (xi), T (yi)} or {T (xi), T (ŷi)}.

This approach, by providing semantically identi-
cal but linguistically diverse samples, aids in the im-
plicit alignment of language representation spaces,
enhancing unified multilingual performance. Fur-
thermore, DTL and DLT enhance LLM’s cross-
linguistic generative capabilities, helping mitigate
off-target issues in target language generation.

3.2.3 Applying Code-Switching
Through the aforementioned machine translation
process, we achieve alignment in sentence level
(i.e., the sentence of question-answer pairs). Addi-
tionally, token-level alignment is introduced using

a code-switching tool, applied only to the question
components xi of DLL, DTL, DLT, and DTT to
increase language diversity without compromising
generative capabilities.

Specifically, given xi composed of a sequence of
tokens xi = xi,1, xi,2, . . . , xi,n, where xi,k denotes
the k-th token in question xi (similarly for x̂MT

i ),
the code-switched version xi,k for each token is
generated by applying the rule:

xi,k =

{
Dict(xi,k) with probability p;

xi,k with probability 1− p,
(5)

where each token xi,k in xi is replaced by its cor-
responding token in the bilingual dictionary for
code-switching Dict(xi,k) with a p = 0.15 prob-
ability if xi,k is found in the bilingual dictionary.
Responses, either in the source language yi (simi-
larly for ŷi) or the target language yMT

i (similarly
for ŷMT

i ), remain unchanged.

3.2.4 Incorporating External Parallel Corpus

The Template for Constructing Dmt and Dcomp

# Construct Data for Machine Translation
Question: Translate the following sentence from
English to Indonesian.
The quick brown fox jumps over the lazy dog.
Answer: Sang rubah cokelat cepat melompati an-
jing malas.

# Construct Data for Sentence Completion
Question: Complete the following sentence in In-
donesian according to its context.
Sang rubah cokelat cepat
Answer: Sang rubah cokelat cepat melompati an-
jing malas.

Table 1: The template for constructing Dmt and Dcomp
with Indonesian-English as an example. Dmt includes
bidirectional translations. Dcomp contains only the target
language sentences, which are split at random positions.

The target language sequences ŷi synthesized by
the external machine translation system T may con-
tain low-quality translations, thereby introducing
a significant amount of noise into the knowledge
distillation transfer dataset Dsynth.To mitigate the
impact of noise on the multilingual generative capa-
bilities of LLMs, we leverage a tiny external paral-
lel corpus P = {(si, ti)Li=1} between the resource-
rich language Src and the target language Tgt.
Based on the templates in Table 1, we can construct
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two parts of instruction data: machine translation
task instructions (Dmt) and sentence completion
task instructions (Dcomp). By incorporating these
two parts, the transfer set includes non-synthetic
natural target language texts, which helps improve
the generative quality of LLMs in the target lan-
guage.

3.2.5 Training Objective
The final training dataset Dtrain includes DLL, DTL,
DLT, DTT, Dmt, and Dcomp. The total loss function
is defined as:

LSDRRL =
∑

d∈U

1

|Dd|
∑

{x,y}∈Dd

ℓCE(Mθ(x),y),

(6)
where U = {LL,TL,LT,TT,mt, comp} and Dd

corresponds to the respective data subset (e.g., DLL,
DTL, etc.).

4 Experiments

4.1 Setup

We use LLaMA-2-7B (Touvron et al., 2023b)
as the base model. Drawing from the distribu-
tion of language in pre-training corpus, we use
English (ENG) as a resource-rich language and
conduct experiments on 14 languages: Czech
(CES), Danish (DAN), Ukrainian (UKR), Bulgarian
(BUL), Finnish (FIN), Hungarian (HUN), Norwe-
gian (NOB), Indonesian (IND), Japanese (JPN), Ko-
rean (KOR), Portuguese (POR), Slovenian (SLV),
Vietnamese (VIE), and Polish (POL). Stanford
Alpaca instruction data (Taori et al., 2023) serve
as the base of the transfer set D, providing ques-
tions and ground-truth answers in English. For
machine translation, we utilize open-source NLLB-
200-3.3B (Costa-jussà et al., 2022) model. To im-
prove translation quality, we follow Zeng et al.
(2021) to filter low-quality translations and use
CLD3 (Ooms, 2024) model to remove off-target
translations. We also follow Lin et al. (2021) to
construct bilingual dictionaries for code-switching.
See appendix A for more details.

Implementation Details Our code is imple-
mented using DeepSpeed (Rasley et al., 2020) on
eight NVIDIA A800-SXM4-80GB GPUs. Follow-
ing Wang et al. (2023a), we set the training dura-
tion to four epochs with an automatically calculated
learning rate and employ early stopping. Other hy-
perparameters are set according to Hiyouga (2023).

Baselines. For comparison, we consider the fol-
lowing baseline systems that enhance LLaMA-2’s
multilingual capabilities using different instruction
fine-tuning methods:

• SFT (Ouyang et al., 2022): It only involves
English instruction datasets in the process
of fine-tuning, which is not multilingual-
oriented.

• Translate-then-SFT (Chen et al., 2023a, T-
SFT): It uses an external machine translation
system to translate English instruction data
into non-English languages and construct mul-
tilingual data for instruction fine-tuning.

• Cross-Lingual Instruction Tuning (CIT; Li
et al., 2023a): It constructs cross-lingual in-
structions for fine-tuning, imposing models
to respond in the target language given the
source language as context.

• Cross-Lingual Chain-of-Thought Reason-
ing (XCOT; Chai et al., 2024): It applies code-
switching to multilingual instruction training
data, using high-resource instruction data to
supervise the training of low-resource lan-
guages with cross-lingual distillation.

Datasets. We evaluate the multilingual capabili-
ties of LLMs on four representative datasets:

• BELEBELE (Bandarkar et al., 2023): A
widely used language understanding dataset
covering 122 languages, where each question,
linked to a short passage, has four multiple-
choice answers. This dataset proves challeng-
ing for state-of-the-art LLMs. Accuracy is
reported in our experiments.

• FLORES (Goyal et al., 2022): A benchmark
for machine translation with parallel text from
Wikipedia for 204 languages, making up over
40,000 directions. We evaluate the bidirec-
tional translation results between the target
language and English, reporting scores using
SacreBLEU (Post, 2018) and COMET score
using WMT22-comet-da model (Rei et al.,
2022a).

• XL-SUM (Hasan et al., 2021): A multilin-
gual abstractive summarization benchmark for
44 languages, comprising multiple long news
texts requiring summarization into a single
sentence. ROUGE-1 and ROUGE-L F1 scores
are reported.
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• MKQA (Longpre et al., 2020): An open-
domain question-answering dataset across 26
diverse languages, providing multiple possi-
ble short answers as ground truth for each
question. We use the official evaluation script
and report token overlapped F1 scores.

4.2 Main Results

Table 2 shows the experimental results of the mul-
tilingual understanding task. Tables 3, Table 4 and
Table 5 show the results on multilingual genera-
tion tasks. From the experimental results, we can
observe that:

(1) SDRRL effectively enhances performance
in the target languages. Specifically, in every
comprehension and generation task, our method
surpasses the baselines in almost all target lan-
guages. As shown in Table 2, SDRRL improves [er-
formane in comprehension tasks by approximately
+1.5 BLEU score. On the Flores dataset, SDRRL
yields up to about +6.0 BLEU score improvement
in both directions and about +4.0 COMET score
improvement (Table 3). This demonstrates that us-
ing proficient responses in resource-rich languages
as supervisory signals for knowledge distillation
significantly enhances performance in other target
languages.

(2) SDRRL exhibits stronger robustness in
generation tasks. For example, on the XL-SUM
dataset (Table 4), which requires the generation of
longer texts, the average performance of CIT and
XCOT decreased due to the quality of machine-
translated texts and pipeline noise, yet SDRRL still
achieved about +0.55 ROUGE-L F1 score improve-
ment. On the FLORES dataset (Table 3), which
requires cross-lingual text generation, T-SFT and
CIT lead to decrease of -1.36 and -2.08 BLEU
scores, respectively, while our method improves
by +5.88 BLEU scores. This suggests that adding
machine-translated data constructed instructions
to the self-distillation process effectively improves
multilingual generation and mitigates the negative
impact of low-quality translated texts.

(3) SDRRL can maintain the original strong
capabilities in English. The results show that it
is more challenging to retain the original English
capabilities for languages with unique alphabets
(e.g., Japanese and Korean). For example, in the
Japanese comprehension task (Table 2), all base-
line methods lead to a performance drop in English
compared to SFT, while only our method success-

fully preserving the original English capabilities.

4.3 Ablation Study

We further investigate the effectiveness of each
component of our proposed SDRRL. The results
are shown in Table 6, where average scores on nat-
ural language understanding and generation tasks
are reported. Our observations include:

(1) Rows 1 to 5 demonstrate that removing any
single component results in performance degrada-
tion, affirming the necessity and efficacy of each
component in SDRRL.

(2) Insights from row 3 suggest a significant per-
formance decline in both target languages and En-
glish when model-generated responses (ŷi) are re-
moved from Dsynth, highlighting the effectiveness
of utilizing responses in resource-rich languages as
additional supervision signals for improving multi-
lingual capabilities. Moreover, row 2 indicates that
substituting sentences with their semantic coun-
terparts in different languages also contributes to
multilingual performance improvement.

(3) Row 4 and 5 reveal that Dmt, Dcomp, and
code-switching provide a limited amount of ground
truth. This additional supervisory signal is bene-
ficial for generative tasks and helps improve the
quality of responses.

(4) Despite introducing a small amount of par-
allel data through Dmt and Dcomp, as shown in
row 6, relying solely on these additional data for
LLM training supervision leads to severe perfor-
mance degradation. Compared to row 4, this indi-
cates that these data do not inherently bring pos-
itive performance gains but are used to mitigate
the deterioration of the LLM’s multilingual genera-
tive representation space caused by noisy machine-
translated text, serving as a regularization mecha-
nism in knowledge distillation.

4.4 Visualization of Representation Space for
Source and Target Langauges

We visualize the sentence representations of in-
put instructions to investigate the effect of SDRRL
on the multilingual representation space. Fol-
lowing common practices in sequence classifica-
tion Li et al. (2023c), we input instructions into the
LLaMA-2 and use the last hidden states of the last
token as the vector representation of the sentence.
We then apply t-SNE (Van der Maaten and Hinton,
2008) to reduce the 4096-dim representations to
2-dim for visualization.
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CES DAN UKR BUL FIN HUN NOB IND JPN KOR POR SLV VIE POL AVG.

Performance on Target Language
SFT 49.33 48.33 46.67 49.11 39.78 43.22 49.22 46.15 42.01 37.99 55.98 42.79 42.91 44.69 45.58
T-SFT 48.22 51.67 47.11 51.22 47.11 45.67 51.33 49.72 41.56 43.69 56.20 46.03 47.60 48.72 48.28
CIT 50.11 53.44 47.22 51.44 48.00 45.67 53.33 49.94 43.24 46.26 56.65 46.70 45.59 49.72 49.09
XCOT 51.56 54.22 47.83 52.78 47.00 45.67 51.33 49.16 43.02 46.15 56.42 46.48 46.82 48.49 49.07
SDRRL 52.11 55.00 48.33 54.00 49.56 46.44 53.89 52.40 45.81 46.82 57.88 47.26 48.38 50.17 50.58

Performance on English Language
SFT 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39 65.39
T-SFT 63.91 65.25 66.03 65.25 65.70 65.36 65.25 65.70 61.01 60.45 63.80 65.47 65.47 65.92 64.61
CIT 63.46 65.47 65.59 64.02 61.23 63.46 64.13 65.92 62.01 63.46 64.02 63.24 62.91 62.91 63.70
XCOT 65.70 65.47 66.15 66.48 65.81 65.70 66.55 64.92 63.24 65.43 62.46 66.50 63.91 66.37 65.34
SDRRL 66.26 65.70 67.15 66.53 65.92 66.70 66.59 67.15 65.13 65.45 66.48 66.59 65.57 66.82 66.29

Table 2: Results of baselines and our SDRRL on BELEBELE benchmark. In each column, the best result is in bold
and the second best result is underlined.

CES DAN UKR BUL FIN HUN NOB IND JPN KOR POR SLV VIE POL AVG.

BLEU scores on X-to-English Tasks
SFT 34.66 42.57 34.17 33.91 26.76 28.15 38.34 20.78 7.56 3.15 33.25 11.94 16.01 15.31 24.75
T-SFT 32.63 32.21 31.13 31.05 23.53 24.18 27.44 23.38 7.82 7.68 33.03 14.36 19.63 19.43 23.39
CIT 26.54 29.88 24.25 26.66 21.51 21.24 30.21 29.02 6.00 7.58 34.46 16.57 25.84 19.19 22.78
XCOT 31.52 31.26 29.90 31.05 24.37 23.60 32.50 27.33 8.29 9.23 35.86 17.82 25.46 19.40 24.83
SDRRL 36.38 45.71 35.33 37.49 30.80 31.62 40.88 30.93 15.42 12.20 39.81 21.15 28.68 22.52 30.64

BLEU scores on English-to-X Tasks
SFT 13.00 21.91 11.18 12.98 8.39 9.07 18.53 34.54 17.03 18.15 43.06 28.46 25.06 27.65 20.64
T-SFT 22.68 27.78 23.11 27.59 15.31 16.96 25.60 31.79 19.52 18.11 39.75 26.17 25.09 26.04 24.68
CIT 22.03 28.57 19.92 26.85 14.54 17.46 25.97 29.46 13.81 15.33 35.24 22.60 22.33 22.84 22.64
XCOT 23.11 32.20 21.97 27.33 15.80 17.38 25.96 30.33 9.31 15.13 38.04 26.56 25.43 26.03 23.90
SDRRL 27.91 39.00 27.25 33.93 20.88 22.09 29.64 35.32 20.51 20.47 43.36 30.09 29.87 27.86 29.16

COMET scores on X-to-English Tasks
SFT 85.35 87.60 84.58 84.97 85.69 84.40 86.35 73.54 63.41 45.44 78.91 80.98 63.43 68.46 76.65
T-SFT 84.71 84.26 83.33 83.82 83.78 82.02 83.31 78.94 78.39 72.95 80.38 81.82 73.81 79.06 80.76
CIT 81.71 82.84 80.06 81.72 82.14 82.29 83.37 84.62 76.16 73.88 83.71 76.38 80.60 78.97 80.60
XCOT 84.40 84.47 83.11 83.90 84.67 81.96 84.68 83.50 78.83 75.66 83.23 76.48 79.46 78.75 81.65
SDRRL 86.04 88.51 84.82 86.08 86.98 85.70 87.15 89.46 83.33 79.02 85.15 84.02 81.43 83.08 85.06

COMET scores on English-to-X Tasks
SFT 57.19 70.93 55.25 54.99 60.29 53.94 71.97 83.82 82.46 82.14 84.57 55.96 80.78 82.14 69.75
T-SFT 78.94 81.34 79.92 81.43 78.53 76.01 82.69 84.90 82.76 80.58 86.42 69.06 81.62 82.86 80.50
CIT 79.87 82.47 78.63 81.70 78.39 76.18 83.19 84.18 78.15 78.45 85.12 80.12 80.77 80.17 80.53
XCOT 79.22 83.29 79.16 80.86 78.63 75.51 83.30 84.68 74.27 77.31 86.01 78.65 82.24 82.72 80.42
SDRRL 84.29 86.91 83.51 85.40 84.62 81.06 85.55 86.00 83.65 82.66 87.64 82.63 83.93 83.61 84.39

Table 3: Results of baselines and our SDRRL on FLORES benchmark.

(a) Before SDRRL

Source Language
Target Language

(b) After SDRRL

Source Language
Target Language

Figure 2: t-SNE visualizations of output representations
by LLaMA-2 before and after applying SDRRL. The
markers in red and blue represent semantically equiva-
lent instructions in different languages.

As shown in Figure 2, after applying SDRRL,
the representations of semantically equivalent in-
structions in the source and target languages are
drawn closer together. This implies that SDRRL
has improved the multilingual representation space
by aligning the representation space of the target
language closer to that of the resource-rich, better-
modeled source language, thereby enhancing the
performance in target languages.

4.5 SeaLLM as Different Backbone Model

By using the responses of LLMs in high-resource
languages as the supervisory signal for knowledge
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IND JPN KOR POR VIE UKR AVG.

Performance on Target Language (ROUGE-1)
SFT 20.82 6.17 0.66 23.38 9.30 8.10 11.41
T-SFT 25.61 32.11 7.67 26.68 20.59 14.19 21.14
CIT 24.64 16.11 5.80 26.33 20.55 11.21 17.44
XCOT 22.55 32.39 7.26 26.21 19.84 13.38 20.27
SDRRL 26.08 33.15 8.18 27.40 20.98 14.35 21.69

Performance on Target Language (ROUGE-L)
SFT 16.03 4.13 0.61 15.84 7.21 6.72 8.42
T-SFT 20.15 22.83 6.93 18.41 15.18 11.73 15.87
CIT 19.02 11.22 5.14 18.06 14.91 9.00 12.89
XCOT 17.19 22.32 6.52 18.05 14.57 10.78 14.91
SDRRL 20.47 22.81 7.35 19.09 15.52 11.84 16.18

Performance on English Language (ROUGE-1)
SFT 26.35 26.35 26.35 26.35 26.35 26.35 26.35
T-SFT 27.49 26.89 26.68 27.28 26.42 26.75 26.92
CIT 27.84 27.40 26.57 27.39 27.17 24.83 26.87
XCOT 26.44 25.45 25.43 26.78 26.00 25.90 26.00
SDRRL 28.18 27.73 27.44 27.57 27.52 27.23 27.61

Performance on English Language (ROUGE-L)
SFT 18.68 18.68 18.68 18.68 18.68 18.68 18.68
T-SFT 19.64 19.11 18.94 19.54 18.73 19.01 19.16
CIT 19.93 19.56 18.81 19.56 19.34 17.43 19.11
XCOT 18.63 17.83 17.86 18.91 18.29 18.15 18.28
SDRRL 20.25 19.88 19.56 19.69 19.66 19.44 19.75

Table 4: Results of baselines and our SDRRL on XL-
SUM benchmark on the target language and English.

NOB DAN FIN HUN JPN KOR POR VIE POL AVG.

Performance on Target Language
SFT 37.30 38.28 37.30 35.21 32.80 33.18 39.29 37.50 37.50 36.48
T-SFT 39.73 39.59 38.95 38.60 33.96 33.90 39.93 38.71 38.14 37.95
CIT 40.18 39.94 37.94 38.40 33.50 34.24 39.86 39.94 38.84 38.09
XCOT 39.03 39.28 38.12 35.60 33.07 33.69 39.96 39.49 38.49 37.41
SDRRL 40.64 40.92 39.71 39.02 39.51 34.06 41.12 40.02 39.45 39.38

Performance on English Language
SFT 41.62 41.62 41.62 41.62 41.62 41.62 41.62 41.62 41.62 41.62
T-SFT 44.92 42.63 44.24 44.21 41.65 42.11 42.63 42.65 42.81 43.09
CIT 44.09 43.86 43.55 44.12 42.83 43.29 42.51 42.52 43.41 43.35
XCOT 43.23 43.16 43.53 43.06 42.59 42.58 43.39 42.58 43.29 43.05
SDRRL 45.42 45.33 45.47 44.78 43.26 43.58 43.99 45.77 44.71 44.70

Table 5: Results of baselines and our SDRRL on MKQA
dataset on the target language and English.

NLU AVG. NLG AVG.

TAR. ENG TAR. ENG

1 Full Method 50.58 66.29 28.24 31.69
2 - DTL and DLT 49.56 65.93 26.15 30.55
3 - Dsynth + D 48.59 65.10 25.16 30.10
4 - Dmt and Dcomp 50.41 66.01 26.61 30.19
5 - Code Switching 50.37 65.94 27.13 30.69
6 Only Dmt and Dcomp 41.25 61.61 17.89 22.28

Table 6: Ablation study. Average scores of target lan-
guage (TAR.) and English (ENG) on natural language
understanding task (NLU, including BELEBELE) and
natural language generation tasks (NLG, including FLO-
RES, XL-SUM ROUGE-L, and MKQA) are reported.

distillation, SDRRL is applicable to various LLMs,
not limited to LLaMA-2. In this part, we conduct

BELE. XL-SUM FLORES MKQA AVG.

Performance on Target Language
SFT 42.24 16.48 18.45 38.86 29.01
T-SFT 42.77 15.32 16.59 43.40 29.52
CIT 42.53 15.75 20.49 43.70 30.62
XCOT 41.19 15.79 17.21 42.04 29.06
SDRRL 43.67 17.89 25.86 44.63 33.01

Performance on English Language
SFT 60.19 15.25 28.49 39.62 35.89
T-SFT 58.70 15.63 23.72 37.43 33.87
CIT 58.66 15.42 18.31 36.67 32.27
XCOT 57.73 14.90 23.96 37.94 33.63
SDRRL 60.67 16.24 29.47 40.32 36.68

Table 7: Results of baselines and our SDRRL on
SeaLLM. The average scores across various datasets are
reported, and full results are available in appendix B.

experiments on SeaLLM-7B (Nguyen et al., 2023),
a specialized language model optimized for South-
east Asian languages.

As shown in Table 7, SDRRL results in an im-
provement of +2.39 average scores on the target
languages. In English, SDRRL maintains its origi-
nal performance, while the baselines exhibit a per-
formance drop of at least -2.02 average scores com-
pared to vanilla SFT. This demonstrates the gen-
eralizability of SDRRL in different LLMs. See
appendix B for detailed results on more datasets.

4.6 Further Analysis

Non-English Source Languages. SDRRL is
also capable of transferring multilingual perfor-
mance using other source languages in high-
resource. In appendix C, we opt for experiments
with French instead of English. Experimental re-
sults reveal that, despite the LLM and the machine
translation system exhibiting stronger performance
in English, SDRRL still achieves positive distilla-
tion gains with French as the source language.

Case Study. In appendix D, we provide several
case studies to offer deeper insights into the impact
of SDRRL on the generation capabilities of LLMs.
It is observed that the SDRRL process is able to
alleviate off-target issues in the target language,
reduce grammatical errors and hallucinations, and
enhance the fluency of the output text.

5 Conclusion and Future Work

We introduce Self-Distillation from Resource-Rich
Languages (SDRRL) to enhance the multilingual
capabilities of LLMs. SDRRL uses the model it-
self to generate high-quality responses in resource-
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rich source languages and their target language
counterparts as supervision signals for knowledge
distillation, aiming to align additional target lan-
guages with resource-rich languages. We conduct
comprehensive experiments across 16 languages on
LLaMA-2 and SeaLLM. The results demonstrate
that, compared to various baselines, our method sig-
nificantly enhances the performance of target lan-
guages while preserving the capabilities of source
languages. This highlights the multilingual po-
tential of LLMs and illuminates paths for further
research into multilingual LLMs.

Limitations

Firstly, within our method pipeline, some compo-
nents are interchangeable. For example, our ap-
proach relies on external machine translation sys-
tems to provide translations in the target language,
while future research could explore self-translation
with LLMs that achieve great low-resource transla-
tion capabilities, thereby simplifying the process.
Additionally, our method uses a small amount of
machine-translated parallel corpus to construct the
transfer set, but employing monolingual texts in
the target language represents a promising research
direction. Secondly, our experiments are conducted
with only a single source language and target lan-
guage. Subsequent research could investigate using
a mix of multiple languages as both source and tar-
get languages and explore the mutual influences
between different languages to further enhance the
multilingual capabilities of LLMs. Thirdly, our
method does not involve engineering on the ar-
chitecture of LLMs. For specific extremely low-
resource languages, modifying the architecture and
introducing additional data, such as vocabulary ex-
pansion or continuing pre-training, might be bene-
ficial in enhancing multilingual performance.
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A Implementation Details

The signature of SacreBLEU we use in this work
is “nrefs:1 | case:mixed | eff:no | tok:flores200 |
smooth:exp | version:2.0.0”. The Stanford Alpaca
dataset comprises 52,002 entries, licensed under
the CC BY-NC 4.0 agreement. For each target
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sampled from Opus100 (Zhang et al., 2020), con-
sisting of 1,000 entries. When utilizing NLLB for
machine translation, we set the beam size to 4, with
the remaining configurations adopting the default
parameters from Huggingface Transformers (Wolf
et al., 2020). In the reimplementation of baselines,
the same machine translation system is employed
to provide multilingual alignment data. For the 16
languages involved in our experiments, XL-SUM
and MKQA datasets have not covered all of them.
During the evaluation of MKQA, questions lacking
ground truth are skipped.

B More Detailed Results on SeaLLM

We conduct experiments on three common South-
east Asian languages: Indonesian (IND), Thai
(THA), and Khmer (KHM). As shown in Ta-
ble 8, 9, 10, and 11, SDRRL still outperforms
the baselines, demonstrating the generalizability
of SDRRL in different LLMs.
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IND KHM THA AVG.

Performance on Target Language
SFT 47.71 32.56 46.44 42.24
T-SFT 48.31 32.89 46.77 42.77
CIT 48.83 32.56 46.20 42.53
XCOT 45.81 32.22 45.55 41.19
SDRRL 50.39 33.67 46.96 43.67

Performance on English Language
SFT 60.56 60.56 59.46 60.19
T-SFT 60.78 57.89 57.43 58.70
CIT 58.55 58.10 59.33 58.66
XCOT 57.77 57.99 57.43 57.73
SDRRL 61.68 60.89 59.44 60.67

Table 8: Results of baselines and our SDRRL on BELE-
BELE benchmark using SeaLLM.

IND THA AVG.

Performance on Target Language (ROUGE-1)
SFT 21.91 24.65 23.28
T-SFT 21.07 21.26 21.17
CIT 21.19 23.93 22.56
XCOT 22.20 21.85 22.02
SDRRL 23.62 25.78 24.70

Performance on Target Language (ROUGE-L)
SFT 16.46 16.50 16.48
T-SFT 16.23 14.40 15.32
CIT 15.84 15.66 15.75
XCOT 16.93 14.65 15.79
SDRRL 18.06 17.73 17.89

Performance on English Language (ROUGE-1)
SFT 21.39 22.85 22.12
T-SFT 21.93 23.17 22.55
CIT 21.65 23.07 22.36
XCOT 21.27 21.99 21.63
SDRRL 23.47 23.55 23.01

Performance on English Language (ROUGE-L)
SFT 14.79 15.71 15.25
T-SFT 15.19 16.07 15.63
CIT 14.91 15.92 15.42
XCOT 14.66 15.14 14.90
SDRRL 16.34 16.15 16.24

Table 9: Results of baselines and our SDRRL on XL-
SUM benchmark on the target language using SeaLLM.

C Experiments with Non-English
Language as the Source Language

SDRRL aims to transfer the proficiency of LLMs
from resource-rich languages to another target lan-
guage, indicating that the source language is not
limited to English. In this section, we use French in-
stead of English to generate responses and replicate
experiments conducted in Indonesian, Japanese,
and Korean languages. Table 12 presents the av-
erage knowledge distillation gains from SDRRL
over SFT when employing English and French as
the source languages, respectively. Due to the infe-
rior performance of LLaMA-2-7B in French (Ban-

IND THA THM AVG.

xx→en (BLEU)
SFT 36.75 20.93 20.22 28.49
T-SFT 32.23 14.41 15.21 23.72
CIT 22.52 15.84 14.10 18.31
XCOT 33.20 16.48 14.71 23.96
SDRRL 38.30 21.76 20.64 29.47

en→xx (BLEU)
SFT 30.26 16.53 6.64 18.45
T-SFT 28.29 13.10 4.88 16.59
CIT 31.21 18.15 9.76 20.49
XCOT 29.15 14.28 5.26 17.21
SDRRL 36.28 24.02 15.43 25.86

xx→en (COMET)
SFT 86.94 82.89 80.07 83.51
T-SFT 84.49 74.61 71.29 77.89
CIT 80.78 78.87 76.18 78.48
COT 85.69 77.57 72.14 78.91
SDRRL 87.39 83.07 80.63 84.01

en→xx (COMET)
SFT 86.78 73.22 64.05 75.41
T-SFT 85.44 66.95 59.09 72.26
CIT 85.80 74.42 69.60 77.70
COT 85.23 68.26 62.24 73.74
SDRRL 88.70 79.03 75.97 82.34

Table 10: Results of baselines and our SDRRL on FLO-
RES benchmark using SeaLLM.

THA KHM AVG.

Performance on Target Language
SFT 40.68 37.04 38.86
T-SFT 48.32 38.48 43.40
CIT 48.38 39.01 43.70
XCOT 45.07 39.00 42.04
SDRRL 49.44 39.81 44.63

Performance on English Language
SFT 39.62 39.62 39.62
T-SFT 37.92 36.94 37.43
CIT 37.64 35.69 36.67
XCOT 38.40 37.48 37.94
SDRRL 40.66 39.97 40.32

Table 11: Results of baselines and our SDRRL on
MKQA dataset using SeaLLM.

NLU AVG. NLG AVG.

English +6.29 +5.31
French +2.94 +1.77

Table 12: Distillation gains from SDRRL with English
or French as the source language. Average scores on
the natural language understanding task (NLU, includ-
ing BELEBELE) and natural language generation tasks
(NLG, including FLORES, XL-SUM ROUGE-L, and
MKQA) are reported.

darkar et al., 2023) compared to English and the de-
creased effectiveness of the external translation sys-
tem NLLB when French is used as the source lan-
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Figure 3: The occurrence rate of off-target issues in
various languages during the SDRRL process.

guage (Costa-jussà et al., 2022), the knowledge dis-
tillation gains generated with French as the source
language are smaller.

D Case Study

As shown in Table 13, we provide several cases of
SDRRL in several languages. In the case of Hun-
garian, LLM encounters severe off-target issues,
where the response is in English and is inconsis-
tent with the input language Hungarian, which is
a frequent problem during multilingual generation.
After SDRRL, the severe off-target issue has been
effectively mitigated. In the Slovenian case, LLM
produces hallucinations when answering factual
questions about history, leading to factual inac-
curacies, noise tokens like emojis, and off-target
English phrases. For example, The time frame men-
tioned (1685-1700) and the description does not
match any king named Charles. It seems there’s
a mix-up with historical figures. After SDRRL,
the hallucination issue has been alleviated, and the
generated content becomes more detailed, refined,
and fluid. In the Bulgarian scenario, the response
contains several grammatical errors, such as “лед-
ников”, “оттикват” and “снижаваниеa”. In this
case, the SDRRL process enhances the clarity and
natural flow of the output text while also elimi-
nating grammatical errors in Bulgarian. See ap-
pendix E for statistical results regarding off-target
issues.

E Off-Target Issue Analysis

We delve deeper into the effectiveness of SDRRL in
alleviating off-target language issues during LLM
responses. We evaluate the responses of LLaMA-2
on Dolly (Conover et al., 2023) and its multilin-
gual extension, Bactrain-X (Li et al., 2023b). As

depicted in Figure 3, we showcase the variation
in the off-target occurrence rates across each tar-
get language throughout the SDRRL process. This
indicates that SDRRL plays a constructive role in
mitigating off-target issues, ensuring consistency
between the input and the response languages.

F Results on Bigger Models

As shown in Table 15 and Table 14, we also provide
experiments on LLaMA-2-13B as the base model.
The results show that our method still outperforms
the baselines.

G Potential Risks of Our Method

Because our method involves distilling knowledge
from other target languages towards high-resource
languages to achieve cross-linguistic alignment, it
may lead to cultural unfairness for mid- and low-
resource languages. For instance, after aligning
to English using SDRRL, responses of LLMs in
African languages may also adhere to the cultural
practices and social norms of English.
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Hungarian Question: Mit jelent a DNA?

Before SDRRL: A DNA (deoxyribonucleic acid) is the hereditary material present in all living organisms. It
is a long double-stranded helix made up of four nitrogenous bases; adenine (A), guanine (G), cytosine (C)
and thymine (T).

After SDRRL: A DNA a dezoxiribonukleinsav rövidítése, egy molekula, amely két szálból áll, amelyek
egymáshoz kötődnek, és hidrogénkötések tartják össze őket. Ez a genetikai anyag, amely az élőlények
fejlődését és működését szabályozza, és a sejtek fehérje- és szénhidrátszintézisét irányító utasításokat
tartalmazza.

Slovenian Question: Opišite življenje in vladanje kralja Karla II.

Before SDRRL: Kralj Karel II. (1638-1700) je bil francoski krščanski kralj, ki je vladal od leta 1685 do
svoje smrti. Ko je postal kralj, je zavzel podeželje in se lotil reform, katerek cilj je bil izboljšati upravo
in omogočiti zaščito družbe. Karel II. je bil tudi pomorski kralj, ki si je meril svet . Under his rule, the
French navy became one of the most powerful in the world. Karel II. je bil tudi velik pokrovitelj umetnosti
in književnosti. Že stoletje po njegovem vrnitemenu je postal Karel II. znan kot eno največjih francoskih
vladarjev zadnjega obdobja.

After SDRRL: Kralj Karel II. je bil angleški kralj od leta 1660 do svoje smrti leta 1685. Bil je sin Karla I.,
ki je bil odstranjen z oblasti in usmrčen leta 1649. Po angleški državljanski vojni in obdobju republike je bil
Karel II. ponovno kronan za kralja Anglije leta 1660, kar je označilo začetek Kraljeve obnove. Bil je znan
kot podpornik umetnosti in kulture, ki je spodbujal delo številnih umetnikov in pisateljev. Njegovo obdobje
vladanja je bilo zaznamovano z obnovitvenimi projekti, vključno z razvojem Londona po Velikem požaru leta
1666. Karel II. je umrl leta 1685 brez legitimnih moških potomcev, kar je dolgoročno vplivalo na vprašanje
nasledstva. Njegova smrt ni neposredno vplivala na konec Kraljeve obnove ali angleško državljansko vojno,
ki se je končala pred njegovim vladanjem, niti na začetek angleške suverenosti v Severni Ameriki.

Bulgarian Question: Моля, обяснете историята на ледниковия период.
Before SDRRL: ледников период е период в ерата, в която Земята е bila предимно покрита с
лед. това се дължи на увеличение на азъйствата на Северния полюс, които се оттикват
водата в океаните и причинява замразяването на течности и земя. това води до увеличение
на масата лед вglobus и снижаваниеa нива на температурата на аеросферата. това връвля
вanother glacial period or ice age.
After SDRRL: Ледниковият период е период от време в климатичната история на Земята, през
който климатът става много студен и полярните ледени шапки се разширяват, покривайки
голяма част от сушата. Това се случва, когато нивото на атмосферната температура
значително се понижи, което позволява на водата в океаните да се превърне в лед и води до
увеличаване на обема на леда и връщането на вода към морския лед. Ледниковите периоди
обикновено са свързани с забележително намаляване на глобалните температури, което
се случва в продължение на десетилетия или стотици години. Няколко фактора могат
да доведат до ледников период, включително промени в орбитата на Земята, намаляване
на вулканичните изригвания и промени в океанските течения. Най-скорошният ледников
период, известен като последната ледникова епоха, приключи преди около 10 000 години,
когато климатът започна да се затопля и ледниците по света започнаха да се топят.

Table 13: Several cases before and after the application of SDRRL. Following SDRRL, the responses from LLMs
become smoother, more comprehensive, and contain fewer errors (colored in red).

CES DAN UKR BUL FIN HUN NOB IND JPN KOR POR SLV VIE POL AVG.

Performance on Target Language
SFT 59.56 61.89 56.00 55.89 50.67 50.44 60.22 57.54 45.92 49.83 63.24 49.16 48.38 52.85 54.40
CIT 63.22 62.56 57.10 60.80 54.67 53.89 62.44 54.75 50.61 49.16 65.70 54.19 54.53 59.59 57.37
XCOT 64.89 63.89 54.22 61.11 57.33 53.78 64.44 56.87 49.72 53.52 66.82 56.31 52.18 59.33 58.17
SDRRL 67.00 65.78 57.78 62.33 58.00 55.11 64.78 61.68 51.40 53.63 67.71 56.87 55.98 59.33 59.81

Performance on English Language
SFT 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65 77.65
CIT 77.32 78.44 78.10 78.00 79.36 78.21 78.10 77.99 78.44 77.54 79.33 77.77 76.87 78.21 78.12
XCOT 77.77 79.33 77.77 77.77 77.88 78.55 79.33 78.88 80.22 78.77 78.55 78.10 77.65 78.32 78.49
SDRRL 79.44 80.11 78.66 80.22 79.11 78.28 79.58 79.55 80.56 78.99 80.22 78.99 79.44 78.10 79.38

Table 14: Results of baselines and our SDRRL on BELEBELE benchmark. In each column, the best result is in
bold.
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CES DAN UKR BUL FIN HUN NOB IND JPN KOR POR SLV VIE POL AVG.

BLEU scores on X-to-English Tasks
SFT 37.16 45.16 35.49 37.01 30.10 30.69 40.30 36.52 21.45 20.54 46.02 31.52 29.26 29.01 33.59
CIT 0.72 0.71 0.03 0.22 0.48 0.70 1.11 0.50 0.11 0.09 0.11 1.53 0.79 0.63 0.55
XCOT 34.56 39.54 24.99 26.47 19.30 22.80 35.16 34.52 3.22 0.32 44.16 28.17 16.37 21.63 25.09
SDRRL 37.59 46.96 36.24 38.61 32.45 32.75 40.75 39.60 25.87 25.72 47.09 32.89 33.33 29.94 35.70

BLEU scores on English-to-X Tasks
SFT 16.79 25.65 17.99 17.88 12.85 11.96 21.80 19.89 4.63 10.24 35.34 13.11 16.55 14.86 17.11
CIT 1.49 1.68 0.77 1.69 1.10 0.73 0.93 1.93 0.53 0.63 0.53 2.01 1.06 1.20 1.16
XCOT 27.27 36.34 27.61 33.98 20.44 22.28 30.64 31.07 11.92 7.70 40.59 22.66 30.14 21.05 25.98
SDRRL 29.11 40.36 28.80 35.50 23.36 24.34 30.30 36.69 16.76 20.10 44.85 25.43 33.40 23.00 29.43

COMET scores on X-to-English Tasks
SFT 86.48 88.47 85.18 85.97 87.10 85.38 87.12 87.00 83.53 83.35 88.19 84.26 84.06 84.27 85.74
CIT 40.48 39.35 37.61 40.06 40.26 39.07 38.47 40.17 38.29 39.44 38.29 43.38 40.44 40.63 39.71
XCOT 85.45 87.54 80.36 81.77 81.47 81.87 85.91 86.21 65.16 64.16 87.76 83.13 77.52 81.44 80.70
SDRRL 86.80 89.01 85.58 86.70 87.93 86.61 87.29 87.70 85.35 87.57 88.29 85.45 85.46 84.24 86.71

COMET scores on English-to-X Tasks
SFT 64.15 75.81 66.76 61.55 68.78 59.98 77.36 76.74 51.96 71.10 81.47 60.61 68.20 65.73 67.87
CIT 42.57 39.78 41.29 42.97 44.83 40.12 38.84 42.48 43.49 43.52 43.49 44.23 39.69 42.66 42.14
XCOT 82.80 86.46 83.79 85.29 83.65 80.91 86.80 85.10 78.99 77.15 86.48 80.57 82.62 80.66 82.95
SDRRL 86.05 88.45 85.68 86.63 87.11 84.10 86.79 88.60 83.83 87.57 87.67 83.56 85.78 85.02 86.20

Table 15: Results of baselines and our SDRRL on FLORES benchmark.
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