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Abstract

Traditional supervised learning heavily relies
on human-annotated datasets, especially in
data-hungry neural approaches. However, var-
ious tasks, especially multi-label tasks like
document-level relation extraction, pose chal-
lenges in fully manual annotation due to the
specific domain knowledge and large class sets.
Therefore, we address the multi-label positive-
unlabelled learning (MLPUL) problem, where
only a subset of positive classes is annotated.
We propose Mixture Learner for Partially An-
notated Classification (MLPAC), an RL-based
framework combining the exploration ability
of reinforcement learning and the exploitation
ability of supervised learning. Experimental re-
sults across various tasks, including document-
level relation extraction, multi-label image clas-
sification, and binary PU learning, demonstrate
the generalization and effectiveness of our
framework.

1 Introduction

Multi-Label Classification (MLC) task treats a
problem that allows instances to take multiple
labels, and traditional Supervised Learning (SL)
methods on MLC heavily rely on human-annotated
data sets, especially neural approaches that are data-
hungry and susceptible to over-fitting when lacking
training data. However, in many MLC tasks that
generally have dozens or hundreds of sizes of class
sets, incompleteness in the acquired annotations
frequently arises owing to the limited availability
of expert annotators or the subjective nature inher-
ent in human annotation processes. (Kanehira and
Harada, 2016; Cole et al., 2021; Tan et al., 2022;
Ben-Baruch et al., 2022). Therefore, we focus on
the fundamentally important problem, typically
termed Multi-Label Positive-Unlabelled Learning
(MLPUL) (Kanehira and Harada, 2016; Teisseyre,
2021), which involves learning from a multi-label

* Correspondence to Zilong Zheng.

dataset in which only a subset of positive classes is
definitely annotated, while all the remaining classes
are unknown (which could be positives or nega-
tives). For instance, as shown in Fig. 1A&B, human
annotators find it hard to completely annotate all
the relations due to the confusion of understanding
relation definitions and long-context semantics in
document-level relation extraction (DocRE) task
(Huang et al., 2022; Tan et al., 2022).

Positive and unlabelled (PU) classification has
received extensive attention in binary settings, with
several recent MLPUL approaches adapting tradi-
tional binary PU loss functions to address multi-
label classification tasks (Kanehira and Harada,
2016; Wang et al., 2022, 2024). These methods typ-
ically operate under the assumption that the prior
distribution of positive labels can be inferred from
fully labeled training samples or closely unbiased
estimations. In a specific instance, (Wang et al.,
2022) supposed that the actual positive classes are
three times the number of observed labels in the
DocRE task, and their model’s performance is heav-
ily influenced by the prior (Fig. 1C). However, esti-
mating the prior distribution of labels in real-world
scenarios poses significant challenges, as it is rarely
feasible to ensure a comprehensive data set encom-
passing all label types (Chen et al., 2020; Hu et al.,
2021; Yuan et al., 2023). Additionally, Li et al.
(2023) noted that many long-tail label types tend
to be omitted from training annotations. Conse-
quently, we focus on addressing MLPUL without
prior knowledge of class distribution. Moreover,
MLC generally faces the challenge of imbalanced
positive and negative labels, which is severely exac-
erbated by missing positive class annotations under
MLPUL, as shown in Fig. 1B. Previous works typi-
cally adopted the re-balance factor to re-weight the
loss functions, containing positive up-weight and
negative under-weight (Li et al., 2020). We sim-
ply attempt these approaches and find they partly
improve the model performance but still perform
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Figure 1: A. A partially annotated data sample in DocRE task. B. Severe imbalanced distribution of annotated
positive (red scatters) and negative labels (blue and orange scatters) corresponding to the DocRED (Yao et al.,
2019) dataset. Orange scatters are actually-positive labels reannotated by Re-DocRED dataset (Wu et al., 2022) C.
Results of training on incomplete DocRED and testing on reannotated Re-DocRED and DocGNRE (Li et al., 2023).
SSR-PU is sensitive to prior estimation, while ours is prior agnostic. D. Performance comparison in DocRE task.

unsatisfactorily when only a very small set (10%)
of positive class annotations is available (Fig. 1D).

Previous works (Silver et al., 2016; Feng et al.,
2018; Nooralahzadeh et al., 2019) have demon-
strated the powerful exploration ability of Rein-
forcement Learning (RL). Furthermore, RL has
shown great success on distant or partial annota-
tions recently (Feng et al., 2018; Luo et al., 2021;
Chen et al., 2023). Inspired by these successful RL
attempts, we believe that the exploratory nature of
RL has the potential ability to discover additional
positive classes while mitigating the overfitting is-
sues typically encountered in supervised learning,
especially when the observed label distribution is
severely biased, which holds promise in addressing
MLPUL. Besides, recent works have shown that
supervised learning can be remarkably effective for
the RL process (Emmons et al., 2021; Park et al.,
2021; Badrinath et al., 2024).

Based on this intuition, we introduce a novel
framework termed Mixture Learner for Partially
Annotated Classification (MLPAC), which com-
bines the exploratory capacity of RL in tandem
with the exploitation capabilities of supervised
learning. Specifically, we design a policy network
(as a multi-label classifier) and a critic network,
along with two types of reward functions: global re-
wards calculated by a recall function, which evalu-
ates the all-classes prediction performance for each
instance, and local rewards provided by the critic
network, which assesses the prediction quality of
each individual class for a given instance. The lo-
cal rewards are expected to narrow the exploration
space of traditional RL and offer a preliminary
yet instructive signal to guide the learning process,
while the global rewards encourage the policy net-
work to explore a broader spectrum of positive
classes, consequently mitigating distribution bias
stemming from imbalanced labels and incomplete

annotations.
In addition, inspired by the traditional actor-

critic RL algorithm (Bahdanau et al., 2016), we
iteratively train the policy network and the critic
network, which achieves dynamic reward estima-
tion in our setting. The absence of fully annotated
samples in both training and validation sets pre-
cludes the direct attainment of perfectly accurate
rewards. Hence, we introduce label enhancement
through collaborative policy and critic network ef-
forts during iterative training, boosting label con-
fidence and enhancing the critic network’s reward
estimation accuracy.

Moreover, our RL framework is concise and flex-
ible, guaranteeing its generalization and adapta-
tion to many tasks. Beyond the experiments on
document-level relation extraction task (§4.1) in
Natural Language Process (NLP) field, we also
conduct sufficient experiments in multi-label im-
age classification task (§4.2) in Computer Vision
(CV) field and general PU learning setting in bi-
nary case (§4.3) to verify the generalization and
effectiveness of our framework. All experimental
results demonstrate the advantage and significant
improvement of our framework.

2 Related Work

Multi-label Positive-Unlabelled Learning Meth-
ods Label correlation modeling, rank-based
weighted loss function and enhanced incomplete la-
bels are typical technologies that previous MLPUL
methods adopted. Label correlation is usually
learned or calculated from the label matrix of the
training data under partial positive and negative
samples under multi-label partially observed la-
beling (Rastogi and Mortaza, 2021; Kumar and
Rastogi, 2022; Jiang et al., 2023; Yu et al., 2024).
In the MLPUL setting, Teisseyre (2021) leveraged
classifier chains to model high-order label corre-
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Figure 2: Illustration of our RL framework.
⊕

represents union operation. We iteratively update the policy network
and critic network. The augmented training data are curated for the critic network.

lation with the assumption that prior probabilities
could be estimated by predictions from the previ-
ous models in the chain. Because label correlations
may bring correlation bias under the severe scarcity
of positive labels, we did not explicitly model the
correlations in our model.

Kanehira and Harada (2016) extended binary
PU classification to the multi-label setting, deal-
ing with multi-label PU ranking problem. They
modeled MLPUL as cost-sensitive learning by de-
signing a weighted rank loss for multi-label im-
age classification tasks. Following this, Wang et al.
(2022) proposed shift and squared ranking loss PU
learning for the document-level relation extraction
task by modifying the prior terms in the rank-based
loss function. Both works supposed the knowledge
of class prior distribution, but the prior is difficult
to estimate in reality. Recently, encouraged by the
binary PU methodology without class prior (Chen
et al., 2020; Hu et al., 2021), Yuan et al. (2023)
adopted the variational binary PU loss and addition-
ally dealt with the catastrophic imbalanced positive
and negative label distribution that MLPUL faced
by introducing an adaptive re-balance factor and
adaptive temperature coefficient in the loss func-
tion. Our approach also pays attention to solving
the imbalanced problem in MLPUL and designs a
framework without the knowledge of class priors.
Different from their methods specifically designed
for image classification, our framework is effective
for a wide range of MLPUL tasks and is further
adapted for imbalanced binary PU learning cases.

Besides the above methodologies, Chen et al.
(2020); Yuan et al. (2023) proposed regulariza-
tion term based on Mixup (Zhang et al., 2018)
to enhance incomplete labels, alleviating the over-
fitting problem and increasing model robustness.
The concurrent work to us, Wang et al. (2024) de-
signs positive-augmentation and positive-mixup
strategies to improve rank-based learning methods

(Wang et al., 2022) for PU document-level relation
extraction. These strategies are not uniquely appli-
cable to their framework, and our method can also
integrate them, which we leave to future work.

Reinforcement Learning under Weak Supervi-
sion There are many previous works leveraging
Reinforcement Learning (RL) to solve tasks only
with weak supervision (Feng et al., 2018; Zeng
et al., 2018; Luo et al., 2021; Chen et al., 2023).
In the NLP field, to precisely leverage distant data,
Qin et al. (2018); Feng et al. (2018) train an agent
as a noisy-sentence filter, taking performance vari-
ation on development or probabilities of selected
samples as a reward and adopting policy gradient
to update. Nooralahzadeh et al. (2019) expand their
methods to NER task. Recent work of Chen et al.
(2023) also conducts RL to remove the noisy sen-
tence so as to improve the fault diagnosis system.
Notably, RL learning on distantly supervised learn-
ing aims to filter false positives, whereas our goal
is to identify false negatives. A closer related work
to us is Luo et al. (2021), in which an RL method
is designed to solve the PU learning problem. But
unlike us, their agent is a negative sample selector,
aiming to find negatives with high confidence and
then couple them with partial positives to train a
classifier. More related works under different weak
supervision settings can be found in Appendix A.

3 RL-based Framework

We propose a novel RL framework to solve the
MLPUL task. We formulate the multi-label predic-
tion as the action execution in the Markov Decision
Process (MDP) (Puterman, 1990). We design both
local and global rewards for actions to guide the ac-
tion decision process. The policy-based RL method
is adopted to train our policy network. The over-
all RL framework is illustrated in Figure 2. We
introduce the details in the following subsections.
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3.1 Problem Setting

We mathematically formulate the MLPUL task.
Given a multi-label dataset X = {xi}, each xi

is labeled with a partially annotated multi-hot vec-
tor yi = [y1i , · · · , yci , · · · y

|C|
i ], where yci ∈ {0, 1}

denotes whether class c ∈ C is TRUE for instance
xi and |C| is the cardinality of set C. In terms of
partial annotation, we assume that {c; yci = 1}
is a subset of gold positive classes regarding to
xi, i.e., {c; yci = 0} is the set of UNKNOWN classes
(which could be actually positive or negative). Typ-
ically, in the multi-label setting, the size of the label
set is dozens or hundreds; thus |{c; yci = 1}| <<
|{c; yci = 0}| ≤ |C|. In some complicated tasks,
such as Relation Extraction, we further define a
special label <None> to xi if yi = [yci = 0]

|C|
c=1. It

should be mentioned that we do not have any fully
annotated data, both the training and validation sets
being partially annotated.

A straightforward approach (referred to as the
“negative mode”) for tackling this task involves
treating all unlabeled classes as FALSE (set all
yci = 0 to yci = −1) and subsequently reducing the
multi-label problem to a number of independent
binary classification tasks by employing conven-
tional supervised learning (SL). However, due to
incomplete positive labels and severely imbalanced
label distribution, the negative mode is suscepti-
ble to overfit biased annotated labels, resulting in
high precision but low recall on the test set. Based
on the negative mode, we introduce an RL frame-
work (MLPAC) that combines RL and SL to miti-
gate distribution bias and encourage the multi-label
classifier to predict more potential positive classes.

3.2 Modeling

Typically, basic RL is modeled as an MDP
(S,A, π, T , R) which contains a set of environ-
ment and agent states S, a set of actions A of the
agent, the transition probabilities T from a state
to another state under action a, and the reward R.
The goal of an RL agent is to learn a policy π
that maximizes the expected cumulative reward. In
our problem setting, we formalize the multi-label
positive-unlabelled learning as a one-step MDP
problem: we do not consider state transitions be-
cause our action execution does not change the
agent and environment. Our setting highly resem-
bles the setting of contextual bandits (Chu et al.,
2011), where actions only affect the reward but
not the state. Our RL framework’s policy πθ is a

multi-label classifier constructed by a neural net-
work with parameter θ. We define the constituents
in detail.

States A state s includes the potential informa-
tion of an instance to be labeled. In our setting, this
information consists of instance features, which are
essentially continuous real-valued vectors derived
from a neural network.

Actions Due to the multi-label setting, our agent
is required to determine the label of each class c for
one instance. There are two actions for our agent:
setting the current class as TRUE (ŷci = 1) or FALSE
(ŷci = −1). It is necessary to execute |C| (size of the
class set) actions to label an instance completely.

Policy Our policy network outputs the probability
πθ(ŷ

c
i |xi) = P (a = ŷci |s = xi) for each action

condition on the current state. We adopt the model
structure commonly utilized in previous supervised
studies as the architecture for our policy network.

Rewards Recall that our primary objective is to
acquire a less biased label distribution compared
to the supervised negative mode training approach
using the partially annotated training dataset. We
anticipate that our MLPAC possesses the capacity
for balanced consideration of both exploitation and
exploration. Exploitation ensures that our agent
avoids straying from local optima direction and
avoids engaging in excessively invalid exploratory
behavior, while exploration motivates our agent to
explore the action space somewhat randomly and
adapt its policy, preventing overfitting to partial su-
pervision. Inspired by the actor-critic RL algorithm
(Bahdanau et al., 2016), we design our rewards
function containing two parts: a local reward pro-
vided by a trainable critic network, which provides
immediate value estimation of each action and a
global reward regarding the overall performance
of all classes predictions for each instance.

Specifically, inspired by Luo et al. (2021), the
local reward calculates the reward of each class
prediction for each instance according to the critic
network confidence:

rci (Vλ,xi, c) (1)

=





C(−1, log pcVλ
(xi)

1−pcVλ
(xi)

, 1) if ŷci = 1,

C(−1, log 1−pcVλ
(xi)

pcVλ
(xi)

, 1) if ŷci = −1.

where pcVλ
(xi) and 1−pcVλ

(xi) are the probabilities
of class c being TRUE and FALSE respectively for an
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instance xi, calculated by a critic network Vλ with
parameter λ, ŷci denotes the prediction of policy
network, and C(−1, ·, 1) is a clamping function: a)
C(−1, x, 1) = −1 if x < −1; b) C(−1, x, 1) = 1
if x > 1; c) otherwise, C(−1, x, 1) = x.

We train the critic network in a supervised fash-
ion (under negative mode) to guide the policy net-
work’s exploration direction through the local re-
ward function, thus equipping our framework with
the ability of exploitation. From Equation 2, the
action of our policy network could get a positive
reward if the critic network has the same predic-
tion tendency and a negative reward otherwise. The
policy network is rewarded to “softly fit” the dis-
tribution learned by the critic network. To improve
the accuracy of value estimation, we perform label
enhancement to train our critic network (described
in Section 3.4). Consequently, the local rewards
offer a preliminary yet instructive signal to guide
the learning process in our MLPAC framework,
thereby preventing the MLPAC from engaging in
excessively invalid exploratory behavior within the
large action space, thereby enhancing the overall
learning efficiency. Nevertheless, relying solely on
these local rewards may potentially lead the ML-
PAC system to converge to a biased “negative mode”
solution. To mitigate this risk, we introduce global
rewards to stimulate more comprehensive explo-
ration during the learning process.

As for global reward, we employ a straightfor-
ward yet highly effective scoring function, which
is computed based on the recall metric. In detail,
for the whole classes prediction ŷi of xi with the
observed ground truth yi, the recall score is:

recall(yi, ŷi) (2)

=
|{yci = 1 ∧ ŷci = 1, yci ∈ yi, ŷ

c
i ∈ ŷi}|

|{yci = 1, yci ∈ yi}|
To enhance recall scores, our policy network is
encouraged to predict a greater number of classes
as TRUE, thereby alleviating the catastrophic label
imbalanced challenge 1.

Note that in our reward design, the terms “lo-
cal” and “global” are both used to characterize the
“goodness” of the predictions of input instances
(i.e., state-action pairs). They are both immediate
rewards in the considered RL framework, as we
formalize MLPUL as a one-step MDP. To calcu-
late the final reward of the whole predictions of an

1Note that we do not punish the action of wrongly setting a
class as TRUE. Thus, the policy network is pleased to predict all
classes as TRUE if we only leverage the global reward function

instance, the local rewards of all predicted classes
c are summed out, eventually weighted summed
with global reward:

R(xi, ŷi, Vλ,yi) (3)

=
1

|C|
∑

c∈C
rci (Vλ,xi, c) + w ∗ recall(yi, ŷi),

where w is a weight controlling the scale balance
between local reward and global reward.

3.3 Inference

The final predictions of each instance are decided
according to the probabilities that our policy net-
work output. We simply set classes whose proba-
bilities are more than 0.5 (πθ(ŷci |xi) > 0.5) to as
TRUE (i.e., ŷci = 1).

3.4 Learning

We iteratively train our critic network and policy
network in an end-to-end fashion. Since the critic
network plays a critical role in guiding policy net-
work learning, we employ label enhancement tech-
niques during the training of the critic network to
enhance the precision of value estimations. It is
important to emphasize that we intentionally ex-
clude the enhanced labels from participation in the
calculation of the recall reward. This decision is
motivated by the desire to maintain the precision
of the global reward and prevent potential noise
introduced by the enhanced labels.

It is widely acknowledged that the training pro-
cess in RL can experience slow convergence when
confronted with a vast exploration space. Inspired
by previous RL-related works (Silver et al., 2016;
Qin et al., 2018), we initiate our process by con-
ducting pre-training for both our policy and critic
networks before proceeding with the RL phase.
Typically, pre-training is executed through a su-
pervised method. In our settings, a range of trivial
solutions for MLPUL can serve as suitable candi-
dates for pre-training. In most cases, we simply
utilize the negative mode for pre-training. How-
ever, as previously mentioned, the negative mode
tends to acquire a biased label distribution due to se-
vere label imbalance. Thus, we implement an early-
stopping strategy during the pre-training phase to
prevent convergence. The following introduces the
detailed learning strategies and objectives.

Objective for Value Model Generally, a well-
designed supervised objective urges models to
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Algorithm 1: Partially Annotated Policy
Gradient Algorithm
Input: Observed data X , partial labels Y ,

pre-trained policy network πθ0 , critic
network Vλ, REINFORCE learning
rate α, confidence threshold γ,
sample steps T

Output: Optimal parameters θ∗

1 e← 0, θ∗ ← θ0, enhanced annotation set
Ȳ ← Y

2 while e < total training epoches do
3 Training set for critic network: (X , Ȳ)
4 Training set for policy network: (X ,Y)
5 for Xbatch ∈ X in total batches do
6 Update λ by minimizing Equation 4

with Ȳbatch for critic network
7 for step t < sample steps T do
8 For each xi ∈ Xbatch, sample ŷi

w.r.t. ŷi ∼ πθ(ŷi|xi)
9 Compute R(xi, ŷi, Vλ,yi)

according to Equation 3

10 Update policy network using
θ ← θ + α∇θJPG(θ)

11 Ȳ ← {[ȳci ]
|C|
c=1}, where ȳci = 1 if (yci = 1

or
(
πθ(ŷ

c
i = 1|xi) > γ and ŷci =

Vλ(xi)c = 1 )
)

12 if eval(πθ) > eval(πθ∗) then
13 θ∗ ← θ

14 e← e+ 1

15 return θ∗

learn expected outputs by learning from annotated
data. This process typically refers to the exploita-
tion, where the supervised model fits the distribu-
tion of label annotations. We denote the supervised
objective by a general formulation:

LSUP (θ) =
∑

xi∈X
p(xi)D(yi, ŷi), (4)

where D is a task-specific distance metric measur-
ing the distance between annotation yi and predic-
tion ŷi. Recall that we treat all the unknown classes
as negatives to perform supervised learning.

Objective for Policy Model As stated in previ-
ous work (Qin et al., 2018), policy-based RL is
more effective than value-based RL in classifica-
tion tasks because the stochastic policies of the
policy network are capable of preventing the agent
from getting stuck in an intermediate state. We

leverage policy-based optimization for RL training.
The objective is to maximize the expected reward:

JPG(θ) = Eπθ
[R(θ)] (5)

≈
∑

xi∈batch
p(xi)

∑

ŷi∼πθ(ŷi|xi)

πθ(ŷi|xi)R(ŷi.xi),

The policy network πθ can be optimized w.r.t. the
policy gradient REINFORCE algorithm (Williams,
1992), where the gradient is computed by

∇θJPG(θ) =
∑

xi∈batch
p(xi) (6)

∑

ŷi∼πθ(ŷi|xi)

∇θ ln(πθ(ŷi|xi))R(ŷi,xi),

where p(xi) is a prior distribution of input data.
Specific to uniform distribution, p(x) = 1

|xbatch| .

Overall Training Procedure The overall train-
ing process is demonstrated in Algorithm 1, where
ŷci = Vλ(xi)c = 1 refers to the prediction of class c
that critic network outputs for the sample xi being
TRUE (pcVλ

(xi) > 0.5). There are several strategies
that need to be clarified in the overall training pro-
cedure. We empirically prove the effectiveness of
these strategies.
� The Computation of local rewards is based
on the annotated positive classes and a randomly
selected subset of unknown classes rather than con-
sidering the entire class set of an instance, which
is intended to emphasize the impact of positive
classes within the computation of local rewards.
� The enhanced labels are determined by both
the policy network and critic network to guarantee
high confidence of enhanced positive labels.
� We fix the critic network once it converges to
enhance training efficiency.

4 Experiments

The Multi-Label Positive Unlabelled Learning
(MLPUL) problem is common and essential in
the NLP field. There are many tasks in NLP that
face incomplete annotation problems, such as fine-
grained entity typing, multi-label text classifica-
tion, and document-level relation extraction. To
verify the effectiveness of our proposed RL frame-
work, we experiment with the positive-unlabelled
document-level relation extraction (DocRE) task
as a representative MLPUL task in NLP. We also
conduct experiments in multi-label image classifi-
cation (MLIC) tasks and binary PU learning setting
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10% 30% 50% 70% 100%
Method P R F1 P R F1 P R F1 P R F1 P R F1

SSR-PU (fix-prior) 75.5 35.8 48.6 52.4 69.9 59.9 33.6 83.0 47.8 23.3 87.2 36.8 - - -
SSR-PU (vary-prior) 79.6 33.1 46.7 82.1 56.1 66.7 83.1 67.0 74.2 83.0 71.6 76.9 - - 78.9

Negative Mode 89.8 3.8 7.3 92.0 20.8 33.8 91.8 42.1 57.7 89.6 58.8 70.6 86.0 72.4 78.6
Pos Weight 84.9 39.8 54.1 85.5 59.3 70.0 85.0 66.8 74.8 83.4 72.5 77.6 82.9 77.3 80.0
Neg Weight 86.7 30.7 45.4 85.0 59.3 69.8 84.1 68.2 75.3 82.8 72.8 77.5 79.8 78.7 79.3
MLPAC (Ours) 58.5 77.0 66.0 83.5 67.71 74.7 81.4 73.6 77.3 83.3 73.9 78.3 80.9 80.8 80.9

P3M (fix-prior) 81.8 50.6 62.5 74.3 76.4 75.3 67.6 84.0 75.0 62.0 87.6 72.6 - - -
P3M (vary-prior) 76.6 59.2 66.8 73.2 77.2 75.1 70.5 82.4 76.0 69.4 84.3 76.2 - - 80.0

Table 1: Results on Re-DocRED with varying ratios of positive class annotations. Fix-prior means that we keep the
same “true positives/observed positives” prior (=3) in their methods under different ratios, while vary-prior means
that we set the actual prior corresponding to the rations. The concurrent method P3M is shown for reference.

to verify the generalization and effectiveness of our
framework.

Besides comparing with previous state-of-the-art
(SOTA) models in each specific task, we construct
some simple baseline methods:
• Negative Mode: As mentioned in Section 3.1,

all unknown labels are treated as negative labels,
performing conditional supervised learning.

• Pos Weight: Based on negative mode, we up-
weight positive labels’ loss in the supervised loss.

• Neg Weight: Based on negative mode, we per-
form negative sampling in the supervised loss.
We train the model on 1 NVIDIA A100 GPU.

The total number of training epochs is 30. We iter-
atively train our critic and policy network for the
first 10 epochs, and then we only train the policy
network for the last 20 epochs. The threshold γ of
choosing enhancement labels is 0.95 in most cases,
and we find our framework performs robustly to
γ varying from 0.5 to 0.95. We tune the hyper-
parameter reward weight w in Eq.3 and sampling
number T with different experiment settings, and
w is dynamically adjusted during training2. All the
above hyper-parameters are determined according
to validation set performance. We leverage the F1
score and MAP score (for MLIC) to evaluate all
the models. We conduct experiments on selected
datasets with varying ratios of positive class anno-
tations from 10% to 100%. We randomly keep a
ratio of annotated relations and treat all the leaving
classes as unknown. Part of the results are shown
in the experimental tables. Detailed descriptions
of these simple baselines, evaluation metrics, data
statistics, and full experimental results can be found

2Intuitively, the w of recall reward should be dropped
along with the training epochs because our critic network
provides more and more accurate local rewards beneficial by
data enhancement before convergence.

in Appendix B, C, D, and E respectively.

4.1 Document-level Relation Extraction
Document-level Relation Extraction (DocRE) is
a task that focuses on extracting fine-grained re-
lations between entity pairs within a lengthy con-
text. Align to our formulation, an input xi is an en-
tity pair, and yi represents relation types between
the entity pair. An entity pair may have multiple
relations or have no relation in DocRE. Beyond
the experiments trained on an incomplete anno-
tated DocRED training set and tested on an almost
fully annotated Re-DocRED test set (as shown in
Fig. 1C), we choose the Re-DocRED, which is the
most complete annotated dataset in DocRE, for ex-
periments on varying ratio of positive annotations.
The size of class set C is 97 (contains <None>).

Configuration and Baselines We adopt the fully
supervised SOTA, DREEAM (Ma et al., 2023),
as our critic and policy network architectures
in this experiment. We keep the same training
method with an Adaptive Thresholding Loss (ATL)
of DREEAM for our critic network. The hyper-
parameter w of reward weight in Eq. (3) is set to 10.
The sample steps T in RL is set to 10. We compare
our method to SSR-PU (Wang et al., 2022) and
show the results of concurrent work PM3 (Wang
et al., 2024) for reference. Both of these two mod-
els perform rank-based PU loss with an assumption
of label distribution prior.

Results Experimental results in Re-DocRED are
shown in Table 1. Compared to previous work and
our simple baselines, our MLPAC demonstrates
its advantage in all annotation ratios. Besides, our
framework achieves more balanced precision-recall
scores, suggesting its ability to deal with imbal-
anced label challenges and predict more positive
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30% 50% 70%
Method F1 mAP F1 mAP F1 mAP

ERP - 71.0 - 73.5 - 73.8
ROLE - 72.4 - 76.6 - 79.5
P-ASL+Negative 52.1 74.6 54.0 76.9 71.9 81.0
P-ASL+Counting 26.4 63.4 53.7 76.1 71.6 80.1

Negative Mode 33.7 64.3 52.9 73.8 72.3 81.2
Pos Weight 73.0 72.7 75.7 76.7 76.0 79.9
Neg Weight 68.7 74.8 75.9 78.0 77.9 79.7
MLPAC (Ours) 77.0 77.5 79.1 80.4 79.0 81.4

Table 2: Experimental Results on COCO datasets with
varying ratios of positive classes annotations.

labels. It is worth noting that our framework also
achieves improved performance with the full an-
notated dataset because the full annotations of Re-
DocRED still miss some actual relations, as men-
tioned in Li et al. (2023). Furthermore, our frame-
work does not rely on label prior estimation, while
previous rank-based methods are sensitive to a cer-
tain extent (fix-prior vs. vary-prior).

4.2 Multi-Label Image Classification

Multi-label image classification is the task of pre-
dicting a set of labels corresponding to objects,
attributes, or other entities present in an image. Fol-
lowing previous work (Kanehira and Harada, 2016;
Ben-Baruch et al., 2022), we utilize MS-COCO
dataset (Lin et al., 2014) containing 80 classes.

Configuration and Baselines Our policy and
critic networks adopt the same architecture as P-
ASL (Ben-Baruch et al., 2022). We rerun previous
works (ERP, ROLE, P-ASL) with official code
(Cole et al., 2021; Ben-Baruch et al., 2022) for
fair comparisons with our methods under the same
training data samples. We tune the hyper-parameter
w between {5, 7, 12} in this task. The sample steps
T in RL is set to 50. Detailed descriptions of com-
pared models can be found in Appendix D.

Results Experimental results are shown in Sec-
tion 4.2. Our MLPAC still performs competitively
in the MLIC task. Furthermore, we ran our model
three times and found very small standard devia-
tions of F1 scores and mAP, which demonstrates
the high robustness and stability of our framework.
Standard deviations of three runs and more experi-
mental results can be found in Appendix E.2.

4.3 Binary PU Learning Setting

To verify the generalization and wide adaptation of
our RL framework, we conduct binary PU learning

10% 20% 30% 40% 50% 60% 70% 80% 90%
Annotations Ratio

0

20

40

60

80

F1

Negative Mode
nnPU
ImbalancednnPU
MLPAC (Ours)

Figure 3: Experimental results of the setting with “truck”
category as positives.

Re-DocRED COCO
Method P R F1 P R F1

MLPAC (Ours) 64.5 72.8 68.4 80.9 59.2 68.3
w/o. Local reward 12.2 93.3 21.6 61.5 65.5 63.4
w/o. Global reward 84.5 45.9 59.5 89.7 6.9 12.8

w. Prec 85.9 44.0 58.1 96.2 29.8 45.5
w. F1 86.0 43.3 57.6 89.2 46.8 61.4

Table 3: Ablation study on our rewards.

Re-DocRED COCO
Method P R F1 P R F1

MLPAC (Ours) 64.5 72.8 68.4 80.9 59.2 68.3
w/o. Iterative training 89.9 34.6 49.9 76.4 33.8 46.9
w/o. Label enhancement 83.6 47.2 60.3 51.7 54.8 53.2
w/o. Action sampling 88.2 36.5 51.7 96.4 20.4 33.7
Supervised self-training 68.0 29.0 40.7 89.7 6.6 12.3

Table 4: Ablation study on our training strategy.

with the same setting following Su et al. (2021)
that concerns positive/negative imbalanced prob-
lems in binary image classification. The imbal-
anced datasets are constructed from CIFAR103 by
picking only one category as positives and treating
all other data as negatives.

Configuration and Baselines Of note, our frame-
work can integrate any supervised model architec-
ture. For a fair comparison, we take the same archi-
tecture of Kiryo et al. (2017); Su et al. (2021) as our
critic and policy networks. We compared to nnPU
(Kiryo et al., 2017) and ImbalancednnPU (Su
et al., 2021). More details are in Appendix D. We
tune the hyper-parameter w between {10, 20, 50}.
The action sampling number T is 100.

Results We show F1 scores with varying ratios
of annotated positives in Fig. 3. Our MLPAC
achieves significant improvements over Negative

3A multi-class dataset containing ten categories. https:
//web.cs.toronto.edu/
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Mode and previous work, It is worth mentioning
that our framework still demonstrates its superiority
though ImbalancednpU is specifically designed
for binary PU learning with imbalanced settings.

4.4 Analysis

We conduct ablation studies to analyze our MLPAC
framework both on modeling and training strategy.

Rewards Design: To show the effectiveness of
combining exploitation and exploration and the
benefit of local and global rewards, we train our
framework in the 10% annotations setting with-
out local rewards and global rewards, respectively.
Additionally, we replace the recall scores with pre-
cision w. Prec or F1 scores w. F1 as our global re-
wards to show the effects of different global reward
designs. Experimental results are shown in Table 3.
It can be observed that it is hard for an RL frame-
work to achieve comparable performance without
local rewards to guide exploitation. The reason is
that the action space of multi-label classification is
too large to find the global optimal directions. With-
out our global reward, the recall evaluation score
drops a lot (72.78 vs. 45.94), which demonstrates
the advantage of the global reward in alleviating
imbalance distribution. Both the two variants of
global reward damage the performance, revealing
the advance of taking the exactly accurate evalua-
tion as rewards in the partially annotated setting.

Training Strategy: To verify the effectiveness of
our training procedure, we attempt different train-
ing strategies shown in Tabel 4. w/o. Iterative
training means that we fix the critic network after
pretraining and only train the policy network in the
RL training procedure. w/o. Data enhancement
means that we still iteratively train our critic and
policy network but do not enhance pseudo labels
for the critic network. w/o. Action sampling means
that we leverage the whole action sequence to cal-
culate local rewards without sampling operation
illustrated in Section 3.4. Supervised self-training
means that we conduct self-training of the critic net-
work. It is obvious that our training method makes
remarkable achievements. More analysis experi-
ments are in Appendix E.1.

5 Conclusion

In this work, we propose an RL framework to deal
with partially annotated multi-label classification
tasks. We design local rewards assessed by a critic

network and global rewards assessed by recall func-
tions to guide the learning of our policy network,
achieving both exploitation and exploration. With
an iterative training procedure and a cautious data
enhancement, our MLPAC has demonstrated its
effectiveness and superiority on different tasks.

Limitation

We have considered the label correlations in our
challenge. However, in our setting, label corre-
lations may bring correlation bias to the severe
scarcity of positive labels. Therefore, we did not ex-
plicitly model the correlations in our current frame-
work. We would like to explore the potential of
leveraging the label correlations to enhance our
framework in future work.
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A Related Work

Different Settings under Weak Supervision
Many previous works, such as partial condi-
tional random field, focus on single-label multi-
class tasks with partial supervision (Mayhew
et al., 2019; Effland and Collins, 2021; Li et al.,
2021; Zhou et al., 2022). Recently, there have
been various settings of multi-label classifica-
tion tasks without fully annotated training sets:
Multi-label positive unlabelled learning, which is
our concern, supposing a multilabel dataset has
properties by which (1) assigned labels are def-
initely positive and (2) some labels are absent
but are still considered positive (Kanehira and
Harada, 2016; Wang et al., 2022; Yuan et al.,
2023); Partially observed labeling, which is also
termed as Multi-label classification with miss-
ing labels supposes partial positive and negative
classes are labeled (Durand et al., 2019; Zhang
et al., 2022; Ben-Baruch et al., 2022; Abdelfattah
et al., 2022); Partially positive observed labeling,
which supposes only part of positive classes are
observed with the assumption that at least one
positive label per instance should be observed.
Single positive labeling, which supposes one and
only one positive class per instance is observed
(Cole et al., 2021; Kim et al., 2022; Jouanneau
et al., 2023). Distantly supervised learning, which
supposes annotated samples contain both false pos-
itives and false negatives, devoted to dealing with
label noise problems (Ye and Luo, 2020; Sun et al.,
2023; Zeng et al., 2024).

B More technology details

B.1 Pos Weight and Neg Weight
In the “Pos Weight” method, we impose a large
weight wp to the positives. We set wp as the times

of spositive targets to unlabeled targets in each
training batch. Previous study (Li et al., 2020) had
stated that negative sampling can be considered
as a type of negative weighting method. And this
work experimentally find that negative sampling
even work better. In our experiments, we under-
sampling the unlabeled targets as the “Neg Weight”
method. Unlabeled targets 10 times the number of
positive targets are retained in each training batch.

B.2 Evaluation Metrics
We compute the F1 scores based on TP (True Posi-
tive), FP (False Positive), and FN (False Negative).

Recall = TP/(TP + FN),

P recision = TP/(TP + FP ),

F1 =
2 ∗Recall ∗ Precision

Recall + Precision
.

(7)

We choose the widely used evaluation metric
mAP on multi-label image classification. Nc is the
number of images containing class c, Precision(k,
c) is the precision for class c when retrieving k best
predictions and rel(k, c) is the relevance indicator
function that is 1 if the class c is in the ground-
truth of the image at rank k. We also compute the
performance across all classes using mean average
precision (mAP), where C is the number of classes.

APc =
1

Nc

N∑

k=1

Precision(k, c) ∗ rel(k, c), (8)

mAP =
1

C

∑

c

APc (9)

C Data Statistics

Document-level Relation Extraction Given a
document x containing entities Ex = {ei}|Ex|i=1 ,
DocRE aims to predict all possible relations be-
tween every entity pair. Each entity e ∈ Ex is
mentioned at least once in x. with all its proper-
noun mentions denoted asMe = {mi}|Me|

i=1 . Each
entity pair (es, eo) can hold multiple relations,
comprising a set y = Rs,o ⊂ R, where R is
a pre-defined relation set. We let the set R in-
clude ϵ, which stands for no-relation. To better
formulate, we denote the target of DocRE for
each document as a set of multi-hot vectors rep-
resenting labels of relation-existing entity pair
{y(es, eo) = yso = [yso1 , ..., ysoi , ..., yso|R|], s ∈
{1, |ED|}, o ∈ {1, |ED|}}, where ysoi ∈ {0, 1} and∑|R|

i=1 yi = |Rs,o|.
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In this task, we have trained our model based
on the training set in the Re-DocRED dataset and
validated our model by the Re-DocRED test set
and DocGNRE test set. There are 3053 documents
(including 59359 entities, and 85932 relations) in
the Re-DocRED training set and 500 documents
(including 9779 entities, and 17448 relations) in
the Re-DocRED test set. DocGNRE test set pro-
vides a more accurate and complete test set with
the addition of 2078 triples than ReDocRED.

To simulate partial annotation, we randomly kept
a ratio of annotated relations. As mentioned in the
introduction, Re-DocRED still misses some actual
relation annotations. Hence, we also conduct ex-
periments on the full training set to compare our
framework with previous fully-supervised work.
The size of label set C is 97 (contains <None>) in
this task. Supervised learning on DocRE gener-
ally faces two challenges: i) lots of actual relation
triples are not labeled by annotators because of the
long context and fine-grained relation types; ii) the
number of no-relation entity pairs are far larger
than the number of relation-existing entity pairs,
which cause an unbalanced problem.

Multi-label Image Classification Following pre-
vious work (Kanehira and Harada, 2016; Ben-
Baruch et al., 2022), Ben-Baruch et al. (2022) (P-
ASL), which deals with partial annotations contain-
ing both positive and negative classes, we utilize
MS-COCO dataset (Lin et al., 2014) containing 80
classes. We keep the original split with 82081 train-
ing samples and 40137 test samples. We simulate
the partial annotations following the operations in
P-ASL. But different from them, we only retain the
positive classes in their partial annotations and take
all the rest of the classes as UNKNOWN. Specifically,
We utilize the MS-COCO dataset to simulate the
‘Random per annotation’ scheme. We omit each
annotation no matter the positive or negative label
with probability p. With our setting, the retained
positive labels are considered as positives and the
rest are all unlabeled. We will not directly exploit
unavailable negative annotations.

Binary PU Learning Setting With our formu-
lation, an instance xi is an image, and the label
of an instance in binary classification settings can
be denoted as yi = [y1i , y

2
i ] where y1i is the la-

bel of positive and y2i is the label of negative. The
prediction for each image is conducted by setting
y corresponding to the higher score as 1 and the
other as 0. Hence, there are 50,000 training data

and 10,000 test data as provided by the original
CIFAR10. To make the training data into a partially
annotated learning problem, we randomly sample
a ratio of positives as annotated data and all the
leaving training data as an unknown set.

D Detailed Experimental Configuration

Document-level Relation Extraction We ran-
domly sample three different versions of datasets
and report the average results over them. Detailed
scores are in Table 5 in Appendix E.1. The training
hyper-parameters are the same as DREEAM (Ma
et al., 2023). We only train the policy network for
the last 20 epochs. It takes about 6 hours.

Multi-Label Image Classification For a fair
comparison, our critic and policy networks have the
same architecture as P-ASL. The training hyper-
parameters are the same as that in (Ben-Baruch
et al., 2022). Due to the different partially an-
notated settings, we rerun P-ASL utilizing their
codebase but with our datasets. P-ASL+Negative
means training a model taking all UNKNOWN as neg-
ative classes to predict label distribution as prior. P-
ASL+Counting means counting partially labeled
positive classes as distribution prior. We also rerun
EPR and ROLE methods from (Cole et al., 2021)
with our datasets, utilizing their official code. We
tune the hyper-parameter w between {5, 7, 12} in
this task. Following previous work (Ridnik et al.,
2021; Huynh and Elhamifar, 2020), we use both F1
scores and mAP as evaluation metrics in this task.
Detailed methodology of the re-weight approach
and the detailed formula of metric calculations can
be found in Appendix B.

Binary PU Learning We consider a 13-layer
CNN with ReLU as the backbone and Adam as
the optimizer. Kiryo et al. (2017) designed an algo-
rithm nnPU for PU learning with balanced binary
classification data, while Su et al. (2021) proposed
ImbalancednnPU considering imbalanced setting.
We take these two previous state-of-the-art mod-
els as our compared baselines. We rerun nnPU
and ImbalancennPU with their provided codes
and configurations and report the results. The neg-
ative reward sampling is 20% for all settings. The
threshold γ to choose enhancement labels is 0.8.
We keep the values of other hyper-parameters the
same as Su et al. (2021). Following previous work,
we evaluate all the methods with F1 scores. Unless
stated otherwise, the hyper-parameters specified in
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Annotations Ratio = 10%

Annotations Ratio = 50%

Annotations Ratio = 100%

Figure 4: Train Curve.

our framework remain the same in the following
experiments.

E More experiments

We indeed considered two different scenarios to
evaluate the robustness of our method.

Different dataset versions: To simulate partial
annotation, we randomly reserve a ratio of posi-
tive classes and treat other classes as unknown. To
fully verify the effectiveness and stability of our
model, we randomly constructed three versions of
data sets (refer to Table 5 for detailed results on
DocRE). It can be seen that our method achieves
consistent improvement in all the dataset versions.
Different runs in the same dataset: For multi-label
image classification, we repeat three runs in the
same dataset. The standard deviations of F1/MAP
scores of Table 10 in the paper are as follows.

E.1 Document-level Relation Extraction

Training curve. In Fig. 4, we display the reward
and loss curves of our model in three annotation
rations, 10%, 50%, and 100%. Our experimental
settings were conducted under partially annotated
multi-label tasks, but we also compute metrics on
ground Truth during the experiment.

All experiments on different ratios of anno-
tated labels To fully verify the effectiveness and
robustness of our model, we randomly constructed
three versions of data sets and tested the DREEAM
model, Pos Weight, Neg Weight, and our MLPAC
model on all data sets respectively. The results are
shown in Table 6.

Experiments on selecting action sampling ra-
tios (Take annotations ratio=50% as an example)
In order to select the action sampling ratio hyper-
parameter, we conducted comparative experiments
from 0.1 to 0.9, and finally found that the model
performed best when the hyperparameter was 0.4.

The results are shown in Table 5.
Critic network performance of Our MLPAC

We iteratively train our critic network and policy
network. After multiple rounds of iterations, the
performance of the critic network has been greatly
improved. The performance of the critic network
of our MLPAC is shown in Table 7.

Case study. In Table 12, we show an example
on the prediction of each method. Our MLPAC
predicts more true positives.

E.2 Multi-label Image Classification
The experimental results on extra evaluation
metrics and annotation ratios. In Table 8 and
Table 9, we show Precision and Recall of CIFAR10
and the results of other annotation ratios on Ms-
COCO. Table 10 shows the stability of our method
MLPAC. The standard deviation was computed
from three different runs on the MS-COCO dataset.

The experimental results on synthetic classi-
fication. According to the data construction, any
category of data in CIFAR10 dataset can be chosen
as the positive set. To further make our experiments
convincing, we show the results of different data
construction in Appendix E.2.
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version0 version1 version2 average
Sampling Ratio P R F1 P R F1 P R F1 P R F1

0.1 71.21 82.27 76.34 77.19 77.3 77.25 81.53 71.14 75.98 76.64 76.9 76.52
0.2 75.22 79.23 77.17 79.72 74.82 77.19 83.26 68.4 75.14 79.4 74.15 76.5
0.3 76.79 77.88 77.33 80.57 73.6 76.93 84.88 66.84 74.79 80.75 72.77 76.35
0.4 78.26 77.18 77.72 81.1 73.58 77.16 83.94 67.4 74.77 81.1 72.72 76.55
0.5 78.35 77.1 77.72 83.26 72.1 77.28 85.23 65.7 74.2 82.28 71.63 76.4
0.6 79.54 76.04 77.75 83.22 71.41 76.86 85.41 65.74 74.29 82.72 71.06 76.3
0.7 80.74 75.35 77.95 83.03 71.12 76.61 86.41 64.4 73.8 83.39 70.29 76.12
0.8 80.43 75.12 77.68 83.92 70.6 76.69 84.65 65.7 73.98 83.0 70.47 76.12
0.9 81.04 74.62 77.7 84.45 69.83 76.45 84.44 65.74 73.92 83.31 70.06 76.02

Table 5: Action Sampling Ratio

version0 version1 version2 average
Method Data Ratio P R F1 P R F1 P R F1 P R F1

DREEAM

10% 91.23 4.53 8.64 90.88 3.54 6.82 87.39 3.38 6.5 89.83 3.82 7.32
20% 90.74 10.0 18.02 92.37 9.65 17.47 90.86 9.8 17.69 91.32 9.82 17.73
30% 92.45 19.94 32.8 92.48 19.95 32.82 91.19 22.35 35.9 92.04 20.75 33.84
40% 93.12 28.08 43.15 91.92 34.82 50.51 92.25 36.34 52.14 92.43 33.08 48.6
50% 92.69 43.63 59.33 91.25 43.28 58.71 91.44 39.29 54.96 91.79 42.07 57.67
60% 92.16 48.56 63.6 90.49 56.52 69.58 89.52 55.68 68.66 90.72 53.59 67.28
70% 88.56 60.15 71.64 91.28 55.69 69.17 88.92 60.51 71.01 89.59 58.78 70.61
80% 87.91 65.18 74.86 89.83 62.75 73.89 86.95 66.49 75.36 88.23 64.81 74.7
90% 87.49 66.86 75.79 87.61 67.66 76.35 86.4 68.75 76.57 87.17 67.76 76.24

Pos Weight

10% 84.43 34.1 48.57 84.61 43.22 57.21 85.8 42.21 56.58 84.95 39.84 54.12
20% 87.72 47.36 61.51 82.51 57.19 67.56 86.61 51.3 64.44 85.61 51.95 64.5
30% 83.57 61.65 70.95 87.05 57.04 68.92 85.75 59.23 70.07 85.46 59.31 69.98
40% 87.51 59.26 70.67 84.29 65.91 73.97 85.65 64.14 73.35 85.82 63.1 72.66
50% 83.66 68.09 75.08 85.78 66.33 74.81 85.66 65.92 74.5 85.03 66.78 74.8
60% 84.85 68.57 75.85 85.55 68.09 75.83 84.51 68.87 75.89 84.97 68.51 75.86
70% 82.77 73.07 77.62 83.0 73.13 77.76 84.37 71.4 77.34 83.38 72.53 77.57
80% 83.57 73.82 78.39 82.46 75.68 78.93 83.64 73.61 78.31 83.22 74.37 78.54
90% 83.9 74.54 78.94 82.48 76.44 79.35 82.87 75.8 79.18 83.08 75.59 79.16

Neg Weight

10% 88.1 29.67 44.39 86.06 30.1 44.6 86.06 32.37 47.05 86.74 30.71 45.35
20% 82.94 55.7 66.64 83.72 55.24 66.56 85.49 51.25 64.08 84.05 54.06 65.76
30% 85.9 58.87 69.86 86.47 55.99 67.97 82.7 63.04 71.55 85.02 59.3 69.79
40% 86.1 62.08 72.14 85.55 62.72 72.37 85.19 64.47 73.39 85.61 63.09 72.63
50% 84.25 67.83 75.15 84.27 68.5 75.57 83.64 68.37 75.24 84.05 68.23 75.32
60% 84.25 69.76 76.32 84.39 69.17 76.02 82.92 71.29 76.67 83.85 70.07 76.34
70% 81.89 73.52 77.48 82.88 73.03 77.64 83.74 71.72 77.27 82.84 72.76 77.46
80% 80.99 76.24 78.54 82.51 74.83 78.48 81.58 74.93 78.11 81.69 75.33 78.38
90% 80.85 77.08 78.92 80.7 76.93 78.77 80.92 77.22 79.03 80.82 77.08 78.91

Our MLPAC

10% 64.47 72.78 68.37 62.39 74.98 68.11 48.65 83.15 61.39 58.5 76.97 65.96
20% 82.25 66.75 73.69 86.2 58.91 69.99 81.94 67.33 73.92 83.46 64.33 72.53
30% 83.71 67.98 75.03 86.03 63.58 73.12 80.87 71.56 75.93 83.54 67.71 74.69
40% 84.56 68.92 75.94 83.21 70.08 76.08 83.78 69.2 75.8 83.85 69.4 75.94
50% 81.4 72.86 76.89 80.32 74.34 77.21 82.55 73.62 77.83 81.42 73.61 77.31
60% 82.3 73.97 77.92 80.4 75.35 77.79 80.61 74.7 77.54 81.1 74.67 77.75
70% 83.34 73.57 78.15 83.27 73.87 78.29 83.25 74.36 78.55 83.29 73.93 78.33
80% 81.92 75.65 78.66 81.68 76.02 78.75 62.77 80.57 70.56 75.46 77.41 75.99
90% 80.83 77.58 79.18 80.41 78.01 79.19 80.97 77.48 79.19 80.74 77.69 79.2

Table 6: Results of DREEAM, Pos Weight, Neg Weight, MLPAC on different ratios of annotated labels
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version0 version1 version2 average
Data Ratio P R F1 P R F1 P R F1 P R F1

10% 60.69 74.91 67.06 57.47 77.17 65.88 45.89 84.41 59.46 54.68 78.83 64.13
20% 81.16 67.2 73.52 86.34 58.12 69.47 83.3 63.88 72.3 83.6 63.07 71.76
30% 83.1 66.99 74.18 83.65 64.82 73.04 80.95 69.74 74.93 82.57 67.18 74.05
40% 85.19 66.35 74.6 83.25 69.41 75.7 83.12 69.13 75.48 83.85 68.3 75.26
50% 80.44 72.78 76.42 78.51 75.1 76.76 83.24 72.89 77.28 80.73 73.59 76.82
60% 83.53 71.8 77.22 79.9 74.35 77.02 80.59 73.6 76.93 81.34 73.25 77.06
70% 86.14 69.18 76.74 87.65 66.63 75.71 85.57 69.9 76.94 86.45 68.57 76.46
80% 85.77 70.19 77.2 83.64 72.85 77.87 79.93 71.16 75.29 83.11 71.4 76.79
90% 83.86 74.78 79.06 82.85 74.42 78.41 83.77 74.42 78.82 83.49 74.54 78.76

Table 7: Critic network performance of Our MLPAC. We construct the training set three times with different random
seeds, corresponding to the three versions.

nnPU ImbnnPU Negative Mode Our MLPAC
Data Ratio P R F1 P R F1 P R F1 P R F1

10% 52.0 39.3 44.8 41.3 59.2 48.6 40.4 3.8 7.0 47.7 53.0 50.2
20% 54.6 42.6 47.9 43.9 66.8 53.0 76.8 9.6 17.1 61.4 68.1 64.6
30% 58.4 42.3 49.1 43.9 66.8 53.0 71.1 18.0 28.7 59.6 75.6 66.6
40% 57.1 45.1 50.4 54.8 73.7 62.8 76.9 24.9 37.6 62.1 74.6 67.8
50% 56.9 49.2 52.8 61.5 69.4 65.2 75.0 45.8 56.9 63.8 76.9 69.8
60% 59.4 49.7 54.1 61.5 68.1 64.6 69.1 46.5 55.6 65.0 77.7 70.8
70% 61.7 51.5 56.1 62.6 67.4 64.9 82.2 52.7 64.2 72.6 77.7 75.1
80% 63.0 52.7 57.4 63.2 72.8 67.7 79.5 64.4 71.2 78.9 73.0 75.8
90% 70.4 47.5 56.7 62.7 77.2 69.2 82.5 69.1 75.2 75.2 78.7 76.9

Table 8: The results of CIFAR10 dataset. We consider the original class ‘airplane’ as the positive targets.

Pos Weight Neg Weight Negative Mode Our MLPAC
Data Ratio P R F1 P R F1 P R F1 P R F1

20% 72.8 69.5 71.1 89.7 39.5 54.9 87.9 9.9 17.9 79.4 67.2 72.8
40% 74.3 75.0 74.7 82.5 65.6 73.1 90.3 28.0 42.8 83.0 74.4 78.5
60% 74.6 79.0 76.7 80.1 74.0 76.9 96.0 47.0 63.1 79.4 76.5 77.9
80% 72.5 83.1 77.4 83.1 75.7 79.2 92.8 65.3 76.6 82.4 77.5 79.9

Table 9: The results of other annotation ratios on MS-COCO dataset.

Standard Deviation

10% 30% 50% 70% 90%
F1 mAP F1 mAP F1 mAP F1 mAP F1 mAP

68.3(0.12) 66.6(0.33) 77.0(0.30) 77.5(0.25) 79.1(0.15) 80.4(0.13) 79.0(0.10) 81.4(0.15) 80.5(0.05) 83.4(0.05)

Table 10: The standard deviations (·) of F1 and mAP were computed from three different runs on the MS-COCO
dataset.
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Method 10% 20% 30% 40% 50% 60% 70% 80% 90%

nnPU 44.8 47.9 49.1 50.4 52.8 54.1 56.1 57.4 56.7
ImbalancednnPU 48.6 53.0 59.1 62.8 65.2 64.6 64.9 67.7 69.2

Negative Mode 7.0 17.1 28.7 37.6 56.9 55.6 64.2 71.2 75.2
MLPAC (Ours) 50.2 64.6 66.6 67.8 69.8 70.8 75.1 75.8 76.9

Table 11: F1 scores with varying ratios of positive annotations. We take images of the “Airplane" category as
positives in this table.

Item Content or Triples

Title Guido Bonatti

Document Guido Bonatti (died between 1296 and 1300) was an Italian mathematician, astronomer
and astrologer, who was the most celebrated astrologer of the 13th century. Bonatti was
advisor of Frederick II, Holy Roman Emperor, Ezzelino da Romano III, Guido Novello
da Polenta and Guido I da Montefeltro. He also served the communal governments of
Florence, Siena and Forlì. His employers were all Ghibellines (supporters of the Holy
Roman Emperor), who were in conflict with the Guelphs (supporters of the Pope), and
all were excommunicated at some time or another. Bonatti ’s astrological reputation
was also criticised in Dante’s Divine Comedy, where he is depicted as residing in hell
as punishment for his astrology. His most famous work was his Liber Astronomiae or
’Book of Astronomy’, written around 1277. This remained a classic astrology textbook
for two centuries.

DREEAM ⟨Dante, notable work, Divine Comedy⟩

Pos Weight
⟨Dante, notable work, Divine Comedy⟩
⟨Divine Comedy, creator, Dante⟩
⟨Divine Comedy, author, Dante⟩

Neg Weight

⟨Guido Bonatti, notable work, Liber Astronomiae⟩
⟨Guido Bonatti, notable work, Book of Astronomy⟩
⟨Dante, notable work, Divine Comedy⟩
⟨Divine Comedy, author, Dante⟩

Our MLPAC

⟨Guido Bonatti, notable work, Liber Astronomiae⟩
⟨Guido Bonatti, notable work, Book of Astronomy⟩
⟨Dante, notable work, Divine Comedy⟩
⟨Divine Comedy, creator, Dante⟩
⟨Divine Comedy, author, Dante⟩
⟨Liber Astronomiae, author, Guido Bonatti⟩

Ground Truth

⟨Guido Bonatti, date of death, 1296⟩
⟨Guido Bonatti, date of death, 1300⟩
⟨Divine Comedy, characters, Guido Bonatti⟩
⟨Divine Comedy, creator, Dante⟩
⟨Divine Comedy, author, Dante⟩
⟨Book of Astronomy, author, Guido Bonatti⟩
⟨Liber Astronomiae, author, Guido Bonatti⟩
⟨Guido Bonatti, country of citizenship, Italian⟩
⟨Guido Bonatti, notable work, Liber Astronomiae⟩
⟨Dante, notable work, Divine Comedy⟩
⟨Guido Bonatti, present in work, Divine Comedy⟩
⟨Guido Bonatti, notable work, Book of Astronomy⟩

Table 12: An Example from Re-DocRED
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