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Abstract

Long-form Table Question Answering
(LFTQA) requires systems to generate para-
graph long and complex answers to questions
over tabular data. While Large language
models based systems have made significant
progress, it often hallucinates, especially when
the task involves complex reasoning over
tables. To tackle this issue, we propose a new
LLM-based framework, TAPERA, for LFTQA
tasks. Our framework uses a modular approach
that decomposes the whole process into three
sub-modules: 1) QA-based Content Planner
that iteratively decomposes the input question
into sub-questions; 2) Execution-based
Table Reasoner that produces executable
Python program for each sub-question; and 3)
Answer Generator that generates long-form
answer grounded on the program output.
Human evaluation results on the FETAQA and
QTSUMM datasets indicate that our framework
significantly improves strong baselines on
both accuracy and truthfulness, as our modular
framework is better at table reasoning, and
the long-form answer is always consistent
with the program output. Our modular design
further provides transparency as users are able
to interact with our framework by manually
changing the content plans.

§ https://github.com/yilunzhao/TaPERA

1 Introduction

Long-form question answering (LFQA) presents
a unique challenge in natural language processing
(NLP), demanding models that not only compre-
hend the long context but also maintain factual ac-
curacy during answer generation (Fan et al., 2019;
Xu et al., 2023a). A prevalent and concerning issue
is hallucination, where models generate answers
that are coherent yet factually incorrect or irrelevant
to the input context. This problem undermines the
trustworthiness of NLP systems, posing a barrier

Within the Oil and Gas industry, Sinopec Group earns the highest profit 
- $6,205 million. However, compared to the most profitable company 
overall, Apple, the profit earned by Sinopec Group is much lower. In 
fact, Apple earns $51,306 million more profit than Sinopec Group.

1 Walmart Retail 559,151$     13,510$     2,300,000    United States
2 State Grid Electricity 386,618$     5,580$       896,360       China
3 Amazon Retail 386,064$     21,331$     1,298,000    United States
4 National Petroleum Oil and gas 283,958$     4,575$       1,242,245    China
5 Sinopec Group Oil and gas 283,728$     6,205$       553,833       China
6 Apple Electronics 274,515$     57,511$     147,000       United States
7 CVS Health Healthcare 268,706$     7,179$       256,500       United States
8 UnitedHealth Healthcare 257,141$     15,403$     330,000       United States
9 Toyota Automotive 256,722$     21,180$     366,283       Japan

10 Volkswagen Automotive 253,965$     10,104$     662,575       Germany

Employees HeadquartersRank Company Name Industry Revenue
($ Million)

Profit
($ Million)

Q: Which company earns the highest profit in the Oil and Gas industry, 
and how does it compare to the most profitable company overall?

Table Title: Top 10 Company in 2012

National Petroleum earns the highest profit in the Oil and Gas industry, 
amounting to $4,575 million dollars. However, the most profitable company 
overall, Walmart, earns $13,510 million, much more than National Petroleum.

QA-based Plan:
Q1: Which company earns the highest profit in the Oil and Gas industry?
A1: Sinopec Group earns the highest profit in the Oil and Gas industry.

Q2: How much profit does Sinopec Group earn?
A2: Sinopec Group earns $ 6,205 million in profit.

Q3: Which company earns the overall highest profit?
A3: Apple earns the overall highest profit.

Q4: How much more profit does Apple earns, compared to Sinopec Group?
A4: Apple earns $ 57,511 million in profit than Sinopec Group

Q5: How much more profit does Apple earns, compared to Sinopec Group?
A5: Apple earns $ 51,306 million more in profit than Sinopec Group

Plan-based Answer Generation

Plan-based Answer Generation

Direct Answer Generation

Figure 1: An example of long-form table QA. Answer-
ing complex questions with an end-to-end LLM-based
system poses hallucination challenges (highlighted in
Red). We propose a modular-based framework that pro-
duces a QA-based plan first, followed by generating
an answer conditioned on this plan (through generating
executable Python programs as an intermediate step).

to their real-world application in domains where
reliability is paramount, such as finance and health-
care. The hallucination issues become even more
pronounced when the task involves reasoning over
tables, e.g., long-form table question answering
(LFTQA) (Nan et al., 2022b; Zhao et al., 2023d).
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As illustrated in Figure 1, given the complex ques-
tion and numerous data points in a table, the system
must be capable of understanding the relationships
within the data and perform human-like reasoning
over the tabular content to compose the paragraph-
long answer.

This paper introduces TAPERA, aiming to en-
hance the trustworthiness of LLM-based methods
in long-form TAble QA. As depicted in Figure 2,
TAPERA employs a modular approach compris-
ing three components: (1) QA-based Content
Planner: Given a complex question, this mod-
ule generates and iteratively updates a QA-based
content plan. It controls the step-by-step reason-
ing process to shape the final answer content. (2)
Execution-based Table Reasoner: For each sub-
question in the QA-based plan, this module gener-
ates executable programs (i.e. Python programs)
to extract and process question-relevant informa-
tion from tables. (3) Answer Generator: Given
the sub-question and the executed output from the
table reasoner, this module composes a natural lan-
guage sub-answer, ensuring consistency with the
reasoner’s output. Moreover, once the entire QA-
based plan is finalized, it generates the final answer
based on the plan and all sub-answers.

TAPERA features several core advancements:
(1) Modularity. The complex task is decomposed
into multiple easier sub-tasks, which can be solved
with more tailored solutions (e.g., reasoning en-
hanced modules). (2) Faithfulness The table
reasoner first generates an executable Python pro-
gram as external tools to output question-relevant
facts, then the answer generator is applied to en-
sure the consistency between the generated answer
and the program output, which improves the faith-
fulness of generated answer. (3) Interpretability.
The system allows users for easy identification of
which sub-plan or reasoning step leads to an un-
desired final answer. Additionally, our user study
demonstrates the potential of applying user inter-
action to modify the generated plan to control and
improve the final answer.

We experiment TAPERA framework on the FE-
TAQA (Nan et al., 2022b) and QTSUMM (Zhao
et al., 2023d) datasets. Human evaluation re-
sults demonstrate that TAPERA achieves signif-
icant improvements in terms of both accuracy
and faithfulness. Specifically, TAPERA surpasses
1) the second-best system in comprehensiveness,
i.e. Blueprint (Narayan et al., 2023), by 5.4%;
and 2) the second-best system in faithfulness, i.e.

Dater (Ye et al., 2023), by 5.0%. Our human eval-
uation results further indicate the inherent limita-
tions in aligning automated metrics and human pref-
erence, consistent with previous work (Xu et al.,
2023b). In addition, we We also conduct compre-
hensive human studies, where users are allowed
to interact with the system by modifying and im-
proving the QA-based plans generated by the con-
tent planner. The results reveal that using such
user-controlled plans can further improve model
performance on those challenging questions.

Our contributions are summarized below:

• We propose TAPERA, a novel modular approach
that combines a QA-based content planner and an
execution-augmented reasoning module, aiming
to enhance the faithfulness and interpretability of
LLM-based systems in LFTQA.

• Human evaluation results on the FETAQA and
QTSUMM datasets demonstrate that TAPERA
achieves significant improvements. Moreover,
we conduct detailed analysis on each module.

• Our user study reveals that user interaction with
the plans generated by the QA-based content
planner can further refine and improve model’s
performance, highlighting the potential of user-
driven customization in LLM applications.

2 Related Work

Reasoning over Tabular Data Table reasoning
helps non-expert users interact with complex tabu-
lar data and has received significant attention. It has
several tasks, such as table question answering (Pa-
supat and Liang, 2015; Iyyer et al., 2017; Zhong
et al., 2017; Zhao et al., 2022a; Nan et al., 2022b;
Zhao et al., 2023a,b,f), table fact verification (Chen
et al., 2020b; Gupta et al., 2020), and table-to-text
generation (Chen et al., 2020a; Cheng et al., 2022b;
Nan et al., 2022a; Zhao et al., 2023c). Prior work
on table reasoning mainly pre-trains models with
joint table-text data and then finetunes over specific
table-relevant tasks (Herzig et al., 2020; Liu et al.,
2022b; Zhao et al., 2022b; Liu et al., 2022a; Jiang
et al., 2022; Cheng et al., 2022a; Xie et al., 2022),
and recent work shows LLMs also achieves compet-
itive results (Touvron et al., 2023; OpenAI, 2023;
Chen, 2023; Zhao et al., 2023e; Tang et al., 2024).
To further advance the capabilities of LLMs in table
QA tasks, research has primarily focused on two
avenues: (1) Enhancing LLMs with code execution,
which utilize code-optimized LLMs to generate ex-
ecutable programs to answer questions over tabular
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Execution-based 
Table Reasoner

Answer 
Generator

Q1: Which company earns the highest 
profit in the Oil and Gas industry?
A1: [Pending]

Q2: How much profit does that company 
earn?
A2: [Pending]

Q3: Which company earns the overall 
highest profit?
A3: [Pending]

Q4: How much profit does that company 
earn? 
A4: [Pending]

Q5 What‘s the difference in profit 
between the two mentioned companies?
A5: [Pending]

Initialization of 2nd-iteration Plan
Q1: Which company earns the highest 
profit in the Oil and Gas industry?
A1: [Pending]

Q2: Which company earns the overall 
highest profit?
A2: [Pending]

Q3: Compare these two companies.
A3: [Pending]

Initialization of 1st-iteration Plan

QA-based 
Content Planner

Q: Which company earns the highest profit in 
the Oil and Gas industry, and how does it 
compare to the most profitable company overall?

1 Walmart Retail 559,151$     13,510$     2,300,000    United States
2 State Grid Electricity 386,618$     5,580$       896,360       China
3 Amazon Retail 386,064$     21,331$     1,298,000    United States
4 National Petroleum Oil and gas 283,958$     4,575$       1,242,245    China
5 Sinopec Group Oil and gas 283,728$     6,205$       553,833       China
6 Apple Electronics 274,515$     57,511$     147,000       United States
7 CVS Health Healthcare 268,706$     7,179$       256,500       United States
8 UnitedHealth Healthcare 257,141$     15,403$     330,000       United States
9 Toyota Automotive 256,722$     21,180$     366,283       Japan

10 Volkswagen Automotive 253,965$     10,104$     662,575       Germany

Employees HeadquartersRank Company Name Industry Revenue
($ Million)

Profit
($ Million)

Table Title: Top 10 Company in 2012

Q1: Which company earns the highest 
profit in the Oil and Gas industry?
A1: Sinopec Group earns the highest 
profit in the Oil and Gas industry. 

Q2: Which company earns the overall 
highest profit?
A2: [pending] 

Q3: Compare these two companies.
A3: [pending]

Step 2: Step-by-Step answer each 

sub-question within the plan

Q1: Which company earns the highest 
profit in the Oil and Gas industry?
A1: Sinopec Group earns the highest 
profit in the Oil and Gas industry. 

Q2: Which company earns the overall 
highest profit?
A2: Apple earns the overall highest profit. 

Q3: Compare these two companies.
A3: [pending]

Q1: Which company earns the highest profit in the Oil 
and Gas industry?
A1: Sinopec Group earns the highest profit in the Oil 
and Gas industry. 

Q2: Which company earns the overall highest profit?
A2: Apple earns the overall highest profit. 

Q3: Compare these two companies.
A3: Apple is in the electronics industry, while Sinopec 
Group is in the Oil and Gas industry.

Step 1: pass sub-questions 
to answer

Step 3: Fulfil plans with 
sub-answers

Q1: Which company earns the highest profit in the 
Oil and Gas industry?
A1: Sinopec Group earns the highest profit in the Oil 
and Gas industry. 

Q2: Which company earns the overall highest profit?
A2: Apple earns the overall highest profit. 

Q3: Compare these two companies.
A3: Apple is in the electronics industry, while Sinopec 
Group is in the Oil and Gas industry.

Complete 1st-iteration Plan

Step 4: Update or 
Finalize the Plan

Execution Result

For each sub-question within 
the plan, generate executable 
Python Program

Figure 2: An illustration of TAPERA. Top: The workflow of our modular framework. The QA-based content
planner first generates a plan with QA-pairs, then Step 1-3 fills in the plan with sub-answers, and Step 4 finalizes or
refines the plan. Bottom: A running example for the first iteration of the QA-based plan generation and refinement.

data (Cheng et al., 2023; Nan et al., 2023; Kong
et al., 2024) or to locate relevant table regions con-
ditioned on a given question (Ye et al., 2023; Pat-
naik et al., 2024). While this approach is effective
for deriving a single fact from tables for short-form
answers, it struggles in LFTQA tasks that requires
a more complex information synthesis. (2) Ques-
tion decomposition, which breaks down questions
into more fine-grained components, thereby simpli-
fying the table reasoning required (Ye et al., 2023;
Nan et al., 2023). However, existing methods rely
on a single-round question decomposition, which
might not always provide sufficient evidence to
address the main question in LFTQA.

Content Planning for Text Generation Content
planning is effective in capturing and controlling
both the content and structure of generated text,
particularly for longer outputs (You et al., 2023;
Narayan et al., 2023; Huot et al., 2023). The
process of plan-based text generation typically in-
volves two distinct stages: planning an outline, and
subsequently filling in the specific details. Pre-
vious work on table-to-text generation typically
represents plans as a sequence of phrase keywords,

events, and their interactions (Puduppully et al.,
2018; Su et al., 2021; Puduppully and Lapata, 2021;
Li et al., 2023), aiming to improve the coherence
and narrative flow of generated text. However,
such plan representations are not ideally suited for
LFTQA tasks, especially in the era of LLMs. This
is because the primary objective of LFTQA is to
extract and present question-relevant information
accurately, rather than creating a narrative flow –
an aspect where LLMs already excel (Goyal et al.,
2023). This work adapts the idea of QA-based
plan (Narayan et al., 2023; Huot et al., 2023; Liu
et al., 2023a), utilizing question-answer pairs as
intermediate plans for LFTQA tasks. Our work
extends beyond previous work on QA-based plans
to table-relevant tasks and uses LLMs to iteratively
generate and refine the plans based on the feedback
(i.e., answer) from table reasoning module.

Automatic Evaluation of LFQA One primary
challenge for LFQA lies in accurately evaluating
the long-form generation. Recent work (Krishna
et al., 2021; Xu et al., 2023b; Krishna et al., 2023;
Liu et al., 2023b) indicates that there is no existing
automatic text generation metrics are predictive of
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Property FETAQA QTSUMM

Table Source Wikipedia Wikipedia

Unique Tables 1,942 424
Avg. Rows per Table 14.2 12.0
Avg. Columns per Table 5.7 6.7
Avg. Table Title Length 5.4 7.4

Avg. Query Length 14.0 22.3
Avg. Summary Length 23.3 67.8

Test Set Size (# QA Pairs) 2,003 1,078

Table 1: Basic statistics of the FETAQA and QTSUMM
test sets used in our experiments.

human preference judgments. We find the same
issue when evaluating TAPERA in LFTQA, there-
fore, we mainly use human evaluation for results.

3 Long-form Table QA Task

In this section, we first formulate the LFTQA task,
and then discuss the datasets used in our work.

3.1 Problem Formulation
The LFTQA task can be formulated as follows.
The input is a user query Q, and a table T . The
table T = W ∪ {Ti,j |i ≤ RT , j ≤ CT } has RT

rows and CT columns, with W being the table title
and Ti,j being the content in the (i, j)-th cell. The
task is to generate a paragraph-long answer1 Y =
(y1, y2, . . . , yn) given the query Q and source table
T :

Y = argmax
n∏

i=1

P (yi|y<i,Q,T ; θ), (1)

where θ denotes the parameters of a neural text
generation model, and yi denotes the i-th tokens in
the generated answer.

3.2 Evaluated Datasets
We conduct experiments and analysis on the test
sets of FETAQA (Nan et al., 2022b) and QT-
SUMM (Zhao et al., 2023d). Table 1 illustrates
the basic data statistics of these two datasets.

• FETAQA is a challenging dataset designed for
long-form question answering over tables, with
answers averaging 18.9 words. It requires mod-
els to fetch multiple entities from the given
Wikipedia table, aggregate and reason over these

1In the query-focused summarization task (Dang, 2006),
the answer Y is also named as summary of the user query.

Algorithm 1: QA-based Plan Generation and Refinement
using the TAPERA Framework

1: Input: Complex question Q, table T
2: Output: Final answer A
3:
4: P0 = {q0,0, ..., q0,n} ▷ Content planner initializes a plan

(Section 4.1)
5: i← 0 ▷ Initialize iteration counter
6:
7: while Pi is not finalized do ▷ Iterative Refinement
8: for Every sub-question qi,j in Pi do
9: eoi,j ← Table reasoner generates program over

T to obtain qi,j-relevant execution output (Section 4.2)
10:
11: ai,j ← Answer generator generates the sub-

answer using (qi,j , eoi,j) (Section 4.3)
12: end for
13:
14: Pi ← Content planner updates a new plan based on

Pi (Section 4.1)
15: i← i+ 1
16: end while
17:
18: A ← Answer generator produces a final answer (Sec-

tion 4.3)
19:
20: return A

entities, and structure the inferred information to
produce a coherent long-form answer.

• QTSUMM challenges text generation models
to perform human-like reasoning and analysis
on Wikipedia-sourced tables to produce tailored
paragraph-length answers (i.e. summaries). In
contrast to the FETAQA dataset, QTSUMM has
longer output lengths, with answers averaging
68.0 words.

4 Long-form Table QA with TAPERA

In this section, we discuss our proposed frame-
work TAPERA for LFTQA (Figure 2). Solving
LFTQA requires complex table reasoning and con-
sistent generation, both are challenging for existing
LLM-based systems, and these challenges are more
pronounced when they are entangled. Therefore,
we propose a modular framework (Andreas et al.,
2016) that decomposes the complex task into mul-
tiple sub-tasks, and adopt multiple sub-modules to
tackle each sub-task. More specifically, our frame-
work contains three main components: a QA-based
content planner, a execution-based table
reasoner, and an answer generator (Algorithm
1). Given a complex question Q, we generate
a QA-based plan that includes a sequence of
sub-questions (Section 4.1). Then for each sub-
question, we first apply table reasoner to gen-
erate an executable program to obtain question-
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relevant facts as program output (Section 4.2). Sub-
sequently, the answer generator derives a sub-
answer from the program output (Section 4.3).
However, due to the complexity of the task, we
expect our framework might fail with a single at-
tempt (Narayan et al., 2023). Thus, we adopt an
iterative refinement approach that repeats the above
process until the content planner finalizes a con-
fident QA-based plan. The answer generator
generates the final answer based on the finalized
plan and sub-answers.

4.1 QA-based Content Planner
Previous work on QA-based content generation
(You et al., 2023; Narayan et al., 2023; Huot et al.,
2023) mainly relies on task-specific models. How-
ever, they often struggle to generalize to complex
reasoning tasks. We instead adopt LLMs (Ope-
nAI, 2023; Touvron et al., 2023) as a content
planner for QA-based content plan generation
and introduce an iterative refinement pipeline to
enhance plan generation. We detail the workflow
of content planner as follows:

Plan Generation Given a complex question Q
over table T , the content planner decomposes
the question into a series of step-by-step sub-
questions. This results into an initial plan P0 (with
empty answers). The finalized plans for the FE-
TAQA and QTSUMM contain an average of 2.6
and 4.7 QA pairs, respectively.

Iterative Plan Refinement The LLMs might not
faithfully generate a consistent plan in a single at-
tempt. Additionally, a sub-question might depend
on the incorrect answer (from table reasoner
and answer generator) to the previous sub-
question, causing cascading errors. Therefore iter-
ative refinement is necessary for consistency and
accuracy. Specifically, in each iteration, after get-
ting all sub-answers, we use CoT prompting to
instruct LLMs to 1) determine whether the plan is
finalized, and 2) refine and generate a revised plan
Pi+1. If the LLMs determine that the current plan
Pi is comprehensive enough to answer the given
complex question, we terminate the iteration.

4.2 Execution-Based Table Reasoner
Given a sub-question in the current plan, the LLMs
might not generate an accurate answer end-to-end.
We therefore propose execution-based table
reasoner that generates executable programs as
an intermediate reasoning step to enhance table

reasoning. Unlike recent work in table-relevant
tasks (Cheng et al., 2023; Nan et al., 2023; Kong
et al., 2024) that uses SQL queries as programs,
we use Python programs instead. This is mainly
because 1) SQL queries are primarily designed to
interact with structured data in relational databases
but not most tables in the wild; 2) while SQL is effi-
cient for straightforward data retrieval and basic op-
erations, it becomes less intuitive and user-friendly
when dealing with complex table reasoning tasks.

Executable Program Generation Given a sub-
question and a table, we prompt execution-based
table reasoner to generate a Python program.
However, in practice, LLMs are likely to generate
programs that are not executable. In such cases,
we apply SELF-DEBUG prompting methods (Chen
et al., 2023), providing LLMs with execution error
message to instruct it to regenerate a program.

4.3 Answer Generator
The objective of LLM-based answer generator
is two-fold: 1) to provide a sub-answer correspond-
ing to the execution output from table reasoner
in each plan-refinement iteration, and 2) to generate
the final answer based on the finalized QA-based
plan. The design principle of answer generator
is not to perform new reasoning over tables, which
may introduce hallucinations. Instead, we focus
on transforming the output from table reasoner
into an long-form answer that presents coherent nar-
ratives, ensuring the content consistency between
the program and the long-form answer.

Generating Sub-Answer from Execution Output
We first execute the generated Python program over
the table to produce short-form answers, then we
prompt answer generator to generate a sentence-
long answer.

Generating Final Answer Based on Plan Once
the QA-based plan is finalized (Section 4.1), the
answer generator is applied to generate the final
answer based on the plan and all generated answers
for corresponding sub-questions.

5 Experiment

We next discuss the baselines, human and au-
tomated evaluations, implementation details and
main experimental results.

5.1 Baseline Systems
We implement the following baseline systems:
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• Zero-/One-shot Direct Answering. We prompt
LLMs to directly output the final answer based
on the given table and question.

• Chain-of-Thought (Wei et al., 2022) prompts
LLMs to generate the reasoning chain in textual
format before answering the question.

• Blueprint (Narayan et al., 2023) employs a fine-
tuned model to generate a QA-based plan for
long-form text generation. In our experiment, we
adapt the Blueprint method by prompting LLMs
to first generate the QA-based plan in a single-
round, and then prompt them again to generate
the final answer based on the plan.

• REFACTOR (Zhao et al., 2023d) employs
rule-based methods to extract several question-
relevant facts from the table. These facts are then
concatenated into the input context for the LLMs.

• Dater (Ye et al., 2023) prompts LLMs to break
down the table into smaller, question-relevant
segments, and then to decompose complex ques-
tions into sub-question-answer lists using inter-
mediate SQL queries. Finally, it assembles these
elements to compose the final answer.

We also develop three variants of TAPERA to re-
search the effectiveness of each component:

• TAPERA without Table Reasoner. In
this setting, we remove the component of
execution-based table reasoner from TA-
PERA, while keeping the rest the same.

• TAPERA without Iterative Plan Refinement.
In this setting, content planner is only applied
to generate the initial plan, with each pending
sub-answer fulfilled by table reasoner and
answer generator in each iteration.

• TAPERA without Sub-Answer Generation. In
this setting, we directly use the execution output
from table reasoner as the sub-answer.

5.2 Human Evaluation
For human evaluation, we assess the following two
dimensions:

• Faithfulness: A good answer should correctly
answer the given question. It should not contain
any unfaithful or hallucinated text.

• Comprehensiveness: A good answer should pro-
vide all the necessary information to answer the
question. Moreover, it should avoid details that
are consistent with tabular data yet irrelevant to
the given question (Potluri et al., 2023).

Each generated answer was scored from 1
(worst) to 5 (best) for each criteria, with the fi-
nal score averaged across different evaluators. It
is worth noting that we do not evaluate aspects of
fluency and coherence. This is because our prelim-
inary study has found that all the evaluated GPT-
based systems are capable of generating coherent
and grammatically correct answers. This finding is
also corroborated in the QTSUMM paper.

5.3 Automated Evaluation
Following QTSUMM, we adopt following popular
automated evaluation metrics:

• BLEU (Papineni et al., 2002) computes the geo-
metric average of the precision over output text’s
n-grams. We use SacreBLEU (Post, 2018) for
BLEU score calculation.

• ROUGE (Lin and Hovy, 2003) measures the
word overlap between the candidate and refer-
ence text. We reported F1 score for ROUGE-L.

• METEOR (Banerjee and Lavie, 2005) is based
on a generalized concept of unigram matching
between the generated text and reference.

• BERTScore (Zhang et al., 2020) measures the
similarity between the reference and generated
text using contextual word embeddings.

• TAPAS-Acc (Liu et al., 2022a) is a reference-
free metric that uses TAPAS (Herzig et al., 2020)
fine-tuned on the TabFact dataset (Chen et al.,
2020b) as backbone to evaluate the faithfulness
of generation. However, since TabFact only con-
tains single-sentence statements, the reliability
of using TAPEX-Acc for evaluating long-form
generated text remains questionable.

• AutoACU (Liu et al., 2023c) is a reference-
based evaluation system. The A2CU first extracts
atomic content units (ACUs) from the generation
and then evaluates them against reference. A3CU
is an accelerated version of A2CU that directly
computes the similarity between two text without
extracting ACUs, but with the similar evaluation
target. We use F1 score of A3CU for evaluation.

5.4 Implementation Details
We use gpt-3.5-turbo-1106 as the backbone for
all the evaluated systems. For LLM hyperparam-
eter settings, we set temperature as 0.7, Top P as
1.0, and maximum output length as 512. Following
QTSUMM, we represent tabular data in Markdown
format. In practice, we have found that GPT-*
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System Avg. Answer Length Comprehensiveness Faithfulness

FETAQA QTSUMM FETAQA QTSUMM FETAQA QTSUMM

Ground Truth 23.3 67.8

0-shot 25.6 84.0 3.86 3.70 3.84 3.37
1-shot 29.3 83.0 3.80 3.64 3.91 3.46
CoT 19.4 38.2 3.08 2.96 3.79 3.54
Blueprint 20.2 60.8 3.94 3.72 3.77 3.57
REFACTOR 32.9 86.4 3.84 3.54 3.89 3.65
Dater 22.0 43.3 3.75 3.61 3.92 3.76

ours 23.1 52.2 4.10 3.99 4.18 4.01
wo. Iterative Plan Refinement 18.3 44.1 4.06 (-0.04) 4.04 (+0.05) 3.95 (-0.23) 3.74 (-0.27)
wo. Table Reasoner 21.0 56.2 3.93 (-0.17) 3.88 (-0.11) 4.11 (-0.07) 3.82 (-0.19)
wo. Sub-answer Conversion 20.7 49.7 4.08 (-0.02) 3.91 (-0.08) 4.07 (-0.11) 3.94 (-0.07)

Table 2: Human evaluation results (Likert Scale Scoring) on the aspects of comprehensiveness and faithfulness.
Eight human evaluators were engaged to assess 250 predictions from each listed system. An exception was made
for TAPERA on QTSUMM, where we evaluated all outputs to aid the user analysis discussed in Section 6. We use
the faithfulness-level score on QTSUMM as the ranking indicator of model performance. All the evaluated systems
apply gpt-3.5-turbo-1106 as the backbone. ∗: The official implementation does not support the QTSUMM
dataset; hence, results reported here are from our independent reproduction.

System BL R-L ME BS TAcc ACU

Dater 16.6 35.2 35.5 82.9 83.2 36.3
Blueprint 17.6 38.3 45.7 88.3 86.5 48.1
CoT 19.3 39.0 47.2 85.9 92.3 51.9
0-shot Direct 20.1 39.7 49.7 89.9 90.5 54.2
REFACTOR 19.9 39.5 48.8 91.2 86.7 54.7
1-shot Direct 20.5 40.2 49.5 90.3 89.4 55.2

TAPERA 14.6 33.0 33.2 88.7 76.6 37.7
wo. Table Reasoner 14.7 34.4 33.5 88.9 78.8 39.8
wo. Iterative Plan Refine. 14.6 34.5 34.3 88.8 80.4 40.0
wo. Sub-answer Conv. 14.5 34.7 34.2 90.0 78.2 40.4

Table 3: Automated evaluation results on the QTSUMM
test sets. BL denotes BLEU, R-L denotes ROUGE-L,
BS denotes BERTScore, ME denotes METEOR, TAcc

denotes TAPAS-Acc. We use ACU as the ranking indi-
cator of model performance. The automated evaluation
results on FETAQA are shown in Table 7 in Appendix.

models can effectively understand this table format.
To ensure fair comparison, for all modules in the
baseline systems and TAPERA, we use a one-shot
sample if in-context samples are required in the
prompts (the first one provided in the official im-
plementation when multiple samples are available).
The prompt for each module of TAPERA can be
found in the Appendix.

5.5 Main Experimental Results

Table 2 illustrates the results of human evaluation;
and Table 3 and Table 7 show the automated evalu-
ation results for QTSUMM and FETAQA, respec-

tively. We draw the following conclusions:

Effectiveness of TAPERA framework Among
the evaluated systems, TAPERA achieves the
best performance in both faithfulness- and
comprehensiveness-level human evaluation,
demonstrating the effectiveness of the entire
framework. Specifically, TAPERA improves the
best baseline in comprehensiveness, Blueprint
(which is the worst among baselines in faithfulness)
by 5.4%; Similarly, TAPERA improves the best
baseline in faithfulness, Dater (one of the worst
among baselines in comprehensiveness) by 5.0%.
Moreover, the removal of any component from
TAPERA leads to a degradation in both compre-
hensiveness and faithfulness, which underscores
the necessity of each module in the system.

Mismatch between automated evaluation and
human evaluation Despite receiving the best
scores in human evaluation, TAPERA achieves rel-
atively low scores under all automated evaluation
metrics. This significant disparity between human
evaluation and automated evaluation is consistent
with prior work (Xu et al., 2023b), suggesting that
future work should focus on developing more reli-
able automatic evaluation methods.

6 Human Analysis of TAPERA

To obtain a deeper insight into the effectiveness and
potential of TAPERA, we conduct a human analy-
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Question Type Representative Question Description

Open-ended
Questions

Summarize the basic information of the episode(s) writ-
ten by Damon Lindelof

These questions require a comprehensive summary and
often have initial plans that lack clarity or specificity.

Subjective
Analysis

How did the performance of Tom Brady in terms of
passing yards during the Regular Season 2011 compare
with other quarterbacks listed in 2011?

These questions involve personal opinions or interpre-
tations, often comparing and contrasting different ele-
ments.

Ambiguous
Queries

Who were the top three scorers for the 1961-62 Michigan
Wolverines men’s basketball team and how many points
did they score?

Queries that are not clearly defined or have multiple
interpretations, leading to vague or inaccurate responses.

Segmentation
Errors

What was the overall success of the songs performed in
non-English languages in terms of placement and points
secured, and were there any notable exceptions to this
trend?

These involve errors in dividing or categorizing the ques-
tion properly, often leading to partial or incorrect analy-
sis.

Table 4: Case studies on four categories of errors from the QA-based content plan generation component. Having
human-in-the loop plan generation is a promising direction for improving on these categories.

Error Type Representative Question Explanation

Missing or Incorrect An-
swer in Complex Struc-
ture Questions

What are the top three highest mountains in
Japan in terms of their elevation in meters and
to which prefectures do they belong?

This error occurs due to the model’s inability
to accurately rank items based on a given table
or misunderstand the “top three” requirement,
leading to omission or incorrect inclusion.

Misunderstanding the
Query

Who were the top three scorers for the 1961-62
Michigan Wolverines men’s basketball team and
how many points did they score?

The model identifies the top scorers but fails to
provide detailed information (individual scores)
as requested, indicating a gap in understanding
the full scope of the question.

Misunderstanding the
Table

How did the team with the lowest conference
(Conf.) rank perform in terms of their overall
record, Conf. record, PPG, and PAG, and who
was their head coach and MVP?

The model incorrectly understands data or key
information presented in the table. This typi-
cally occurs when the model parses the table and
misinterprets numerical values, rankings, or cat-
egorical data, leading to incorrect conclusions or
predictions.

Inability to Retrieve Rel-
evant Information

Which game had the highest and lowest atten-
dance and what could possibly explain this vari-
ance?

This error occurs when the model cannot access
or process part of the required information, indi-
cating a limitation in data retrieval or hypothesis
generation.

Calculation Error What is the average duration at the peak for the
songs listed in the Adult Contemporary chart
from 1961 to 2011?

This error is due to incorrect numerical process-
ing or arithmetic operations by the program, re-
flecting a flaw in computational accuracy.

Table 5: Case studies on five categories of errors from the reasoning and answer generation modules. Having a
better reasoning-enhanced components (or having stronger LLM) can mitigate these errors.

sis on the QTSUMM dataset. Specifically, we col-
lect examples where TAPERA’s output received a
human evaluation score of 3 or lower in either faith-
fulness or comprehensiveness (234 out of 1,078
examples). For these erroneous examples, we pro-
vide human evaluators with the question, table, and
finalized QA-based plan. The evaluators are asked
to identify which module (i.e., content planner,
table reasoner, answer generator, or a combi-
nation thereof) is responsible for the errors. Among
the 234 filtered examples, 180 and 77 are marked
as errors attributable to the table reasoner and
content planner modules, respectively. Mean-
while, only 12 are marked as errors attributable to

answer generator, demonstrating that GPT-3.5
performs well in generating answers that are consis-
tent with the execution results or plans. Table 4 and
Table 5 present a comprehensive error analysis of
table reasoner and content planner, respec-
tively. In the following subsections, we discuss our
analysis of these two modules.

6.1 Analysis of Table Reasoner

The modularity feature of TAPERA allows us to
update the backbone of each component with more
powerful LLMs (i.e., gpt-4-1106-preview). We
investigate whether using more powerful LLMs as
the backbone of table reasoner can effectively
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Human-Evaluation Criteria Loss Tie Win

Faithfulness 15 20 42
Comprehensiveness 7 11 59

Table 6: Number of losses, ties, and wins for answers
generated based on the user-modified plan compared to
the original answers. We use the 77 QTSUMM examples
marked as errors attributable to the content planner
for evaluation. The display order of the two answers is
randomly shuffled to evaluators during the evaluation.

handle those erroneous examples made by a GPT-
3.5. Specifically, for 180 erroneous examples, we
repeat the same procedure with the GPT-4-based
table reasoner, providing it with the same table
and sub-questions that led to errors with GPT-3.5.
We then manually check the execution results of
the GPT-4-based table reasoner. We find that
82 out of 180 cases are successfully handled by
GPT-4. This significant improvement showcases
the vast potential of TAPERA with the continuous
advancements in LLMs.

6.2 User Study of Content Planner

The plan-conditioned answer generation offers
transparency and interpretability, as it enables users
to identify which sub-plan or reasoning step leads
to an undesired final answer. In real-world scenar-
ios, it would be beneficial to develop systems that
can satisfy users’ customized information needs
through user-model interaction. Therefore, we con-
duct a user study where human evaluators are pro-
vided with content planner-caused erroneous
examples. They are then asked to improve the plan
by modifying the sub-questions (but not the sub-
answers). Then we use the user-modified plan as
the initial plan (with all sub-answers set as pending)
and apply the same iterative plan-refinement pro-
cedure to obtain the answer. This setting ensures
that the quality of new answer is based solely on
the plan itself, rather than table reasoner. We
then manually check the quality of the newly gener-
ated answers by comparing them with the original
ones. The human evaluation results show that user
interaction with the content plan can improve an-
swer generation in both comprehensiveness and
faithfulness, as illustrated in Table 6.

6.3 Automated Evaluation Case Analysis

To gain a deeper insight into the failure cases of
automated evaluation systems for LFTQA, we con-
ducted detailed human analyses by exploring the

scenarios where automated evaluations fail. Specif-
ically, we randomly sampled 100 model output
pairs from TAPERA and 1-shot Direct on QT-
SUMM, where TAPERA received lower scores
from at least 4 out of 6 metrics but achieved better
results in human evaluations. We chose the 1-shot
Direct system for comparison because it demon-
strated the best performance in automated evalua-
tions, as shown in Table 3. We meticulously ana-
lyzed these failure cases and identified four com-
mon scenarios where existing automated metrics
tend to fall short: (1) system reveals additional
reasoning-intensive information; (2) ground-truth
answer is redundant; (3) original question is am-
biguous; and (4) ground-truth answer is low-quality
and misaligned the question. Detailed explanations
for each failure scenarios are provided in Table 8
in Appendix.

7 Conclusion

This work proposes a new modular based frame-
work TAPERA for LFTQA, which decomposes
the complex QA task into three sub-tasks: QA-
based content plan generation, execution-based ta-
ble reasoning and consistent answer generation.
Human evaluation on two benchmark datasets in-
dicate that TAPERA outperforms strong baselines
in both comprehensiveness and faithfulness. This
is because TAPERA has stronger table reasoning
capacities, and our final answer is consistent with
the table reasoning module outputs. We believe this
work provides insights for future work in advanc-
ing controllable text generation in complex tasks
that are often entangled with reasoning challenges.

Limitations and Future Work

There are still some limitations in our work: (1)
Due to computational resource constraints, we
mainly test our framework on GPT series LLMs.
This is because our preliminary analysis indicates
that few-shot learning with open-source LLMs (e.g.,
Llama-2 7B) has low performance on LFTQA and
struggles to generate executable programs. Fu-
ture work could explore on fine-tuning these open-
source LLMs on LFTQA (Zha et al., 2023; Zhang
et al., 2024; Zhuang et al., 2024). (2) Our human
study indicates that TAPERA is significantly more
faithful over all baselines, and the final answer is
always consistent with the program output. How-
ever, our answer generator module is based on
prompting LLMs and cannot avoid hallucination

12832



in theory. Replacing answer generator with tool-
augmented LLMs (Schick et al., 2023) is a promis-
ing direction to further tackle hallucination. (3) The
findings and conclusions of this paper are mainly
based on human evaluation, as none of the cur-
rent automatic evaluation metrics are predictive
of human preference judgments. A possible fu-
ture direction is to explore fine-grained evaluation
metrics that focus on different aspects of gener-
ated long-form answers. Moreover, we believe that
LLM-based evaluation can also be explored for the
LFTQA task (Liu et al., 2023d; Min et al., 2023;
Jiang et al., 2024).
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Content Planning (Question Decomposition)

### Instruction:
Given a complex question about a table, your task is to assess the number of distinct facts the question seeks. If the
question encompasses more than one fact, it necessitates deconstruction into a series of sequential sub-questions.
This process involves breaking down the complexity to address each fact individually. On the other hand, if the ques-
tion is focused on a single fact, your response should involve presenting the question as is, without further decomposition.

### Example Question:
Which song earned the highest points in the Bundesvision Song Contest 2010, and how many points did it secure?

### Example Response (in numbered list format):
1. Which song earned the highest points in the Bundesvision Song Contest 2010?
2. How many points did the song secure?

### Target Question:
{question}

### Target Response (in numbered list format):
1.

Figure 3: Given a complex question over the given table, the content planner decomposes the question into a
series of step-by-step sub-questions.

System BL R-L ME BS TAcc ACU

Blueprint 28.7 51.2 58.0 90.2 84.1 53.0
0-shot Direct 28.8 50.1 56.6 89.1 87.8 53.3
Chain-of-Thought 28.2 51.0 56.9 85.7 88.4 53.6
1-shot Direct 27.4 50.3 57.2 87.9 83.8 54.2
REFACTOR 26.2 53.6 57.2 87.4 90.2 54.8
Dater 29.8 54.0 59.4 88.2 86.3 56.8

TAPERA 29.5 53.4 58.2 86.1 87.2 55.2
wo. Table Reasoner 28.8 53.1 57.7 87.2 86.9 55.0
wo. Sub-answer Conv. 28.2 52.9 58.0 88.1 85.4 55.9
wo. Iterative Plan Refine. 28.7 53.4 56.2 85.9 86.3 55.3

Table 7: Automated evaluation results on the FETAQA
test sets. BL denotes BLEU, R-L denotes ROUGE-L,
BS denotes BERTScore, ME denotes METEOR, TAcc

denotes TAPAS-Acc. We use ACU as the ranking indi-
cator of model performance.
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Executable Python Program Generation

### Instruction:
Given the table and a related question, your task is to develop an executable Python program to process the table data
and provide the answer. The program should be designed to analyze the table contents and return the answer in string
format if it is directly available within the table. If the table does not contain the necessary information to answer the
question, the program should be programmed to return ‘None’.

### Example:
Question: Which country has won the OGAE Video Contest multiple times?
Table Title: OGAE Video Contest - Winners
Table:

"header": ["Year", "Country", "Video", "Performer", "Points", "City"],
"rows": [

["2003", "France", "\"Fan\"", "Pascal Obispo", "122", "Turkey Istanbul"],
["2004", "Portugal", "\"Cavaleiro Monge\"", "Mariza", "133", "France Fontainebleau"],
["2005", "Ukraine", "\"I Will Forget You\"", "Svetlana Loboda", "171", "Portugal Lisbon"],
["2006", "Italy", "\"Contromano\"", "Nek", "106", "Turkey Izmir"],
["2007", "Russia", "\"LML\"", "Via Gra", "198", "Italy Florence"],
["2008", "Russia", "\"Potselui\"", "Via Gra", "140", "Russia Moscow"]

]

### Example Response:

```python
def multiple_winners_in_OGAE_contest(table):

from collections import Counter

# Extract the column for countries
country_column_index = table["header"].index("City")
countries = [row[country_column_index] for row in table["rows"]]

# Count the victories for each country
victory_count = Counter(countries)

# Filter and return countries with multiple victories
multiple_victories = [country for country, count in victory_count.items() if count > 1]
return ', '.join(multiple_victories) if multiple_victories else None

```

### Target:
Question: {question}
Table Title: {table_title}
Table: {table}

### Target Response:

```python

Figure 4: Given a sub-question in QA-based plan and a table, the execution-based table reasoner generates
an executable Python program as an intermediate reasoning step to enhance table reasoning.
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Sub-Answer Generation

### Instruction:
Given a specific question along with its corresponding answer, your objective is to construct a comprehensive,
well-structured response in a single, elongated sentence. The response should be formulated directly based on the
provided answer, ensuring that it thoroughly addresses the query.

### Example QA:
Question: Which country has won the OGAE Video Contest multiple times?
Answer: Russia, France, and Belgium.

### Example Response:
Russia, France, and Belgium have each won the OGAE Video Contest multiple times.

### Target QA:
Question: {question}
Answer: {answer}

### Target Response:

Figure 5: Given the question and execution result of the generated Python program, the answer generator generate
a sentence-long answer.

Final Answer Generation

### Instruction:
Given a question and a list of relevant facts, each containing part of the information needed to answer the question, your
task is to synthesize these facts into a coherent, long sentence that fully addresses the question. The goal is to integrate
the individual pieces of information from the list seamlessly, creating a comprehensive response that encapsulates all
aspects of the question in a clear and concise manner.

### Example Question:
Which country has won the OGAE Video Contest multiple times, and what were the corresponding years, winning
songs and points scored?

### Example QA-based Plan:
Sub-Question 1: Which country has won the OGAE Video Contest multiple times?
Sub-Answer 1: Russia, France, and Belgium have each won the OGAE Video Contest multiple times.

Sub-Question 2: What were the corresponding years of their victories?
Sub-Answer 2: Russia won the contest in 2007, 2008, and 2009, France in 2003, 2011, and 2014, and Belgium in 2013
and 2017.

Sub-Question 3: What were the winning songs for each country?
Sub-Answer 3: Russia’s winning songs were “LML” in 2007, “Potselui” in 2008, and “Karma” in 2009; France’s were
“Fan” in 2003, “Lonely Lisa” in 2011, and “Tourner dans le vide” in 2014; Belgium’s were “Papaoutai” in 2013 and
“Mud Blood” in 2017.

### Example Response:
Russia, France, and Belgium have each won the OGAE Video Contest multiple times. Specifically, Russia triumphed in
2007 with "LML" scoring 198 points, in 2008 with "Potselui" scoring 140 points, and in 2009 with "Karma" scoring
142 points. France secured victories in 2003 with "Fan" scoring 122 points, in 2011 with "Lonely Lisa" scoring 96
points, and in 2014 with "Tourner dans le vide" scoring 141 points. Belgium won in 2013 with "Papaoutai" scoring 144
points and again in 2017 with "Mud Blood" scoring 184 points.

### Target Question:
{question}

### Target QA-based Plan:
{qa_plan}

### Target Response:

Figure 6: The answer generator generates the final answer based on the finalized QA-based plan.
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Failure Scenarios Example Explanation

System reveals additional
reasoning-intensive information

Question: Compare the profit information of
Sinopec Group and Apple in 2012.
Ground-truth answer: Sinopec Group earned
$6,205 million in profit in 2012, while Apple
earned $57,501 million in profit, which is much
more than Sinopec Group.

TaPERA excels at integrating additional, reasoning-
intensive information not present in the ground-truth
answers, as demonstrated by the inclusion of “approx-
imately 9 times greater than that of Sinopec Group” in
the example. This capability is attributed to its effective
content planning through a QA-based plan and enhanced
reasoning mechanisms facilitated by the Table Reasoner.
Nonetheless, the capacity of current evaluation metrics
to capture such supplementary information is limited.

Ground truth answer is redun-
dant

Question: How many aircraft models were first
introduced between 1980 and 1985, and what
are their build years?
Ground Truth: The number of aircraft models
that were initially launched within the timeframe
extending from the year 1980 up to and includ-
ing the year 1985 amounts to a total of three
distinct models. Specifically, the construction
years for these models are identified as the years
1978, 1979, and 1971 respectively.

We found that the answers generated by TaPERA are
more concise compared to the ground truth and other
LLM-based models, yet they retain all essential informa-
tion relevant to the question. This finding is supported
by Table 2 in the manuscript. The “consistency” feature
of TaPERA is key to this achievement, allowing it to pro-
duce answers that not only align with the QA-based plan
but also avoid the inclusion of any irrelevant or redun-
dant details. In real-world applications, this quality is
particularly valued, as human users often prefer answers
that are both concise and accurate.

Question is ambiguous Question: How did countries that incorporate
dual languages in their songs perform in this
competition?

Explanation: The question is ambiguous and can lead
to multiple valid answers. In such cases, LLM-based sys-
tems tend to generate more words than TaPERA, increas-
ing the likelihood of overlapping information between
the model output and the ground truth. However, recent
studies have shown that lengthy answers for long-form
QA are not always necessary, and humans generally pre-
fer concise answers that still fully address the question.

Ground truth answer is mis-
aligned with the question

Explanation: The annotated ground truth fails to fully
or accurately address the question.

Table 8: Failure cases analysis of automated evaluation systems for the LFTQA task.
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