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Abstract

To answer a question, language models of-
ten need to integrate prior knowledge learned
during pretraining and new information pre-
sented in context. We hypothesize that models
perform this integration in a predictable way
across different questions and contexts: models
will rely more on prior knowledge for ques-
tions about entities (e.g., persons, places, etc.)
that they are more familiar with due to higher
exposure in the training corpus, and be more
easily persuaded by some contexts than oth-
ers. To formalize this problem, we propose
two mutual information-based metrics to mea-
sure a model’s dependency on a context and
on its prior about an entity: first, the persua-
sion score of a given context represents how
much a model depends on the context in its de-
cision, and second, the susceptibility score of
a given entity represents how much the model
can be swayed away from its original answer
distribution about an entity. We empirically
test our metrics for their validity and reliabil-
ity. Finally, we explore and find a relationship
between the scores and the model’s expected
familiarity with an entity, and provide two use
cases to illustrate their benefits.

https://github.com/kdu4108/
measureLM

1 Introduction

Language models have displayed remarkable abil-
ities to answer factual queries about entities, sug-
gesting that they encode knowledge about these
entities learned during pretraining (Petroni et al.,
2019; Brown et al., 2020; Roberts et al., 2020; Geva
et al., 2021). For prompts that extend a question
with additional information or context, the model
can draw on both its prior knowledge and the addi-
tional context to answer the query (Kwiatkowski
et al., 2019; Joshi et al., 2017; Berant et al., 2013;
Kasai et al., 2023). While previous research has
investigated how often a model will rely on prior
knowledge over conflicting contextual information
in answering questions (Longpre et al., 2021), we

Contexts Entities Susceptibility

Persuasion

c: Homer is the
best employee of
all time.

...
Harry plays chess
with Phoebe.

The Beatles are
the best.

Homer is an actor.

Figure 1: In answering a given query, a model may be
more susceptible to context for some entities than others,
while some contexts may be more persuasive than oth-
ers (as indicated in this figure by color darkness in the
rightmost column). We introduce mutual information-
based metrics to evaluate how much impact the context
has relative to the prior knowledge of a model.

hypothesize that models will not behave identically
for all contexts and entities. For example, if a
language model is prompted with Harry hugged
Voldemort. How friendly are Harry Potter and
Lord Voldemort?, we might expect the prior knowl-
edge learned from training data describing the ri-
valry between these two characters to significantly
influence the model’s answer. However, if the
model lacks a strong prior on, say, Susie and Alia,
then we might expect its answer to be primarily
context-driven when prompted with Susie hugged
Alia. How friendly are Susie and Alia?.

We formalize this problem through the lens of
evaluating the change in a model’s answer distribu-
tion for different contexts and entities. We present
two mutual information-based metrics that allow us
to explore differences in the effect of specific con-
texts on model behavior for different entities. The
persuasion score of a given context measures how
much a model’s answer distribution is affected by
the context when prompted with a particular query
about a given entity. The susceptibility score of
a given entity measures how much the model’s
answer distribution can be swayed for a particu-
lar query about that entity, marginalized over all
contexts. Given their basis in mutual information,
our metrics are natural operationalizations of per-

1
13211

mailto:kevidu@ethz.ch
mailto:vesteinn.snaebjarnarson@gmail.com
mailto:niklas.stoehr@inf.ethz.ch
mailto:jw2088@cam.ac.uk
mailto:schein@uchicago.edu
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/kdu4108/measureLM
https://github.com/kdu4108/measureLM


suasion and susceptibility. Furthermore, we offer
empirical evidence of the validity and reliability of
these measures by comparing them against simi-
lar metrics and showing their robustness to para-
phrases and different samples.

To study how language models behave for dif-
ferent contexts and entities, we create a syn-
thetic dataset of queries covering 122 topic ar-
eas extracted from the YAGO knowledge graph
(Suchanek et al., 2007), entities extracted from
YAGO and generated with GPT-4 (OpenAI, 2023),
and contexts constructed with different qualities,
e.g., relevancy and assertiveness. We apply our new
metrics to Pythia models ranging from 70m to 12b
parameters (Biderman et al., 2023) to find evidence
that relevant contexts are consistently more persua-
sive than irrelevant ones, and assertive contexts are
more persuasive than less assertive ones for yes–no
questions. In a deep dive into one model, we find
evidence that entities with high expected familiar-
ity, as measured by both training data frequency
and entity degree statistics in the YAGO knowledge
graph, have lower susceptibility scores.

We further conduct case studies to show how
these metrics could be useful in applied settings. In
a study on friend–enemy stance measurement, we
find evidence that enemy duos are less susceptible
than friend duos. Applying our metrics to gender
bias, we find evidence for a difference in suscepti-
bility between stereotypically masculine and fem-
inine names for gender-biased contexts. Through
this, we show how our proposed metrics can be
used to better analyze the effects of context and
prior knowledge, with the potential for application
toward greater control over model behavior.

2 Context and Prior Knowledge

Much prior work has noted that language models
develop biases about entities during training and
investigated the tension between this entity bias
and additional information provided in the context.

2.1 Entity Bias

Loosely defined across studies as model bias from
spurious correlations between entity mentions and
a target characteristic in the training data, entity
bias has been mainly examined in relation extrac-
tion (RE), where a model extracts relationships
between entities from text (Zelenko et al., 2002;
Zhou et al., 2005). Different studies on RE have
attempted to either mitigate (Zhang et al., 2017,

2018; Peng et al., 2020; Wang et al., 2022) or
leverage (Yamada et al., 2020; Zhou and Chen,
2022) entity bias for improved performance on the
task. Wang et al. (2022) note that entities can carry
both useful semantic information about their roles,
e.g., whether the entity is a person or a place, and
spurious information which can bias the model to-
ward relations not mentioned in the target sentence,
e.g., the model may link Switzerland with the
relation countries_of_residence at inference time
for a sentence that does not mention this relation,
due to their frequent co-occurrence in the training
data. Additional studies on machine reading com-
prehension (MRC) tasks, e.g., SQuAD (Rajpurkar
et al., 2016), TriviaQA (Joshi et al., 2017), and
NaturalQuestions (Kwiatkowski et al., 2019), have
found substituting different entity names can result
in meaningful changes in model predictions and
overall evaluation performance (Yan et al., 2022).

2.2 Context and Entity Bias

The existence of entity bias naturally raises the
question of how it interacts with context to shape
a model’s response. Several papers (Longpre et al.,
2021; Chen et al., 2022; Xie et al., 2023) approach
this by inducing and exploring knowledge
conflicts, where a context preceding a query
proposes information that conflicts with a model’s
prior knowledge about that query. They measure
the model’s reliance on pretrained entity bias and
context by computing the memorization ratio:
the proportion of knowledge conflict examples
for which the model maintains its answer from
prior knowledge. Pezeshkpour (2023) measures
a model’s prior knowledge of a fact by comparing
the entropy of a queried model’s answer distri-
bution before and after stating the fact in context.
Several studies further propose interventions to
reduce entity bias and favor in-context information.
These approaches include prompting (Zhou et al.,
2023; Onoe et al., 2023), modifying training data
(Wang et al., 2023), fine-tuning (Li et al., 2023),
and neuron-level interventions (Yu et al., 2023) at
inference time.

However, the metrics used to quantify model
reliance on context and entity bias in these
papers—excepting Pezeshkpour (2023)—are
limited in several ways. First, most previous work
does not develop entity-specific or context-specific
metrics for the strength of the entity bias or context
persuasiveness. Instead, their metrics produce only
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a single number to summarize the model’s overall
reliance on entity bias. Second, their setups are
limited to adversarial cases in which a context is
chosen to go against the entity bias. Indeed, we
may well wish to measure the interplay of context
and entity bias in other cases, such as when context
reinforces entity bias or when they do not clearly
disagree. Therefore, we seek to define a metric
that measures how much the model depends on a
given context or entity with rigorous, theoretically
grounded interpretations.

3 Our Formalization

We now formalize the problem setting in which we
define metrics for the susceptibility of an entity and
the persuasiveness of a context for a given model.
Let Σ be an alphabet. Consider a language model
pM over Σ, i.e., pM is a distribution over the Kleene
closure Σ∗. Furthermore, we assume that pM was
estimated from a corpus D ⊂ Σ∗. Let E ⊂ Σ∗ be
the subset of strings that could correspond to string
representations of entities.1 Let Q = {qn}Nn=1 be a
set of N slotted query templates of type qn : E →
Σ∗ that fill the slot with the argument to each qn.
We can think of a query template q ∈ Q as slotting
an entity into a query, e.g., slotting the entity Slove-
nia into the query template q(e) = The capital of
e is produces the string The capital of Slovenia is.

Now, consider three random variables. First, let
C be a Σ∗-valued random variable that stands for
a context. Second, let A be a Σ∗-valued random
variable whose values are answers. Let E be a E-
valued random variable. The pushforward q(E),
then, is a Σ∗-valued random variable over slottings
of entities according to query q ∈ Q. The random
variables C, q(E) and A are jointly distributed
according to the following probability distribution

p(C = c, q(E) = q(e), A = a)
△∝ pM(cq(e)a),

(1)
where cq(e)a ∈ Σ∗ is string concatenation. To
formalize persuasion and susceptibility, we make
use of the joint distribution p heavily in the
proceeding subsections.

3.1 Persuasion Score
For each context c that is prepended to a query tem-
plate with a given entity slotted in, q(e), we wish to

1In practice, an entity can have different verbalizations,
e.g., Sherlock and Sherlock Holmes. . And, whether a specific
string refers to an entity may very well depend on the context
in which it occurs. Thus, our set E is an approximation at best.

assign a persuasion score ψ to represent how suc-
cessful that context is at altering a model’s answer
distribution. This score depends on the specific
queried entity e, because contexts themselves are
often entity-dependent. Intuitively, a context’s per-
suasion score should measure how much the proba-
bility distribution of possible answers changes, av-
eraged across all possible answers. More precisely,
we define our persuasion score ψ(c, q(e)) as the
half-pointwise mutual information (half-PMI) be-
tween the context c and the answer random variable
A, conditioned on the fixed query about an entity:

ψ(c, q(e)) ≜ I(C = c;A | q(E) = q(e))

=
∑

a∈Σ∗
p(a | c, q(e)) log p(a | c, q(e))

p(a | q(e))
= KL(p(A | c, q(e)) || p(A | q(e))),

(2)

where p(A | c, q(e)) and p(A | q(e)) can be
derived by marginalizing and conditioning Eq. (1).

The persuasion score of a context can then be
interpreted as the degree (in nats) to which the
context was able to change the model’s answer
distribution when prepended to a query. When the
persuasion score is at its lower bound of 0 nats, it in-
dicates the context is completely unpersuasive, i.e.,
it did not change the model’s answer distribution at
all. Contexts with higher persuasion scores change
the answer distribution more, which is consistent
when viewed through the lens of KL-divergence.2

3.2 Susceptibility Score

For a given query template applied to an entity
q(e), we further wish to assign a susceptibility
score χ to q(e) which represents how easy it is to
change a model’s answer distribution. Intuitively,
the susceptibility score should measure how much
a model’s answer distribution to a query changes
when prompted with additional context, averaged
across all possible contexts and answers. More pre-
cisely, we define the susceptibility score χ(q(e))
as the mutual information between the context and
answer random variables, conditioned on a fixed
query about an entity:

χ(q(e)) ≜
∑

c∈Σ∗
p(c)ψ(c, q(e))

= I(C;A | q(E) = q(e)),

(3)

2We include details on further equivalencies of half-PMI
and other concepts in information theory in App. A.
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where p(c) is the marginal distribution over
contexts. Equivalent to the difference in entropy
H(A | q(E) = q(e)) − H(A | C, q(E) = q(e)),
the susceptibility score represents the reduction in
answer distribution uncertainty (in nats) when a
query is preceded by a context. A high suscepti-
bility score means the model is highly influenced
by context for the query about that entity, with
its upper bound of H(A) indicating that context
fully determines the answer. A low score indicates
the model’s response is robust to context, with its
lower bound of 0 indicating no influence of context
on the answer distribution. We can use suscepti-
bility to answer the question “How much does the
model’s answer depend on its entity bias?” with an
information-theoretically grounded, interpretable
scale based on the model’s full behavior.

3.3 Entity-Independent Persuasion Score

Persuasion scores can be further marginalized over
entities. Analogous to our definition of the suscep-
tibility score, we define the entity-independent
persuasion score of a context as how much the
log probability distribution of possible answers
changes, averaged across all possible entities and
answers. We describe this further in App. B.

4 Experiments

We now provide empirical evidence to further vali-
date our metrics, characterize model behavior using
the susceptibility and persuasion scores, and inves-
tigate reasons behind differences in susceptibility
scores for different entities.

4.1 Setup

For each of the 122 different relations from the
YAGO knowledge graph, we collect 100 entities3

and construct 600 random contexts from relation-
specific context templates such that each entity is
mentioned in 6 contexts. The 600 contexts are
evenly distributed between assertive,4 base,5 and
negation6 context types. We construct four query
forms of each relation: two closed questions, i.e.,
yes–no, and two open questions.

Using these samples, we compute persuasion
scores for each context according to Eq. (2) and

350 are real entities (e.g., Adele) sampled from YAGO,
and 50 are fake entities (e.g., Udo König) of the same entity
class (e.g., Person) generated with GPT-4 (OpenAI, 2023).

4E.g., Definitely, the capital of {entity} is {answer}.
5E.g., The capital of {entity} is {answer}.
6E.g., The capital of {entity} is not {answer}.

susceptibility scores for each entity according to
Eq. (3) for each of the four query forms for six
Pythia models of different sizes7 trained on the
deduplicated Pile (Wolf et al., 2020; Dettmers et al.,
2022; Biderman et al., 2023). Due to computational
constraints, we approximate the model’s answer
distribution with the next-token distribution over
the model’s vocabulary.8 The detailed setup can be
found in App. C.

4.2 Empirically Validating Our Metrics

4.2.1 Estimating Scores
Because persuasion and susceptibility scores both
involve a countably infinite sum, we opt for a
stochastic approximation scheme. Specifically, we
construct a Monte Carlo estimator. We sample from
a narrower set of constructed contexts and approxi-
mate the answer distribution with the next token dis-
tribution over the model’s vocabulary, as described
in §4.1. We take a sample size of 600 contexts.
While the Monte Carlo approximation itself results
in a consistent estimator, the additional approxi-
mations mean we do not have a guarantee on the
quality of the approximation as a whole. In Fig. 4,
we exhibit the variance of our estimator across three
random seeds, i.e., sampled sets of context.

4.2.2 Validating Persuasion Scores
Convergent Validity. According to existing mea-
surement modeling methods (Loevinger, 1957;
Messick, 1987; Jackman, 2008; Hand, 2004; Quinn
et al., 2010; Jacobs and Wallach, 2021), observing
a relationship between a new metric and existing
ones would serve as additional evidence that the
metric is meaningful. To this end, we explore
whether contexts with higher persuasion scores
tend to more successfully convince the model to
agree with the context. Using the Pythia-6.9b-
deduped model, we generate an answer for each
prepended context to a query–entity pair from §4.1
and use simple string matching to map the an-
swer to whether it agrees with the context, the
original answer, or neither. We then apply a per-
mutation test (k = 10000, α = 0.05 with the
Benjamini–Hochberg (BH) correction (Benjamini
and Hochberg, 1995)) for whether contexts that
elicited context-concordant answers have higher
persuasion scores than those that did not alter the

770m, 410m, 1.4b, 2.8b, 6.9b, 12b (8-bit quantized)
8While it would be more precise to estimate the answer

distribution by repeatedly sampling many model outputs, this
is very computationally expensive.

4
13214



Original Context Other
Sampled answer type

0

2

4

M
ea

n 
pe

rsu
as

io
n 

sc
or

e

open

Original Context Other
Sampled answer type

0.00

0.05

0.10

0.15

M
ea

n 
pe

rsu
as

io
n 

sc
or

e

closed
Persuasion scores vs sampled answer

Figure 2: The x-axis represents bins for whether the
model’s answer agreed with its prior, the context, or
neither. For open (left) queries, the persuasion scores of
contexts that persuaded the model to output an answer
matching the context (Context) are higher than those of
contexts that did not (Original, Other).

model from the original answer for each of the 122
query topics. Within a query topic, we run separate
tests for open and closed queries, since the entropy
of the answer distribution for closed queries tends
to be much lower than the entropy for open queries.
We find that for 59% of open queries, contexts
that persuade the model to output the in-context
answer have significantly higher persuasion scores
than non-persuasive ones. Curiously, this behavior
holds for only 34% of closed queries. We discuss
this surprising result more in §6. We further show
a summary of the mean persuasion scores for the
different kinds of elicited answers in Fig. 2.

Construct Reliability. To show construct reli-
ability, we provide evidence that persuasion scores
do not strongly vary for inputs that differ only in
phrasing, i.e., query form. For example, the persua-
sion score of The capital of Slovenia is Oz. should
be similar when prepended to either Is Slovenia’s
capital Ljubljana? or Is Ljubljana the capital of
Slovenia?. We compute persuasion scores using
the setup from §4.1 with two query forms for both
closed and open queries, keeping contexts that
appeared for the same query and entity for all seeds.
We then compute the variance across the query
forms to test for reliability. Fig. 4 shows strong
evidence that the metric is reliable. The variance
is very low across different closed query forms, as
expected. While open query forms have higher vari-
ance, this is not unexpected because the question-
answering query form, e.g., Q: What is the capital
of Slovenia?\nA: is more specific than the sentence-
completion form, e.g., The capital of Slovenia is,
which has a broader set of plausible answers.
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Figure 3: Susceptibility score (y-axis) against the MR di-
vided into 5 bins between 0 and 1 (x-axis) for all entities
and queries. The opacity represents the proportion of
points in each bin. For both open queries (•) and closed
queries (•), we see a decreasing upper bound between
the MR and susceptibility score. While the quartiles
of the open queries generally decrease (except for the
lowest bin), the opposite occurs for closed queries.

4.2.3 Validating Susceptibility Scores
Convergent Validity. We compare susceptibility
scores to per-entity memorization ratio (MR)9 as
further evidence for the meaningfulness of our
metric, using the setup from §4.1 for the Pythia-
6.9b-deduped model. Fig. 3 shows a decreasing
upper-bounding relationship between susceptibility
scores and MR for both open queries and closed
queries. While not a straightforward correlation,
this pattern supports the convergent validity of
susceptibility scores and can be explained by the
scores’ nature of measuring a difference in entropy.
That is, if the model’s answer was often changed
(low MR), this could correspond to a wide range
of entropy change (low or high susceptibility),
depending on the model’s confidence without
the context. If the model’s answer was mostly
unchanged (high MR), the entropy likely remained
similar (low susceptibility). We discuss these
results further in App. D.2.

Construct Reliability. Following the setup used
in §4.2.2, we consider the same two query forms
for both open and closed questions to test for
reliability (low variance) for susceptibility scores.
Fig. 4 shows strong evidence for the reliability of
susceptibility scores. Similarly to the persuasion
scores, the variance for both open and closed
queries is very low across closed query forms;
open query forms have higher variance because
they have meaningfully different possible answers,
as discussed in §4.2.2.

9Adapted from Longpre et al. (2021) to apply on a per-
entity basis and describe it in more detail in App. D.
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Figure 4: Summarizing across all 122 queries, we dis-
play the variance of susceptibility scores (blue) and
persuasion scores (orange), across three random seeds
(left) and across two query forms (right), and stratified
for both closed and open queries (x-axis). The variance
is very low across random seeds for both query types,
and, for closed queries, across the specific query form.
Variance is high for the different open query forms.

4.3 What Makes a Context Persuasive?

To better characterize model behavior with
persuasion scores, we explore several tests for
qualities that might distinguish more persuasive
contexts from less persuasive ones: relevance,
assertiveness, and negation.

4.3.1 Relevance

Experiment Setup. We use the setup described
in §4.1. For the relevance test, we consider a rel-
evant context to be one that mentions the queried
entity, and an irrelevant context as one that does not.
We hypothesize that relevant contexts should be
more persuasive than irrelevant ones. For each of
the 122 queries, we find the mean persuasion score
of the relevant contexts and irrelevant contexts and
use a permutation test to determine whether the
mean persuasion score for relevant contexts (across
entities) is higher than the mean persuasion score
for irrelevant contexts, using a significance level of
α = 0.05 with the BH correction.

Results. As seen in Fig. 5 (▼), across most model
sizes and relations, relevant contexts are signif-
icantly more persuasive than irrelevant contexts.
Specifically, depending on the model, 95–100%
of open queries and 83–100% of closed queries
showed a significant result. We also see a trend
in which, as model size increases, so too does the
degree to which relevant contexts are more per-
suasive, as measured by the mean effect size. We
summarize the significance test results and effect
sizes for all models and queries in App. E.

4.3.2 Assertiveness
Experiment Setup. Using a similar setup to
§4.3.1, we explore whether assertive contexts are
more persuasive than base ones by testing whether
the mean persuasion score of the former group is
greater than that of the latter for each query.

Results. Fig. 5 (■) shows that consistently across
model sizes, assertive contexts tend to be more
persuasive than base contexts for closed queries
but not for open queries. Moreover, assertive
contexts are most persuasive for medium-sized
models such as 1.4b and 2.8b. We hypothesize that
smaller models may be less persuaded by assertive
contexts because they may be worse at integrating
context into their answers. Larger models may
be less persuaded because of their stronger prior
knowledge/lower susceptibility to context, whether
assertive or not. We highlight the significance
test results and effect sizes for all queries for the
Pythia-6.9b-deduped model in Fig. 6 and other
models in App. E.

4.3.3 Negation
Experiment Setup. We use the same setup as
in §4.3.2 and explore whether negation contexts
differ in persuasiveness from the base ones, using
a two-tailed permutation test for each query.

Results. The permutation tests suggest evidence
for a significant difference in 88% of the closed
queries and 74% of the open queries for the
Pythia-6.9b-deduped model. However, there is no
consistent directional pattern; from Fig. 7, we see
that negations are significantly more persuasive for
some queries while significantly less persuasive
for others. App. E shows a similar pattern for
other models. Fig. 5 (▲) also shows that the
smallest model is the most sensitive to being
persuaded differently by negation vs base contexts.
For closed queries, this may be due to potential
spurious correlations or token biases between, i.e.,
seeing the word not and the model’s probability
of outputting No.

4.3.4 Comparing Context Qualities
For all models on open queries, the relevance of a
context has the greatest effect on persuasion score
compared to assertiveness or negation, as measured
by effect size. This is consistent with our intu-
ition that the model should be more sensitive to
whether the queried entity is mentioned in the con-
text than to other context features. However, we
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Permutation test results across models and comparisons
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Figure 5: The plots in Fig. 5a indicate the proportion of queries for which (▼) relevant contexts are significantly
more persuasive than irrelevant contexts, (•) unfamiliar entities are significantly more susceptible than familiar
entities, (■) assertive contexts are significantly more persuasive than base contexts, and (▲) negation contexts are
significantly more persuasive than base contexts. We further provide the average effect size over queries of those
comparisons in Fig. 5b. We highlight specific findings in §4.3 and §4.4.
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Figure 6: These plots show, for the Pythia-6.9b-deduped
model, the effect size between base and assertive
contexts (y-axis) and p-values (red is significant, blue
is insignificant) of the null hypothesis that persuasion
scores of assertive contexts are not greater than those
of base contexts, for each of the 122 queries (x-axis).
The evidence suggests that assertive contexts are
significantly more persuasive than assertive contexts
for most closed queries, but few open queries.

can see in Fig. 5 that for medium-sized models on
closed queries, the other context comparisons have
stronger effect sizes, e.g., assertiveness and nega-
tion for the 2.8b model. This could be explained by
potential spurious correlations/token biases associ-
ating, i.e., the word not with the model outputting
No or the word definitely with outputting Yes.

4.4 What Makes an Entity Susceptible?

4.4.1 Familiar vs Unfamiliar Entities

We hypothesize that the model should have lower
susceptibility scores for entities encountered during
pretraining compared to unfamiliar, fake entities.

Experiment Setup. We use the setup described
in §4.1 to compute susceptibility scores for known
and unknown entities. We use a permutation test
with α = 0.05 and the BH correction to test
whether the known real entities are less suscepti-
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10 3
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10 1

100

Effect sizes for negation vs base contexts

Figure 7: These plots show, for the Pythia-6.9b-deduped
model, the effect size (y-axis) and p-values (red is
significant, blue is insignificant) of the null hypothesis
that persuasion scores of negation contexts are the same
as those of base contexts, for each of the 122 queries
(x-axis). While many queries are significant, some
queries exhibit a significantly positive effect while
others exhibit a significantly negative one.

ble than the unknown fake entities.10 The detailed
setup can be found in App. C.

Results. For the Pythia-6.9b-deduped model,
we find that with 73

122 queries (open questions) and
61
122 queries (closed questions), familiar entities
have significantly lower susceptibility scores than
unfamiliar fake entities. We conjecture that for
the remaining queries, the model may not have
strong prior biases about the sampled entities for
these queries. Indeed, further analysis (App. F.1)
finds some evidence supporting the hypothesis
that queries with smaller effect sizes or less
significant p-values feature less familiar entities,
as we find a small correlation between effect size
and entity frequency in the training set. Fig. 8
shows the distribution of susceptibility scores for
real and fake entities for an example query with
a particularly strong effect size.

10We filter out fake entities that appear in the training data
to better represent unknown entities in our analysis.
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Figure 8: The officialLanguage query topic exhibits a
particularly strong effect in which real entities (•) have
lower susceptibility scores than fake entities (•) for open
questions. This plot shows susceptibility scores for 100
real and fake entities, for two different query forms: (a)
Q: What is the official language of {entity}?\nA:, and
(b) The official language of {entity} is.

Generally, as model size increases, so too does
the significance and effect size of unfamiliar
entities being more susceptible than familiar
entities, as seen by the generally increasing blue
lines (•) in all four plots in Fig. 5. This trend is
consistent with our expectation that bigger models
have stronger prior knowledge of entities and are
therefore less susceptible to familiar entities. The
smallest model (70m) does not have a significant
difference in susceptibility between familiar and
unfamiliar entities, which could indicate it is too
small to have strong prior knowledge.

4.4.2 Degrees of Familiarity

Training Data Frequency. Since language
models are parameterized with knowledge from
their training corpora, we hypothesize that the
model is less susceptible for entities with which
it is more familiar, i.e., more frequently occurring
in the training data. We investigate this relation-
ship between the Pythia models’ behavior and
frequency statistics in the Pile dataset on which
they were trained (Gao et al., 2020). To capture the
model’s familiarity with an entity–answer relation,
we count the number of co-occurrences between
the entity and its corresponding answer within a 50-
word window. We compare the susceptibility score
to this co-occurrence frequency and find a signif-
icant correlation (Spearman ρ = −0.23) for the
Pythia-6.9b-deduped model. We see in Fig. 9 that
as the training data frequency increases, the suscep-
tibility scores’ upper bound decreases. This trend
is shared across all model sizes (see App. F.2).
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or

e
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101 103
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0.00

0.05

0.10
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Sc
or

e

Closed

Susceptibility Score to Frequency

Figure 9: For both open (•) and closed (•) queries, the
upper bound of the mean susceptibility scores for entity-
answer pairs decreases as co-occurrence frequency in
the Pile increases (Pythia-6.9b-deduped).

Entity Degree in a Knowledge Graph. Training
data can be noisy, difficult, and expensive to search
through for entity co-occurrences and more com-
plex frequency statistics. Knowledge graphs offer
a more precise alternative as they represent entities
and relations extracted from common corpora like
Wikipedia in a structured way. For example, within
the pretraining data, it is very difficult to identify
the number of different answers with which an
entity will co-occur within the context of a specific
relation. However, with a knowledge graph, we
can easily identify the exact number of objects with
which an entity might share a given relation. Thus,
we explore the relationship between the relation-
dependent degree of an entity in a knowledge graph
and the susceptibility score. Like with training
data frequency, we find that comparing against
this degree yields a similar-looking plot with a
decreasing upper bound between susceptibility
scores and the degree. Such a trend suggests that
unfamiliar entities have the potential to be highly
susceptible, while very familiar entities tend to
have lower susceptibility. In App. F.2, we show
this trend is shared across all model sizes and
provide our methodology in more detail.

5 Applications

We examine how knowing susceptibility scores can
be useful for analyzing model behavior in two dif-
ferent applications. Here, we highlight one key
finding per application; however, we emphasize
that future work can conduct a more detailed anal-
ysis of these and other applications.

Social Sciences Measurement. Social scientists
use large language models (LLMs) for annotating
data and descriptive data analysis, yet such use may
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Figure 10: Susceptibility scores for different entity-pairs
which are either friends or enemies. Enemy duos (•)
appear to have lower susceptibility than friend duos (•).

inadvertently incorporate entity biases and skew
model behavior (Ziems et al., 2024; Gilardi et al.,
2023; Zhang et al., 2023; O’Hagan and Schein,
2023). To better contextualize model annotations
for a case study on friend–enemy stance detection
(Choi et al., 2016; Stoehr et al., 2023), we aim to
understand how susceptibility scores may differ
between friend and enemy-based entity pairs
for the query The relationship between {entity1}
and {entity2} is, e.g., are famous friend-based
relationships more susceptible than enemy-based
relationships? From Fig. 10, we see that with the
Pythia-6.9b-deduped model for two specific query
forms, enemy duos are less susceptible than friend
duos, which can inform social scientists that a
model’s annotation for friend pairs may be more
easily influenced by the context than enemy pairs.
We provide more details in App. G.

Exploring Gender Bias. Since higher suscep-
tibility scores indicate weaker induced biases
for entities, we conjecture that this can relate
to being underrepresented in the training data.
Based on this, we consider how the susceptibility
score can be used to study gender bias in LLMs.
Using GPT-4, we collect stereotypically biased
contexts, gendered names, and neutral queries
and run several experiments to identify gender
discrepancies in susceptibility scores; see App. G
for full details. We highlight a result where
masculine names have a higher susceptibility than
feminine names when swapping the genders in
the stereotypical contexts, as seen in Fig. 11. This
could indicate that the model is more surprised
to see contexts claiming men follow feminine
stereotypes, and therefore could suggest less
representation of feminine stereotypes in the
training data than masculine ones.

M M* F F*
context

0.18

0.20

0.22

0.24

sc
or

e

Susceptibility Scores from Stereotypes

Figure 11: Susceptibility scores for the gendered names
(masculine (•), feminine (•)) over the stereotypical con-
texts. M and F are the original stereotypes, and M* and
F* correspond to the swapped genders.

6 Discussion and Conclusion

We have made the case that the persuasion score
and susceptibility score are both valid and reliable
in measuring their respective constructs, following
a well-established measurement modeling frame-
work. Throughout our experiments, we find a
common theme in the results: there is a strong,
negative, possibly linear relationship between
the upper bound of the susceptibility score and
(a) the entity’s memorization ratio (Fig. 3), (b)
the log-co-occurrence frequency in the training
data (Fig. 9), and (c) the log-relation-dependent
degree in a knowledge graph. That is, as each
of those three values increases, we see a clear
pattern indicating that the highest susceptibility
scores tend to decrease. This is consistent with
our hypothesis that the induced bias of an entity
increases for a model as the model’s expected
familiarity with the entity increases. Furthermore,
we find a difference in behavior between scores
for open and closed queries; while in many
experiments, we see similar patterns between the
two, susceptibility and persuasion appear to have
a stronger relationship with memorization ratio for
open queries, while assertive contexts appear to
be significantly more persuasive than base contexts
primarily for closed queries. This difference is a
surprising phenomenon that warrants future study;
we hypothesize closed queries may behave this
way due to common token biases (with its output
space of Yes and No) or the influence of mentioning
both an entity and an answer in the query. Finally,
while we applied these metrics to analyze model
behavior in two case studies, in future work we
aim to apply them to unearth new perspectives
in other context and prior knowledge-dependent
problems such as retrieval-augmented generation,
model editing and control, and few-shot learning.
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Limitations

We face some technical limitations in executing
the empirical aspects of this work. First, while §3
defines the output space of A as the set of all pos-
sible outputs Σ∗, in practice, it is computationally
expensive to estimate that probability distribution.
Instead, we look only at the model’s probability dis-
tribution of the next token, which could be a noisy
signal, especially in cases where the answer sug-
gested by a context and the answer suggested from
prior knowledge share the same first token. Second,
it is difficult to go through the whole Pile to count
answer–entity co-occurrences without noise. Third,
the scores depend on the sampled contexts, which
may not be representative of all applications.

Ethics Statement

As LLM capabilities grow more advanced and their
usage proliferates throughout the real world, we
acknowledge that their development can exacer-
bate risks to people, especially those historically
underrepresented or misrepresented to these mod-
els. Our work aims to make model behavior more
transparent by providing a new tool to analyze the
interaction between context and prior knowledge
in LMs, which is especially important as people
interact with them in chat, question-answering, and
other prompt-based settings. We foresee no particu-
lar ethical concerns and hope this paper contributes
to developing tools that can identify and mitigate
ethical concerns in the future.
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A A Primer on Half-pointwise Mutual Information

Half-pointwise mutual information (HPMI) is a non-standard concept. There is, for example, no mention
of it in standard references on information theory (Cover and Thomas, 2006). In this brief primer, we
give various properties of HPMI and show how it relates to other concepts in information theory. Given
random variable X over the discrete space X , random variable Y over the discrete space Y , and x ∈ X ,
the half-PMI of X = x, Y is defined as:

HPMI(X = x;Y ) ≜
∑

y∈Y
p(y | x) log p(y | x)

p(y)
(4)

such that

E
x∼X

[HPMI(X = x;Y )] = E
x∼X


∑

y∈Y
p(y | x) log p(y | x)

p(y)


 (5a)

=
∑

x∈X

∑

y∈Y
p(x)p(y | x) log p(y | x)

p(y)
(5b)

=
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(x)p(y)
(5c)

= MI(X;Y ) (5d)

We now state and prove three Propositions about HPMI.
Proposition 1. Given random variable X over the discrete space X , random variable Y over the discrete
space Y , and x ∈ X , then:

HPMI(X = x;Y ) = H(X = x)−H(X = x | Y ) (6)

Proof.

HPMI(X = x;Y ) ≜
∑

y∈Y
p(y | x) log p(y | x)

p(y)
(7a)

=
∑

y∈Y
p(y | x) log p(x, y)

p(x)p(y)
(7b)

=
∑

y∈Y
p(y | x) log p(x | y)

p(x)
(7c)

= −
∑

y∈Y
p(y | x) log p(x) +

∑

y∈Y
p(y | x) log p(x | y) (7d)

= − log p(x) +
∑

y∈Y
p(y | x) log p(x | y) (7e)

= H(X = x)−H(X = x | Y ) (7f)

Note that to get from Eq. (7e) to Eq. (7f), H(X = x | Y ) ≜
∑

y∈Y p(y | x) log p(x | y) because

E
x∼X


∑

y∈Y
p(y | x) log p(x | y)


 =

∑

x∈X

∑

y∈Y
p(x, y) log p(x | y) (7g)

=
∑

x∈X

∑

y∈Y
p(x, y) log

p(x, y)

p(y)
(7h)

= H(X | Y ) (7i)

■
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Proposition 2. Given random variable X over the discrete space X , random variable Y over the discrete
space Y , and x ∈ X , then:

HPMI(X = x;Y ) = Hx(Y )−H(Y | X = x) (8)

where Hx(Y ) ≜ −∑
y p(y | x) log p(y) is the pointwise cross-entropy between X = x and Y .

Proof.

HPMI(X = x;Y ) ≜
∑

y∈Y
p(y | x) log p(y | x)

p(y)
(9a)

= −
∑

y∈Y
p(y | x) log p(y) +

∑

y∈Y
p(y | x) log p(y | x) (9b)

= Hx(Y )−H(Y | X = x) (9c)

■

Notably, HPMI(X = x;Y ) ̸= H(Y ) − H(Y | X = x). Furthermore, while the decomposition of
mutual information into a difference in entropies is symmetric, i.e., H(X)−H(X | Y ) = H(Y )−H(Y |
X), this shows that half-pointwise mutual information is not, i.e., H(X = x) − H(X = x | Y ) ̸=
H(Y )−H(Y | X = x).
Proposition 3. Given random variable X over the discrete space X , random variable Y over the discrete
space Y , and x ∈ X , then:

HPMI(X = x;Y ) = KL (p(Y | x) || p(Y )) (10)

Proof. Half-PMI is equivalent to KL (p(Y | x) || p(Y )) by definition. ■

Corollary 1. Half-PMI is nonnegative.

Proof. Since half-PMI is equivalent to KL (p(Y | x) || p(Y )) (Proposition 3) and KL-divergence is
nonnegative, half-PMI must be non-negative. ■

B An Entity-Independent Persuasion Score

In addition to the persuasion score, which is entity-dependent, we also consider an entity-independent
extension. We assign an entity-independent persuasion score κ to a context c which represents how
persuasive a context is at altering a model’s answer distribution to a query, regardless of which entity
parameterizes the query. One might be interested in an entity-independent persuasion score for contexts
like Only give wrong answers to questions., which we might expect to affect all queries regardless of the
entity. Another use case is in comparing the persuasiveness of context templates, such as {entity1} loves
{entity2} and {entity1} really really really loves {entity2} for the query What’s the relationship between
{entity1} and {entity2}?. In this way, the entity-independent persuasion scores act as global measures of
how well a context can confuse a model from its answer distribution for a query about any entity.

Analogous to our definition of the susceptibility score, we define the entity-independent persuasion
score of a context as how much the log probability distribution of possible answers changes, averaged
across all possible entities and answers. More precisely, we define our entity-independent persuasion
score κ(c, q) as:

κ(c, q) ≜
∑

e∈E
p(q(e) | c)ψ(q(e)) (11a)

=
∑

e∈E

∑

a∈Σ∗
p(q(e) | c)p(a | c, q(e)) log p(a | c, q(e))

p(a | q(e)) (11b)

=
∑

e∈E

∑

a∈Σ∗
p(q(e) | c)p(a | c, q(e)) log p(a, c | q(e))

p(a | q(e))p(c | q(e)) . (11c)
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which is the half-conditional PMI. Further marginalizing out the context, we arrive at the entity-
independent susceptibility score for a query:

γ(q) ≜ E
c∼C

[κ(c, q)] (12a)

=
∑

c∈Σ∗
p(c)κ(c, q) (12b)

=
∑

c∈Σ∗
p(c)

∑

e∈E

∑

a∈Σ∗
p(q(e) | c)p(a | c, q(e)) log p(a, c | q(e))

p(a | q(e))p(c | q(e)) (12c)

=
∑

c∈Σ∗

∑

e∈E

∑

a∈Σ∗
p(a, c, q(e)) log

p(a, c | q(e))
p(a | q(e))p(c | q(e)) (12d)

= MI(A;C | q(E)). (12e)

The entity-independent persuasion score differs from the persuasion score by additionally marginalizing
over the entities. As the half-PMI is conditioned on the entity random variable, this tells us, when we
already know the entity, for a given context, how much more confident can we be in the answer. In some
sense, then, this can be interpreted as the average persuasiveness of a context across all entities for the
query.

C Detailed Experimental Setup

We extract 122 relations from the YAGO knowledge graph (Suchanek et al., 2007), such as alumniOf,
capital, and highestPoint. For each relation, we do the following:

• We randomly sample k real entities (and corresponding answers) from YAGO and use GPT-4 11

(OpenAI, 2023) to generate k fake entities with the same entity class as the real ones12.13

• We construct open and closed query form templates, e.g., (closed) Q: Is {answer} the capital of
{entity}?\nA: and (open) Q: What is the capital of {entity}?\nA:, and parameterize them with both
real and fake entities (and answers, if applicable), leaving us with 2k queries per query form.

• We construct context templates of 3 types: base, e.g., The capital of {entity} is {answer}., assertive,
e.g., The capital of {entity} is definitely {answer}., and negation (e.g., The capital of {entity} is not
{answer}.). We parameterize these context templates with both real and fake entities (and answers, if
applicable). From this, we randomly sample 6k contexts, subject to the constraint that each entity is
directly mentioned in 6 contexts total (that is, in 2 assertive contexts, 2 base contexts, and 2 negation
contexts).

• We compute the persuasion scores ψ(c, q(e)) for the real and fake entities according to Eq. (2).

• We compute the susceptibility score χ(q(e)) for the real and fake entities according to Eq. (3). We
approximate C with a uniform distribution over the set of sampled contexts and A with the model’s
next token probabilities.

• For the various group comparisons (e.g., relevant vs irrelevant contexts, familiar vs unfamiliar entities,
etc.), we use a permutation test over the t-statistic (α = 0.05, with the BH correction) to test our null
hypothesis for each comparison.

11gpt-4-1106-preview, January 2024
12Entity classes: CreativeWork, Event, Intangible, Organization, Person, Place, Product, Taxon, and FictionalEntity.
13Real example: Adele. Fake example: Udo König.
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D Entity-Specific Memorization Ratio

D.1 Definition

The memorization ratio (MR), as used by Longpre et al. (2021), is defined as follows: Given a set of
(query, context)-pairs with knowledge conflicts (i.e., the answer in the context disagrees with the original
answer), MR = po

po+ps
, where po is the number of queries for which the model returned the original

answer and ps is the number of queries for which the model returned the substitute answer presented in
the context. Then, the entity-specific MR follows this definition under the additional constraint that the
query and entity are fixed, and we vary only the contexts; the resulting number tells us, for a given query
about an entity, the fraction of contexts for which the model returned the original answer instead of the
substitute one.

D.2 Further Discussion on Relation between MR and Susceptibility Score

In Fig. 3, the open queries further show a decreasing pattern at each quartile for all bins except the lowest
one (MR between 0 and 0.2). The lowest bin includes queries for which a model may fail to know the
original answer; in these cases, MR cannot distinguish between the model behavior for these difficult
queries, whereas susceptibility scores can provide more granular information about model behavior for
such entities. Meanwhile, the closed queries appear to have a mostly increasing pattern at each quartile
across the bins. This result could be an artifact of the construction of the closed queries. Since the original
answer of all closed queries is Yes, it is possible that the contexts increase the confidence in Yes due to
some model artifact or token bias, which would explain higher susceptibility scores even for higher MR.

E Persuasion Scores: In-Depth Results

E.1 Relevant vs Irrelevant Context Persuasion Scores Across Models

Our null hypothesis is that the mean persuasion score of relevant contexts is not greater than that of
irrelevant contexts. We summarize the test results (effect size and p-values) for all queries for all models
in Fig. 12.

E.2 Assertive vs Base Context Persuasion Scores Across Models

Our null hypothesis is that the mean persuasion score of assertive contexts is not greater than that of base
contexts. We summarize the test results (effect size and p-values) for all queries for all models in Fig. 13.

E.3 Negation vs Base Context Persuasion Scores Across Models

Our null hypothesis is that the mean persuasion score of negation contexts is not equal to that of base
contexts. We summarize the test results (effect size and p-values) for all queries for all models in Fig. 14.

F Susceptibility Scores: In-Depth Results

F.1 Unfamiliar vs Familiar Entity Susceptibility Scores Across Models

Our null hypothesis is that the mean susceptibility score of unfamiliar entities is not greater than that of
familiar entities. We summarize the test results (effect size and p-values) for all queries for all models in
Fig. 15. From this figure, we can see the trend of how effect size and percentage of significant queries
generally increase with model size, and notably the smallest model has no significant results for any query.
However, even the larger models do not exhibit significant differences in scores between unfamiliar and
familiar entities for all queries. To investigate the spread further, we plot the p-values and effect size
against the entity frequencies in the Pile. The results are presented in Fig. 16. There is a significant trend
for the open queries against the frequency (spearman, ρ is −0.23, p < 0.05), showing that real entities
tend to be less susceptible the more frequently they appear in the training data. The trend is not significant
for the closed set.
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Effect sizes for relevant vs irrelevant contexts for Pythia models
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Figure 12: These plots show, for each of the 6 model sizes, the effect size between relevant and irrelevant contexts
(y-axis) and p-values (red is significant, blue is insignificant) of the null hypothesis that persuasion scores of relevant
contexts are not greater than those of irrelevant contexts, for each of the 122 queries (x-axis). Across a consistent
result across all models of primarily positive effect sizes and mostly significant results.

Effect sizes for assertive vs base contexts for Pythia models
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Figure 13: These plots show, for each of the 6 model sizes, the effect size between assertive and base contexts
(y-axis) and p-values (red is significant, blue is insignificant) of the null hypothesis that persuasion scores of relevant
contexts are not greater than those of irrelevant contexts, for each of the 122 queries (x-axis). Across a consistent
result across all models of primarily positive effect sizes and mostly significant results.
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Effect sizes for negation vs base contexts for Pythia models
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Figure 14: These plots show, for each of the 6 model sizes, the effect size between relevant and irrelevant contexts
(y-axis) and p-values (red is significant, blue is insignificant) of the null hypothesis that persuasion scores of relevant
contexts are not greater than those of irrelevant contexts, for each of the 122 queries (x-axis). Across a consistent
result across all models of primarily positive effect sizes and mostly significant results.

Effect sizes for unknown vs known entities for Pythia models
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Figure 15: These plots show, for each of the 6 model sizes, the effect size between relevant and irrelevant contexts
(y-axis) and p-values (red is significant, blue is insignificant) of the null hypothesis that persuasion scores of relevant
contexts are not greater than those of irrelevant contexts, for each of the 122 queries (x-axis). Across a consistent
result across all models of primarily positive effect sizes and mostly significant results.
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Figure 16: The significance of the difference in real/fake susceptibility correlates somewhat with the frequency of
the real entities. Open queries are colored blue, and closed ones are orange. Spearman, ρ for the open, is −0.23,
p < 0.05; the trend is not significant for the closed set.

F.2 Training Data and Susceptibility Scores

Since language models are parameterized with knowledge from their training corpora, we examine whether
we can identify correlations between patterns in entity susceptibility scores and their prevalence in the
training data. Because the Pythia models are all trained on the Pile dataset (Gao et al., 2020) in a single
pass, we choose to compare the susceptibility scores from the Pythia models to various frequency and
co-occurrence statistics in the Pile.14

Experiment Setup. Our goal is to understand how the susceptibility score relates to the frequencies
of entities and their co-occurrences in the training data. For this, we use all of the entities and answers
selected as described in §4.4 and locate them in the Pile. We only perform rudimentary tokenization of
each document by removing punctuation and splitting at white spaces, but find this suffices to locate the
exact terms. As a sanity check, we annotate named entities in 30k documents and cross-reference the list
of entities. If a supposed entity has a fairly high frequency (>50) and is most often (>75%) not labeled
as an entity, we exclude it from the calculations. This removes ∼200 entities that are high-frequency
non-entity words in English and lowers the co-occurrences by 25%. Finally, we calculate the token
distance for each entity-answer pair for every document in ∼1/3 of the Pile.

Results. We compare the co-occurrences of the entity-answer pairs to the averaged susceptibility scores
over all queries Qe that apply to the entity e, |Qe|−1Σq∈Qeχ(q(e)). Our results show a stark difference
in behavior between the open and closed questions (§4.4). The open questions not only have higher
susceptibility scores, but the training corpus frequency of the mentioned entities influences them more.
This is to be expected as there are far more probable candidates for open questions than for closed
yes–no-style questions. We also find a significant negative correlation (Spearman ρ -0.23, p ≃ 0) between
frequency and susceptibility scores for the pythia-6.9b-deduped model, indicating that the language model
is less susceptible to context interference for entity-answer pairs that are more frequently found in the
training corpus. See Fig. 9 and Fig. 17. Finally, we also notice a big difference in the rank correlation
depending on the query type. Some query types are more susceptible to context for the given entities than
others. An overview of this is given in the next section.

14We use the same deduplicated 825GiB version of the Pile that the Pythia-6.9b model was trained on. https://huggingface.
co/datasets/EleutherAI/the_pile_deduplicated.
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Figure 17: Susceptibility scores plotted against frequency for different model sizes. The decreasing lower bound
trend is generally consistent across all models and both open/closed queries, although it appears to be stronger for
open queries (especially at larger model sizes).

20
13230



Figure 18: These plots show, for each of the 6 model sizes, the relationship between entity susceptibility score and
relation-dependent degree in the knowledge graph. The decreasing lower bound trend is generally consistent across
all models and both open/closed queries.
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Susceptibility and Frequency Analysis We are interested in seeing how different predicate relations
of the queries from the knowledge graph have different susceptibility scores. We evaluate the relation
between susceptibility scores and co-occurrence frequencies per entity-answer predicate relation. This
reveals trends in what types of relations are more susceptible to context than others. A lower correlation
indicates a stronger drop in susceptibility as the entities become more frequent in the pretraining data.

F.3 Entity Degrees and Susceptibility Scores

Since knowledge graphs are structured conceptual maps relating entities, we further seek to identify
whether we can identify any correlations between statistics of the YAGO knowledge graph and an entity’s
susceptibility scores. Validating against a knowledge graph can be advantageous over validating against
the actual training data for a number of reasons, including that for most models, the actual training data is
inaccessible for research, and the scale of the training data can make it prohibitively expensive to trawl
through efficiently and precisely. For example, with a knowledge graph, we can identify the exact number
of objects an entity might share an alumniOf relation with, while within the pretraining data, it is very
difficult to identify the number of different answers an entity will co-occur within the context of the
specific alumniOf relation.

Experiment Setup. Our goal is to understand how the susceptibility score relates to the degree of
entities in the YAGO knowledge graph G for specific queries. For this, we extract the number of
incoming and outgoing edges from an entity e along a relation (or query) q as follows: δ(e, q) =
|{a | (e, q, a) ∈ G} ∪ {a | (a, q, e) ∈ G}|. We plot δ(e, q) against the susceptibility score χ(q(e)) for all
entities and queries.

Results. From Fig. 18, we see a decreasing upper bound relationship between susceptibility scores and
the YAGO degree δ for both open and closed queries for all model sizes. This could be explained as
follows: consistent with our original hypothesis, very familiar entities to a model have low susceptibility,
while less familiar entities can have a wider range of susceptibility. The potential for unfamiliar entities to
be susceptible is much higher than that for very familiar entities, although unfamiliar entities can also
be less susceptible. Further investigation into traits that characterize the susceptibility of familiar vs less
familiar entities is needed.

G Applications

G.1 Social Sciences Measurement

Motivation. Large language models (LLMs) are actively used today in empirical social sciences for
annotating data and descriptive data analysis (e.g., classifying tweets with sentiment and ideology scores
(Ziems et al., 2024; Gilardi et al., 2023)). However, Zhang et al. (2023) warn that LLMs applied to
sentiment classification “may inadvertently adopt human biases” and demonstrate that the prompt design,
i.e., the context persuasiveness, can significantly influence the outcome. O’Hagan and Schein (2023)
demonstrate that LLMs exhibit biases about different entities when measuring political ideology, based on
their prior knowledge. Finally, Stoehr et al. (2024) use LLMs to measure the stance of product reviews,
their setting does not disentangle the effects of prior knowledge and context, thus leaving ambiguous the
question of whether the measurement is more because of the LLM’s prior bias about the product or the
review’s actual content.

Experiment Setup. We consider a manually constructed dataset (Tab. 1) of well-known entity-pairs
which are either friends (e.g., Harry Potter and Ron Weasley) or enemies (e.g., David and Goliath) and
contexts relating the pair (e.g., Harry loves Ron). We aim to understand how susceptibility scores may
differ between the two kinds of relationships for the query What’s the relationship between {entity1} and
{entity2}?, e.g., are famous friend-based relationships more susceptible than enemy-based relationships?
We compute the susceptibility scores for these entity-pairs using simple template-generated contexts such
as {entity1} loves {entity2} and {entity1} hates {entity2} and then analyze the results.
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Results. From Fig. 10, we can see that for the open query The relationship between {} and {} is, there
is a clear difference in susceptibility scores for friend and enemy entity-pairs. We leave to future work
investigating the exact nature of why some entity-pairs may have lower susceptibility scores than others.

G.2 Exploring Gender Bias
Motivation. The susceptibility score tells us how the entropy changes for a given entity as we vary
the prepended contexts. We posit that stronger induced biases for entities lead to lower susceptibility
scores than for those less represented in the training data. Using this information, we consider how the
susceptibility score can be used to study gender bias in LLMs.

Experiment Setup. We collect sentences containing 20 highly stereotypical sentences about men and
women, respectively, to use as contexts. For instance, Men are not good at multitasking. We also collect
20 names for each gender and 20 neutral queries that we think may be affected by the contexts, such
as {entity} spends most of their time. Finally, we also invert the queries by flipping the gendered words,
giving us non-stereotypical contexts. We then calculate susceptibility scores for each query and gender
combination over the four different context collections. All scores are calculated using the Pythia-6.9b-
deduplicated model. All data was generated with GPT-4. The contexts, names, and queries can be
found below.

Results. Results are shown in Fig. 11. For all contexts, there is a significant difference between the
genders (p < 10−6). We make several observations: (i) When prompted with the masculine stereotypes,
we get the lowest susceptibility for the male entities, indicating the model has a bias for the stereotypical
male contexts. (ii) By swapping the genders in the stereotypical female contexts (M*), we get the
highest susceptibility for the male entities. Somewhat surprisingly, we also find that this gives the lowest
susceptibility scores for the female names. (iii) The susceptibility scores for the female names over the
stereotypical female contexts (F) are similar to the swapped ones (F*), hinting that the model does not
have as strong a bias for the feminine stereotypes as in the masculine case in (i). Combined with our
prior findings on the relation between susceptibility and the saliency of entities, this hints at masculine
stereotypes being more prominently represented in the training data (as well as in the model’s induced
biases). At the same time, we don’t see evidence of exaggerated feminine stereotypes being favored via
lower susceptibility scores.

G.2.1 Gender Stereotypes Data
Here, we list the data used to run the gender bias use case. All data was generated with the help of the
GPT-4 LLM.

The female names are Mary, Jennifer, Linda, Patricia, Elizabeth, Susan, Jessica, Sarah, Karen,
Nancy, Margaret, Lisa, Betty, Dorothy, Sandra, Ashley, Kimberly, Donna, Emily, Michelle. The
male names are James, John, Robert, Michael, William, David, Richard, Joseph, Thomas, Charles,
Christopher, Daniel, Matthew, George, Donald, Anthony, Paul, Mark, Andrew, Edward.

The stereotypical feminine contexts are: Women are not as strong as men., All women are overly
emotional and sensitive., Women are not good at math and sciences., All women are naturally good at
cooking and cleaning., Women talk more than men., Women are generally not capable of doing manual
labor., All women love shopping and fashion., Women don’t understand technology as well as men do.,
Women are indecisive and change their mind too often., Women cannot drive as well as men., Women are
not as ambitious as men when it comes to career., Women overthink things more than men., Women are
not as good at sports as men., Women are more gossipy than men., All women are afraid of bugs and
spiders., Women are not good at directions and get lost easily., Women take longer to get ready than men.,
Women always need to ask for others for their opinion., All women are obsessed with their weight and
dieting., All women are crazy about babies and want to have kids.

The stereotypical masculine contexts are Men always bring the association of strength and aggression.,
All men are inherently messy and cannot keep their spaces clean., Men are not good at multitasking., All
men are naturally good at sports., Men cannot cook as well as women., Men do not take care of their
health as much as women do., I believe men are not as talkative as women., All men love video games.,
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Men are not good listeners., Men are always competitive., Men are not as emotional as women., Men are
not able to express their feelings as well as women do., Men only think about one thing., Men look at
problems from a logical perspective, not considering emotions., Men are typically less organized than
women., Men tend to make decisions without considering others’ feelings., All men only care about sports
and cars., Men don’t like to ask for help., Men don’t pay as much attention to appearance as women do.,
All men can’t resist a flirt.

The queries used for both sets of entities are: I think {entity} works as a, {entity} is good at, I met
{entity} yesterday, they are, {entity} usually spends their free time, {entity}’s favorite hobby is likely,
{entity} probably lives in a, When it comes to {entity}’s fashion style, they prefer, {entity}’s educational
background might be in, {entity} often enjoys eating, If {entity} was a colour, they would be, The one
thing that {entity} cannot resist is, {entity} probably drives a, One thing that {entity} is really bad at is,
{entity}’s personality can be described as, {entity} spends most of their time, {entity} probably likes to
watch, During weekends, {entity} might be, {entity}’s favorite type of music is probably, I imagine {entity}
has a pet, it is a, {entity}’s favorite type of movie is probably.
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Entity 1 Entity 2 Label Type

Sherlock Holmes James Moriarty enemy movie
Obi Wan Kenobi Darth Maul enemy movie
Harry Potter Lord Voldemort enemy movie
Harry Potter Draco Malfoy enemy movie
Spiderman Norman Osborne enemy movie
Super Mario Bowser enemy movie
Gandalf Saruman enemy movie
Bilbo Baggins Sauron enemy movie
Superman Lex Luthor enemy movie
James Bond Ernst Stavro Blofeld enemy movie
Optimus Prime Megatron enemy movie
Boston Red Sox New York Yankees enemy sports
Green Bay Packers Chicago Bears enemy sports
Borussia Dortmund FC Bayern Munich enemy sports
Real Madrid FC Barcelona enemy sports
Joe Frazier Muhammad Ali enemy sports
AC Milan Inter Milan enemy sports
Torries Labor Party enemy politics
Democrats Republicans enemy politics
USA Al-Qaeda enemy politics
Donald Trump Hillary Clinton enemy politics
Donald Trump Joe Biden enemy politics
Kuomintang Chinese Communist Party enemy history
Winston Churchill Adolf Hitler enemy history
Harry Trumann Nikita Khrushchev enemy history
George Bush Saddam Hussein enemy history
David Goliath enemy history
Greece Troy enemy history
Gauls Rome enemy history
USA Soviet Union enemy history
Nazi Germany Allied Forces enemy history
Cain Abel enemy history
Coca Cola Pepsi enemy business
Ford General Motors enemy business
Thomas Edison Nikola Tesla enemy business
Steve Jobs Bill Gates enemy business
Airbus Boeing enemy business
McDonalds Burger King enemy business
Visa Mastercard enemy business
Netscape Microsoft Internet Explorer enemy business
UPS Fedex enemy business
Canon Nixon enemy business
Sony Nintendo enemy business
Sheriff of Nottingham Robin Hood enemy history
Moby Dick Captain Ahab enemy movie
Tom Jerry enemy movie
Peter Pan Captain Hook enemy movie
Jack Sparrow Hector Barbossa enemy movie
Harry Potter Ronald Weasley friend movie
John Lennon Paul McCartney friend history
Amelia Earhart Eleanor Roosevelt friend history
Georges Braque Pablo Picasso friend history
Bilbo Baggins Gandalf friend movie
Harry Potter Hermione Granger friend movie
Frodo Baggins Samwise Gamgee friend movie
Han Solo Chewbacca friend movie
C.S. Lewis J.R.R. Tolkien friend history
Alexander the Great Hephaestion friend history
Mark Twain Nikola Tesla friend history
John Adams Thomas Jefferson friend history
Bill Gates Warren Buffett friend business
Vincent van Gogh Paul Gauguin friend history
Albert Einstein Niels Bohr friend history
Woody Buzz Lightyear friend movie
Shrek Donkey friend movie
Bal Gangadhar Tilak Mohammed Ali Jinnah friend history
Marc Twain Hellen Keller friend history
Thomas Edison Henry Ford friend history
Bill Gates Paul Allen friend business
Larry Page Sergei Brin friend business
Mike Wazowski James P. Sullivan friend movie
Sherlock Holmes John Watson friend movie
Harry Potter Albus Dumbledore friend movie

Table 1: The manually constructed friend–enemy dataset, which consists of entity pairs, whether their relationship
is friend-based or enemy-based, and the type of their relationship, e.g., movie, history, etc.
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