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Abstract

Multimodal machine translation (MMT) aims
to improve the performance of machine transla-
tion with the help of visual information, which
has received widespread attention recently. It
has been verified that visual information brings
greater performance gains when the textual in-
formation is limited. However, most previous
works ignore to take advantage of the complete
textual inputs and the limited textual inputs at
the same time, which limits the overall perfor-
mance. To solve this issue, we propose a mixup
method termed Soul-Mix to enhance MMT by
using visual information more effectively. We
mix the predicted translations of complete tex-
tual input and the limited textual inputs. Experi-
mental results on the Multi30K dataset of three
translation directions show that our Soul-Mix
significantly outperforms existing approaches
and achieves new state-of-the-art performance
with fewer parameters than some previous mod-
els. Besides, the strength of Soul-Mix is more
obvious on more challenging MSCOCO dataset
which includes more out-of-domain instances
with lots of ambiguous verbs.

1 Introduction

Multimodal machine translation (MMT) endeavors
to enhance the translation systems via integrating
different multimodal datasets, specifically from the
visual inputs, into conventional text-only neural ma-
chine translation (NMT) systems (Caglayan et al.,
2019; Yao and Wan, 2020; Yang et al., 2020; Fei
et al., 2023; Tayir et al., 2024; Tayir and Li, 2024).
When visual context is incorporated into the trans-
lation process, the accuracy of the translation is
expected to improve significantly. This is because
visual context can clarify words that have multiple
meanings, which ensures that the intended meaning
is conveyed more precisely and accurately.

* Corresponding author.

Most current MMT frameworks aim to address
the semantic gap between images and texts by de-
signing fusion frameworks. Caglayan et al. (2021)
applies the pre-training technique and proposes a
cross-lingual method to learn the visually-grounded
representations for MMT. Li et al. (2022a) applies
a selective attention framework to correlate images
to words. Li et al. (2022b) enhances MMT by intro-
ducing visual hallucination during inference time,
as opposed to other MMT approaches based on the
sentence-image pairs. Huang et al. (2023) contrasts
multi-modal input with adversarial samples, in this
case, the model learns to identify the most informa-
tive sample which is combined with the consistent
image and several visual objects extracted from it.

Despite the promising progress achieved by ex-
isting MMT methods, most of them do not take full
advantage of both complete and limited textual in-
puts. While recent research has shown that limited
textual context can lead to better translations based
on visual inputs, most attempts to incorporate lim-
ited textual inputs ignore the potential benefits of
complete textual inputs (Caglayan et al., 2019). In-
tuitively, predicted translations based on complete
textual inputs tend to rely more on textual informa-
tion, ensuring semantic accuracy, while predicted
translations based on the limited textual inputs tend
to incorporate more information from visual inputs,
clarifying words with multiple meanings. However,
the lack of complete textual inputs could limit the
performance when utilizing limited textual inputs.

To tackle this problem, we propose a framework
termed Soul-Mix based on manifold mixup (Zhang
et al., 2018; Verma et al., 2019) to enhance MMT
by leveraging visual information more effectively.
Specifically speaking, we mix the predicted transla-
tions of the complete textual input and the limited
textual inputs. The mixed translation and the trans-
lation of the complete textual input are both utilized
to compute the cross-entropy loss. In addition, we
utilize Jensen-Shannon Divergence (JSD) to regu-
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larize their predictions to further boost the perfor-
mance. Experiment results on the Multi30K (Elliott
et al., 2016) dataset of English-to-German, English-
to-French, and English-to-Czech translation direc-
tions demonstrate that our framework outperforms
previous MMT methods, particularly on the more
challenging MSCOCO dataset (Elliott et al., 2017),
which includes more out-of-domain instances and
ambiguous verbs. Further model analysis also veri-
fies the advantage of our approach.

To sum up, our contributions are three-fold:
• We propose a manifold mixup method to use

visual information more effectively.
• Experiment results show that our framework

achieves the new state-of-the-art performance
with only a small increase in parameters.

• Further model analysis demonstrates that our
framework is more robust to noise from irrele-
vant visual input information.

2 Related Work

Related work primarily includes the studies on mul-
timodal machine translation and manifold mixup.

2.1 Multimodal Machine Translation

Machine translation aims to convert text or speech
from one language to another (Chen et al., 2022;
Cheng et al., 2023b; Chen et al., 2024; Gui et al.,
2024). As a language shared by people worldwide,
the visual modality helps machines to have a more
comprehensive perception of the real world. The
superiority of the multimodal context in MMT has
been illustrated in recent works. Therefore, there
has been a growing interest in MMT tasks (Elliott
et al., 2016), which attracts more and more atten-
tion. As pre-trained models have great potential in
other tasks (Cao et al., 2022; Li et al., 2023a,b; Jin
et al., 2023; Dong et al., 2023a; Cai et al., 2023;
Zhu et al., 2023b; Dong et al., 2023b; Cai et al.,
2024; Huang et al., 2024), pre-trained models are
also widely leveraged in MMT, such as ResNet (He
et al., 2016). To prevent the encoding of irrelevant
information in images, Yao and Wan (2020) pro-
poses multimodal self-attention in the Transformer,
which allows the model to effectively capture the
relevant information in these modalities. Nishihara
et al. (2020) introduces the supervised visual atten-
tion mechanism that leverages manual alignments
between words in an utterance and their correspond-
ing regions in the given image. This approach could
generate supervisions for visual attention and trains

the visual attention component of the encoder utiliz-
ing these supervisions, boosting the model’s ability
to align textual and visual information accurately.
Huang et al. (2020) focuses on the huge challenge
of unsupervised MMT by incorporating pseudo vi-
sual pivoting and the visual inputs. Wu et al. (2021)
proposes two innovative approaches for MMT. The
first method, gated fusion, is designed for conven-
tional MMT, which fuses visual and textual inputs.
The second method, dense-retrieval augmentation,
leverages the retrieval-based approach, incorporat-
ing dense retrieval mechanisms to boost translation
accuracy via retrieving the relevant visual and tex-
tual data. Li et al. (2022a) develops a new selective
attention mechanism that correlates image patches
with words, which has been widely utilized in re-
cent research, as it allows for more precise align-
ment between visual and textual elements, thereby
improving the overall performance of multi-modal
translation systems. Ye and Guo (2022) leverages a
mixup strategy to extract useful visual features, en-
hancing the machine translation process. This tech-
nique improves the model’s ability to use the visual
information effectively, leading to better translation
outcomes. Ye et al. (2022) designs the novel robust
multi-modal interactive fusion method, including
the cross-modal relation-aware mask mechanism.
It enhances the model’s robustness to noise and im-
proves the interaction between different modalities,
leading to more accurate and more reliable transla-
tions. Cheng et al. (2023d) leverages asymmetric
contrastive learning at these two levels to leverage
the knowledge from image captioning and object
detection. In this paper, we propose to utilize mani-
fold mixup (Zhang et al., 2018; Verma et al., 2019)
to transfer knowledge from visual information.

2.2 Mixup

How to improve the model’s robustness is a topic
worth discussing (Xin et al., 2022; Cheng et al.,
2023a; Yin et al., 2023; Cheng et al., 2023c; Xin
et al., 2023b; Xin and Zou, 2023; Xin et al., 2023a;
Zhu et al., 2024; Zhuang et al., 2024). Zhang et al.
(2018) first proposes mixup to boost the model’s
robustness. Beyond this, Verma et al. (2019) builds
manifold mixup via applying this technique to the
hidden representations, extending the surface-level
mixup method. Some recent works have introduced
mixup on machine translation (Zhang et al., 2019;
Li et al., 2021), sentence classification (Chen et al.,
2020; Jindal et al., 2020; Sun et al., 2020), multi-
lingual understanding (Yang et al., 2022), speech
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SRC: a man rows his boat through the water with yellow oars

Color a man rows his boat through the water with [MASK_C] oars

Character a [MASK_P] rows his boat through the water with yellow oars

Noun a man rows his boat through the [MASK_N] with yellow oars

SRC: a man in a red shir t enter ing an establishment

Color a man in a [MASK_C] shirt entering an establishment

Character a [MASK_P] in a red shirt entering an establishment

Noun a man in a red shirt entering an [MASK_N]

Figure 1: An example of the degradation schemes for textual inputs. Three special tokens are designed to replace
the specific words in the given sentence respectively.

recognition (Medennikov et al., 2018; Meng et al.,
2021), and sentiment analysis (Zhu et al., 2023a).
Note that Ye and Guo (2022) also applies mixup in
MMT. However, we focus on mixing the represen-
tations of the complete textual inputs and limited
textual inputs to enhance MMT.

3 Method

In this section, we first introduce the problem defi-
nation (§3.1) and the degradation schemes (§3.2).
Then, we introduce our proposed Soul-Mix, includ-
ing the source sentence encoder (§3.3), the aggre-
gation module (§3.4), the target sentence decoder
(§3.5), and the manifold mixup module (§3.6). At
last, we introduce the final training objective (§3.7).
The overview of our approach is shown in Figure 2.

3.1 Problem Defination

The corpus of MMT usually contains triples, which
could be denoted as D = {(x, y, z)}, where z de-
notes the image and x, y denote the corresponding
description of the image in the source language and
target language. Given {(x, z)}, the cross-entropy
loss is formulated as follows:

LCE(x, y, z) = −
|y|∑

i=1

log p(yi|y<i, x, z) (1)

3.2 Degradation Schemes

As shown in Figure 1, when dealing with textual in-
puts, we adopt the degradation schemes (Caglayan
et al., 2019; Li et al., 2022a), which involves using
three degradation schemes: color masking, charac-
ter masking, and noun masking.

Color masking refers to the process of substitut-
ing all the words that denote a specific color with a
special token [Mask_C], which aims to boost the
ability to capture color information from vision.

Character masking means that we replace char-
acter words by a special token [Mask_P]. Follow-
ing Li et al. (2022a), we regard “man", “woman",
“people", “men", “girl", and “boy" as the character
words, which aim to enhance the ability to capture
gender information from vision. This is because, in
some languages, the masculine and feminine forms
of the same noun are different. For example, “Eine
Baseballspielerin” in German means a female base-
ball player, while “Ein Baseballspieler” in German
means a male baseball player.

Noun masking means that all nouns contained
in the utterance might be replaced. However, since
noun masking is a more complex scenario than the
character masking, we only mask one of the nouns
using a special token [Mask_N].

It is worth noting that while the majority of sen-
tences in the Multi30K dataset contain a color word,
a character word, and a noun, there are still some ut-
terances that do not include any of these words. In
such cases, we directly use the original sentence as
the output after applying the degradation process.

3.3 Source Sentence Encoder

As illustrated in the left part of Figure 2, our source
sentence encoder follows the same structure as the
transformer encoder (Vaswani et al., 2017). Given
the source sentence x = {x1, · · · , xn}, the output
of the source sentence encoder is as follows:

El
x = FFN(Multihead(El−1

x ,El−1
x ,El−1

x )) (2)

where E0
x denotes the embedding with the position

embedding, n denotes the length of x, and l denotes
the numbers of Encoder layers.

3.4 Aggregation Module

As illustrated in the central part of Figure 2, follow-
ing Zhang et al. (2020); Yin et al. (2020); Cheng
et al. (2023d) we introduce an aggregation module
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Figure 2: Overview of our framework. The input of probability 1 includes the complete source sentence and the
image. The input of probability 2 includes the complete source sentence, the limited source sentence, and the image.

to fuse these two modalities. For the input image z,
a pre-trained ResNet-50 CNN (He et al., 2016) is
utilized to obtain the average-pooled visual repre-
sentation, which is projected to the same dimension
as Ex. The projected visual representation Ez is:

Ez = Wz ResNetpool(z). (3)

where Wz is the parameter matrix. A gating matrix
Λ is introduced to control the fusion of Ex and Ez:

Λ = sigmoid(W1
ΛEx +W2

ΛEz) (4)

where W1
Λ and W2

Λ are two parameter matrices.
After fusion, we obtain the output E as follows:

E = Ex + ΛEz (5)

E is fed into the target sentence decoder.

3.5 Target Sentence Decoder
As illustrated in the right part of Figure 2, our tar-
get sentence decoder follows the same structure as
the one proposed in Vaswani et al. (2017). For the
output of the aggregation module E and the embed-
ding of the input target sentence D0, the output of
each layer Dl in the target sentence decoder is:

Hl
1 = Multihead(Dl−1,Dl−1,Dl−1) (6)

Hl
2 = Multihead(Hl

1,E,E) (7)

Dl = FFN(Hl
2) (8)

where Hl
1 is the output of the l-th self-attention of

the decoder, Hl
2 is the output of the cross attention

layer in the l-th layer, and Dl is the hidden states in
the l-th layer of the decoder. Then a softmax layer
is applied to generate the probability distribution,
which takes the hidden states D in the top layer of
the target sentence decoder as the input.

3.6 Manifold Mixup Module

Previous studies have demonstrated that when the
textual input is limited, MMT models could lever-
age visual information more effectively (Caglayan
et al., 2019). In this work, we extend this method
by utilizing a manifold mixup technique to simul-
taneously leverage the predicted translations of the
limited textual inputs and the predicted translation
of the complete textual input. Specifically, we ap-
ply several degradation schemes to textual inputs
as Section 3.2. For the complete input sentence x0,
we utilize color masking, character masking, and
noun masking, to obtain the processed sentences
x1, x2, and x3, respectively.

We utilize {(xi, z0)}3i=0 as the input of the en-
coder and the pre-trained ResNet-50 CNN, respec-
tively, and apply manifold mixup technique to mix
the predicted translations of each pair of inputs.
The mixed predicted translation ymix is as follows:

ymix =
3∑

i=1

λF(xi, z0) + (1− 3λ)F(x0, z0) (9)

where F(·) denotes the corresponding output of the
target sentence decoder and λ is a hyper-parameter
of the manifold mixup technique.

3.7 Training Objective

The training objective of our framework includes
two cross-entropy losses, where the first is calcu-
lated between the predicted translation ycom of com-
plete textual input and the ground truth y, and the
second is calculated between the mixed predicted
translation ymix and the ground truth y, which can
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Models #Params
Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

English-to-German

Transformer† (Vaswani et al., 2017) 2.6M† 41.02 68.22 33.36 62.05 29.88 56.64
Imagination† (Elliott and Kádár, 2017) 7.0M† 41.31 68.06 32.89 61.29 29.90 56.57
Multimodal Self-attn‡ (Yao and Wan, 2020) – 41.50 58.52 32.51 51.33 29.10 48.48
WRA-guided♢ (Zhao et al., 2021) – 39.30 58.30 32.30 52.80 28.50 48.50
Selective Attn♢ (Li et al., 2022a) – 41.93 68.55 33.60 61.42 31.14 56.77
DLMulMix♢ (Ye and Guo, 2022) – 41.77 58.93 33.07 51.85 29.90 49.09
PLUVR♢ (Fang and Feng, 2022) – 40.30 – 33.45 – 30.28 –
VALHALLA(M)♢ (Li et al., 2022b) – 42.60 69.30♦ 35.10 62.80♦ 30.70♦ 57.60♦

E2H-MNMT♢ (Ye et al., 2023) – 42.84♦ 60.16 35.60♦ 55.00 30.56 50.91
RG-MMT-EDC♢ (Tayir et al., 2024) – 42.00 60.20 33.40 53.70 30.00 49.60

Soul-Mix (ours) 3.0M 44.24♣ 69.93♣ 37.14♣ 63.59♣ 34.26♣ 59.94♣

English-to-French

Transformer† (Vaswani et al., 2017) 2.6M† 61.80 81.02 53.46 75.62 44.52 69.43
Imagination† (Elliott and Kádár, 2017) 6.9M† 61.90 81.20 54.07 76.03 44.81 70.35
Multimodal Self-attn‡ (Yao and Wan, 2020) – 61.44 75.77 54.56 71.62 44.59 65.08
WRA-guided♢ (Zhao et al., 2021) – 61.80 76.30 54.10 70.60 43.40 63.80
Selective Attn♢ (Li et al., 2022a) – 62.48 81.71 54.44 76.46 44.72 71.20
DLMulMix♢ (Ye and Guo, 2022) – 62.23 76.85 55.18 73.37 44.42 66.41
PLUVR♢ (Fang and Feng, 2022) – 61.31 – 53.15 – 43.65 –
VALHALLA(M)♢ (Li et al., 2022b) – 63.10 81.80♦ 56.00 77.10♦ 46.40 71.30♦

E2H-MNMT♢ (Ye et al., 2023) – 63.36♦ 77.29 56.35♦ 72.76 47.04♦ 67.36
RG-MMT-EDC♢ (Tayir et al., 2024) – 62.90 77.20 55.80 72.00 45.10 64.90

Soul-Mix (ours) 3.0M 64.75♣ 83.24♣ 57.47♣ 78.23♣ 49.25♣ 73.48♣

Table 1: The numbers of parameters, BLEU scores, and METEOR scores on the Multi30k dataset of the English-
to-German and the English-to-French translation direction. Results with “♢” denote that they are taken from the
corresponding published papers, and results with † are cited from Wu et al. (2021). ‘–’ denotes missing results from
the published work. ♦ denotes the previous best results. ♣ denotes our framework significantly outperforms the
baselines with p < 0.01 under t-test. The best results are highlighted in bold.

be formulated as follows:

L1
CE = −

|y|∑

i=1

log p(yi|y<i, x
0, z0) (10)

L2
CE = −

|y|∑

i=1

log p(yi|y<i, x
0, x1, x2, x3, z0)

(11)

Besides the cross-entropy losses, we also regu-
larize the above two output predictions ycom, ymix

by minimizing JSD between the two output distri-
butions, which is formulated as follows:

LJSD =

|y|∑

i=1

JSD{p(yi|y<i, x
0, z0)∥

p(yi|y<i, x
0, x1, x2, x3, z0)}

(12)

The final training objective is as follows:

L = L1
CE + L2

CE + γLJSD (13)

where γ is the coefficient weight to control LJSD.

4 Experiments

4.1 Datasets and Metrics

All experiments are conducted on the Multi30K1

(Elliott et al., 2016) dataset, which is an extension
of Flickr30k (Young et al., 2014) widely utilized for
MMT. Each image in Multi30K is accompanied by
a sentence in English (En) and the manual transla-
tions in German (De), French (Fr), and Czech (Cs).
The training set contains 29,000 text-image pairs
and the validation set contains 1014 pairs. Four test

1https://github.com/multi30k/dataset
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Models
Test2016 Test2018

BLEU METEOR BLEU METEOR

Transformer† (Vaswani et al., 2017) 32.70 32.34 27.62 29.03
Doubly-ATT† (Arslan et al., 2018) 33.25 32.28 29.12 29.87
Multimodal Self-attn† (Yao and Wan, 2020) 33.12 32.01 28.75 29.51
Gated Fusion† (Wu et al., 2021) 33.77 32.24 29.43 29.41
NR-MNMT♢ (Ye et al., 2022) 35.09 33.52♦ 31.40♦ 31.26♦

E2H-MNMT♢ (Ye et al., 2023) 35.18♦ 33.39 31.29 30.82

Soul-Mix (ours) 36.45♣ 34.73♣ 32.77♣ 32.65♣

Table 2: BLEU scores and METEOR scores on the Multi30k dataset of the English-to-Czech translation direction.
Results with “♢” denote that they are taken from the corresponding published papers and results with † are cited
from Ye et al. (2022). ♦ denotes the previous best results. ♣ denotes our framework significantly outperforms the
baselines with p < 0.01 under t-test. The best results are highlighted in bold.

sets are used to evaluate the MMT models, includ-
ing Test2016 (Elliott et al., 2016), Test2017 (Elliott
et al., 2017), MSCOCO (Elliott et al., 2017), and
Test2018 (Barrault et al., 2018). The details of the
dataset can be found in Appendix. A.

To evaluate the performance of translation, we
report 4-gram BLEU (Papineni et al., 2002) and
METEOR (Denkowski and Lavie, 2014). 4-gram
BLEU measures the quality of translations in accu-
racy and fluency and METEOR takes into account
both precision and recall. Higher BLEU and ME-
TEOR mean higher performance.

4.2 Implementation Details
Following the previous works, the byte pair encod-
ing (BPE) algorithm (Sennrich et al., 2016) with
6,000 merging operations is used to segment words
into subwords, which could generate a vocabulary
of 5876 tokens for En-De, 5684 tokens for En-Fr,
and 5972 tokens for En-Cs. A pre-trained ResNet-
50 CNN (He et al., 2016) is utilized to extract the
image features. Both the encoder and decoder con-
tain 4 layers. Sign test (Collins et al., 2005) is used
as the standard statistical-significance test.

During the training process, the value of label
smoothing is set to 0.1, and dropout is set to 0.1.
The weight λ is set to 0.2 and the weight γ is set to
2. During decoding, the beam size is set to 5. For
all the experiments, we select the model that works
the best on the dev set and then evaluate it on the
test set. To avoid overfitting, the training will
early-stop if the loss on dev set does not decrease
for 3 epochs as in (Zhang et al., 2020). We ap-
ply Adam optimizer (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.98, and 4k warm-up updates
to optimize all the parameters, where we linearly

increase the learning rate from 10e-7 to 5e-5.
During the inference process, we follow the pre-

vious work (Wu et al., 2019) to average the check-
points of the last 10 epochs for evaluation. Multi-
bleu.perl8 script2 is used to compute case-sensitive
4-gram BLEU scores for all test sets. The entire
training process takes several hours. All the experi-
ments are conducted on a single Nvidia V100 GPU
with fp16 and based on fairseq3 (Ott et al., 2019).

4.3 Baselines

We first compare our method with a text-only base-
line, which trains a transformer model without any
visual information. In addition, we report the per-
formance of several MMT models, including Imag-
ination, Multimodal Self-attn, WRA-guided, Selec-
tive Attn, DLMulMix, PLUVR, VALHALLA(M),
CAT-MMT bi, E2H-MNMT, and RG-MMT-EDC.
For a fair comparison, we utilize the same configu-
ration for all the baselines as our framework.

4.4 Results

Table 1 demonstrates the performance comparison
between Soul-Mix and the baselines in English-to-
German, and English-to-French translation direc-
tions. We also report the result in English-to-Czech
translation direction in Table 2. Based on these re-
sults, we have the following observations:

(1) Soul-Mix achieves consistent improvements
on all the test sets, including the Test2016 dataset,
the Test2017 dataset, the Test2018 dataset, and the

2https://github.com/moses-smt/mosesde
coder/blob/master/scripts/generic/mult
i-bleu.perl

3https://github.com/facebookresearch/
fairseq
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Models
Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Soul-Mix 44.24 69.93 37.14 63.59 34.26 59.94

w/o COM 43.79 (↓0.45) 69.70 (↓0.23) 36.81 (↓0.33) 63.40 (↓0.19) 33.12 (↓1.14) 58.96 (↓0.98)
w/o CHM 43.97 (↓0.27) 69.78 (↓0.15) 36.98 (↓0.16) 63.50 (↓0.09) 33.58 (↓0.68) 59.43 (↓0.51)
w/o NM 44.11 (↓0.13) 69.85 (↓0.08) 36.20 (↓0.94) 63.53 (↓0.06) 33.89 (↓0.37) 59.68 (↓0.26)

+ RM 43.81 (↓0.43) 69.67 (↓0.26) 36.87 (↓0.27) 63.38 (↓0.21) 33.22 (↓1.04) 59.18 (↓0.76)

Table 3: Results of different degradation schemes on Multi30k of English-to-German translation direction.

Models
Test2016 Test2017 MSCOCO

BLEU METEOR BLEU METEOR BLEU METEOR

Soul-Mix 44.24 69.93 37.14 63.59 34.26 59.94

w/o mixup 43.13 (↓1.11) 69.45 (↓0.48) 36.32 (↓0.82) 63.16 (↓0.43) 32.44 (↓1.82) 58.22 (↓1.72)
w/o JSD 43.87 (↓0.37) 69.71 (↓0.22) 37.02 (↓0.12) 63.26 (↓0.33) 33.78 (↓0.48) 59.45 (↓0.49)

Table 4: Results of ablation experiments on the Multi30k dataset of English-to-German translation direction.

MSCOCO dataset. For English-to-German transla-
tion direction, our approach achieves 44.24, 37.14,
and 34.26 BLEU on these test sets, outperforming
the previous results. Similar situations can also be
found in the results of METEOR and other trans-
lation directions, which demonstrate the effective-
ness of our framework. We believe that it is because
our method applies the manifold mixup technique
to use the visual information more effectively. In
addition, JSD plays a role in regularization, which
can further improve the robustness of the model.

(2) The number of parameters in our proposed
approach is slightly more than that of Transformer.
More encouragingly, it is significantly lower than
that of some other MMT frameworks, such as Imag-
ination (Elliott and Kádár, 2017), which can further
verify the superiority of our framework.

5 Analysis

5.1 Effect of Different Degradation Schemes

In our method, three different degradation schemes
are introduced to generate these incomplete textual
inputs, including x1, x2, and x3, respectively. To
verify the effectivenss of the degradation schemes,
we sequentially remove these degradation schemes
and accordingly modify the Eq. 13, denoting them
as "w/o COM", "w/o CHM", and "w/o NM", respec-
tively. These experimental results are demonstrated
in Table 3. We could observe varying degrees of de-
cline, indicating that all three degradation schemes

play a positive role. Besides, we also attempt to re-
place these three degradation schemes with random
masking, denoted as “+ RM". It can be observed
that the proposed masking strategies are more effec-
tive. We believe that the reason is that via utilizing
these mask strategies, the masked words could have
a stronger correlation with the image, thereby fur-
ther enhancing the ability to use visual information.

5.2 Ablation Study

To verify the advantages of Soul-Mix from differ-
ent perspectives, we conduct ablation experiments
in English-to-German translation direction. Experi-
ment results on Test2016 dataset, Test2017 dataset,
and MSCOCO dataset are shown in Table 4.

(1) Effectiveness of Manifold Mixup. One of
the core contributions of Soul-Mix is to apply the
Manifold Mixup technique to mix up the predicted
translations of complete textual input and limited
textual inputs. To verify the effectiveness of mani-
fold mixup, we remove L2

CE and LJSD in Eq.13 and
refer it to w/o mixup in Table 4. We could observe
the performance degradation. These results demon-
strate that manifold mixup can indeed improve the
performance of the framework through leveraging
the visual information more effectively.

(2) Effectiveness of JSD. To validate the effec-
tiveness of JSD, we remove LJSD in Eq.13 and
refer it to w/o JSD in Table 4. We could find that
BLEU drops by 0.37, 0.12, and 0.48 on these three
datasets, respectively. In addition, METEOR also
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SRC[En]: A brown dog about to catch a green Frisbee.
REF[De]: Ein brauner Hund ist kurz davor, einen Frisbee zu fangen.
VALHALLA(M)[De]: Ein grau Hund ist kurz davor, einen Platten zu fangen.

(A grey dog about to catch a green plate.)
E2H-MNMT[De]: Ein grau Hund ist kurz davor, einen Frisbee zu fangen.

(A grey dog about to catch a green Frisbee.)
Soul-Mix[De]: Ein brauner Hund ist kurz davor, einen Frisbee zu fangen. ✓

(A brown dog about to catch a green Frisbee.) ✓

Table 5: Case study on the Test2016 dataset of English-to-German translation direction. Strikethrough words present
the incorrect choices. Underline denotes the acceptable but not totally right translation.

Selective Attn DLMulMix VALHALLA(M) E2H-MNMT Soul-Mix
40

41

42

43

44

41.93
41.77

42.6
42.84

44.24

41.36
41.05

40.68 40.54

41.58

Congruent Decoding
Incongruent Decoding

Figure 3: BLEU scores on the Test 2016 test set of the
English-to-German translation direction when utilizing
congruent decoding and incongruent decoding.

drops by 0.22, 0.33, and 0.49, respectively. These
results show that JSD could indeed further enhance
the performance of MMT. We believe that it is be-
cause JSD could act as a regularization technique
to prevent overfitting during the training process.

5.3 Incongruent Decoding

Incongruent decoding involves replacing the origi-
nal image with an incongruent one during the test
process. The MMT framework that better leverages
visual information typically experiences more per-
formance degradation with incongruent decoding.

As shown in Figure 3, we employ incongruent
decoding on the English-to-German translation di-
rection of the Test2016 test set to test whether our
method can effectively integrate the visual modal-
ity. We could clearly observe that Soul-Mix shows
greater performance degradation compared to other
frameworks, further demonstrating its superior abil-
ity to effectively leverage visual information.

5.4 Case Study

Finally, we perform a case study to further demon-
strate the advantages of our framework. We select a

text and its corresponding image from the Test2016
dataset for the English-to-German translation direc-
tion. We choose two MMT frameworks for compar-
ison, including VALHALLA(M) (Li et al., 2022b)
and E2E-MNMT (Ye et al., 2023).

As illustrated in Table 5, we could obviously ob-
serve that VALHALLA(M) fails to incorrectly pre-
dict “Frisbee” as “plate”, while both E2E-MNMT
and Soul-Mix correctly predict it. We believe the
reason is that E2E-MNMT and Soul-Mix success-
fully leverage visual information to generate more
accurate translations, especially for the words with
multiple meanings. Besides, we can also find that
VALHALLA(M) and E2E-MNMT incorrectly pre-
dict “brown” as “grey”, while Soul-Mix correctly
predicts it. A possible reason is that the two frame-
works are misled by the grey tail of the dog in the
picture, and they mistakenly regard the color of the
dog as “brown”. These results further validate that
Soul-Mix could avoid being misled by visual infor-
mation more effectively than previous frameworks.

6 Conclusion

In this paper, we propose Soul-Mix to leverage vi-
sual information more effectively via the manifold
mixup technique for MMT. Experiment results on
the Multi30K dataset of three translation directions
demonstrate the effectiveness and the superiority of
our proposed framework, which can surpass all the
previous works with a relatively small increase in
the number of parameters. Further analysis shows
that our framework is more robust to the noise from
irrelevant visual information. In the future, we will
explore how to apply the manifold mixup technique
to visual inputs for MMT more effectively.

Limitations

While our Soul-Mix model has achieved the encour-
aging performance, it is important to recognize that
our current method is predicated on the utilization
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of image data during inference. This indicates that
the efficacy of our method is dependent on the pres-
ence of visual data. Moving forward, our research
agenda will focus on overcoming this constraint by
investigating new techniques to boost our model’s
performance when only the textual data is accessi-
ble during the inference phase.
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cise caution and not solely depend on these results.
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A Dataset

We employ four test sets to evaluate MMT models:

• The Test2016 (Elliott et al., 2016) test set with
1,000 text-image pairs in the initial Multi30K
dataset. The languages in the Test2016 test set
include English, German, French, and Czech.

• The Test2017 (Elliott et al., 2017) test set with
1,000 text-image pairs from WMT2017, with
more difficult source sentences. Languages in
the Test2017 test set include English, German,
and French, respectively.

• The MSCOCO (Elliott et al., 2017) test set
with 461 text-image pairs. Note that it is more
challenging because there are more ambigu-
ous verbs and instances. The languages in this
dataset include English, German, and French.

• The Test2018 (Barrault et al., 2018) test set
with 1,071 text-image pairs, including more
entity words and low-frequency words. Lan-
guages in Test2018 include English, German,
French, and Czech, respectively.
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