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Abstract

This paper proposes an information-theoretic
representation learning framework, named con-
ditional information flow maximization, to ex-
tract noise-invariant sufficient representations
for the input data and target task. It pro-
motes the learned representations have good
feature uniformity and sufficient predictive abil-
ity, which can enhance the generalization of
pre-trained language models (PLMs) for the
target task. Firstly, an information flow max-
imization principle is proposed to learn more
sufficient representations for the input and tar-
get by simultaneously maximizing both input-
representation and representation-label mutual
information. Unlike the information bottle-
neck, we handle the input-representation in-
formation in an opposite way to avoid the over-
compression issue of latent representations. Be-
sides, to mitigate the negative effect of potential
redundant features from the input, we design
a conditional information minimization prin-
ciple to eliminate negative redundant features
while preserve noise-invariant features. Exper-
iments on 13 language understanding bench-
marks demonstrate that our method effectively
improves the performance of PLMs for classifi-
cation and regression. Extensive experiments
show that the learned representations are more
sufficient, robust and transferable.

1 Introduction

The goal of deep representation learning (LeCun
et al., 2015) is to transform the raw observational
data into low-dimensional representations that are
essential for various downstream tasks. In recent
years, information-theoretic representation learn-
ing has been widely studied, aiming to discover
useful representations in a principled manner. The
InfoMax principle (Linsker, 1988) has extensive
applications in the field of self-supervised represen-
tation learning (van den Oord et al., 2018; Hjelm
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et al., 2019; Tschannen et al., 2020). In supervised
scenarios, minimizing the standard cross-entropy
is actually equivalent to maximizing the mutual in-
formation between the representations and the tar-
get task (Achille and Soatto, 2018; Boudiaf et al.,
2020). But InfoMax tends to preserve potential
redundant features that are irrelevant to the given
target, leading to biased representations. Another
noteworthy line of information-theoretic research is
built upon the information bottleneck (IB) principle
(Tishby et al., 1999; Tishby and Zaslavsky, 2015),
which aims to discover compact and informative
representations that can reduce redundant features
from the inputs (Alemi et al., 2017; Belghazi et al.,
2018; Fischer, 2020; An et al., 2023; Hu et al.,
2024). IB seeks to find a maximally compressed
representation of the input that preserves as much
information as possible about the target, striking a
balance between compression and prediction.

However, in the information flow (Goldfeld et al.,
2019) of neural networks, directly reducing the mu-
tual information between the input X and represen-
tations Z would violate the sufficiency constraint,
and may lose the necessary information for the tar-
get task Y . Under the Markov chain constraint
Y → X → Z, it’s hard to determine beforehand
how close we are to optimal compression, and this
can easily lead to the over-compression issue of la-
tent representations (Fischer, 2020; Hu et al., 2024).
As a result, current IB-based methods would yield
insufficient representations for the target task, and
hamper prediction ability of neural networks.

To ensure sufficiency for the target task and mit-
igate the negative effect of redundant features, we
propose a principled representation learning frame-
work, named conditional information flow maxi-
mization (CIFM), to extract noise-invariant suffi-
cient representations for the input and target. It
promotes the learned representations have good
feature uniformity and sufficient predictive ability,
which can enhance the generalization of pre-trained
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language models (PLMs) for the target task.
Firstly, we propose an information flow maxi-

mization (IFM) principle to learn more sufficient
representations for the input and target. It simulta-
neously maximizes both input-representation and
representation-label mutual information. Maximiz-
ing input-representation information I(X;Z) en-
sures sufficiency of the representations for the in-
put X and preserves information relevant to the
target Y , and maximizing representation-label in-
formation I(Y ;Z) captures necessary information
relevant to the target Y . In this way, the learned
representation can be of good uniformity and suffi-
cient predictive ability. Unlike IB that minimizes
input-representation information, we handle the
information in an opposite way to avoid the over-
compression issue of latent representations.

Besides, we design a conditional information
minimization (CIM) principle to mitigate the nega-
tive effect of potential redundant features from the
input. In the information flow of X → Z, InfoMax
may introduces excessive and noisy information
(Tian et al., 2020). For IFM, the task-irrelevant
redundant nuisances features obtained by maxi-
mizing I(X;Z) interfere with the optimization of
maximizing I(Y ;Z). There are spurious correla-
tions among these redundant features, forcing the
model to learn a biased representation Z. As a
conditional regularization term for IFM, the CIM
principle eliminates negative redundant features
while preserves noise-invariant features from in-
puts. Under the IFM principle with the conditional
regularization, CIFM can extract noise-invariant
sufficient representations for the input and target.

We conduct experiments on 13 natural language
understanding benchmarks. The results demon-
strate that CIFM can significantly improve the per-
formance of PLMs for classification and regression.
Our CIFM framework consistently achieves the
best average performance compared to other meth-
ods, including 4 universal models and 7 representa-
tive deep representation learning technologies un-
der different backbone models. For instance, with
the RoBERTa backbone, CIFM improves average
performance by +3.8% and +1.9% for classifica-
tion and regression tasks compared to CE/MSE, re-
spectively. Extended experiments prove that CIFM
can enhance the model’s generalization including
out-of-distribution and data-constrained scenarios,
robustness to random and adversarial noise, and
transferability to new tasks. And the results also
indicates that the learned representations by CIFM

are more sufficient, robust and transferable.
The contributions are as follows: 1) we pro-

pose an information flow maximization principle
to learn more sufficient representations for the in-
put and target by simultaneously maximizing both
input-representation and representation-label infor-
mation. 2) We design a conditional information
minimization principle to eliminate negative redun-
dant features while preserve noise-invariant fea-
tures from the input. 3) We present an information-
theoretic CIFM framework to learn noise-invariant
sufficient representations for the input and target. It
can enhance the generalization of PLMs for better
language understanding. 4) Experiments on 13 lan-
guage understanding benchmarks demonstrate that
CIFM achieves better performance under different
backbone models. Extensive experiments show
that the learned representations are more sufficient,
robust and transferable.1

2 Methodology

This section presents a new information-theoretic
representation learning framework, named condi-
tional information flow maximization (CIFM), to
extract sufficient representations for the input data
and target task, as well as eliminates negative re-
dundant features from the input. It contains two
principles including information flow maximiza-
tion and conditional information minimization.

2.1 Information Flow Maximization

The IB principle can reduce redundant features
from the inputs by finding a compressed representa-
tion of the input that maximally preserves informa-
tion about the output. However, in the information
flow (Goldfeld et al., 2019) of neural networks, di-
rectly minimizing the mutual information between
the input X and representations Z would violate
the sufficiency constraint, and may lose the nec-
essary information for the target task Y . Fischer
(2020) and Hu et al. (2024) have shown that the
compression term I(X;Z) would reduce neces-
sary information related to target task Y under the
Markov chain constraint Y → X → Z. As a
result, current IB-based methods would yield in-
sufficient representations for the target task, and
hamper prediction ability of neural networks.

As shown in Figure 1, regions being minimized
by I(X;Z) overlap with relevancy regions being

1The source code is available at https://github.com/
zerohd4869/CIFM
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Figure 1: Venn information diagram comparison of our CIFM with existing principles. The learned representations
by each principle is circled by the red dashed line.

maximized by I(Z;Y ). To preserve informative
signals from the input X relevant to the target Y
(i.e., region 1⃝) as much as possible in the infor-
mation flow of X → Z, we use the idea of Info-
Max to maximize I(X;Z). Besides, we also max-
imize I(Y ;Z) to capture necessary information
relevant to the target task Y . Combing the above
two terms, the principle of information flow max-
imization (IFM) simultaneously maximizes both
input-representation and representation-label mu-
tual information. It can be formulated as the maxi-
mization of the following Lagrangian,

max I(Y ;Z) + βI(X;Z), (1)

subject to the Markov chain constraint, i.e., Y →
X → Z. β is a parameter that balances the trade-
off between the informativeness for X and Y .

In Equation (1), the second term that maximiz-
ing input-representation information I(Y ;Z) en-
sures sufficiency of the representations for the in-
put X and preserves informative signals from X
relevant to the target Y . The first term that max-
imizing representation-label information I(Y ;Z)
captures necessary information relevant to the tar-
get Y . In this way, the learned representation by
IFM can be of good uniformity and sufficient pre-
dictive ability. Unlike the IB principle that mini-
mizes input-representation information, we handle
the information in an opposite way to avoid the
over-compression issue of latent representations.

Implementation of IFM The implementation of
IFM contains two terms, i.e., maximizing I(Y ;Z)
and I(X;Z). First, we maximize the lower bound
of I(Y ;Z) by estimating the conditional entropy
of the target Y given representations Z. Follow-
ing Kolchinsky et al. (2019) and Hu et al. (2024),
we use cross-entropy (CE) and mean squared er-
ror (MSE) as the estimators for classification and
regression, respectively, i.e., − log Softmax(zi, yi)
and ||zi− yi||2 for the i-th sample. Then, maximiz-
ing I(X;Z) can be optimized by using the mutual

information estimators, e.g., InfoNCE2 (van den
Oord et al., 2018) and MINE (mutual information
neural estimator) (Belghazi et al., 2018).

Here, we take InfoNCE as the default estimator
for maximizing I(X;Z). According to the infor-
mation flow of Z ← X → Z ′, the Markov chain
rule states that I(X;Z) ≥ I(Z;Z ′). Maximizing
the lower bound of I(X;Z), i.e., I(Z;Z ′), can be
optimized by using InfoNCE estimator. Specifi-
cally, for a sample xi with the representation zi, its
positive key is the augmented sample obtained by
dropout, and its negative keys are the other samples
in the batch N . In this case, we have,

I(X;Z) ≥ I(Z;Z ′)

≈ log(K)− 1

N

N∑

i=1

log
exp(zi · z+i /τ)∑K
j=1 exp(zi · z−j /τ)

,
(2)

where z+i is the positive key, which is the aug-
mented sample obtained by dropout. z−j represents
the negative keys, which are the representations of
the other samples in the batch. K is the number of
negative keys, i.e., 2N − 2. τ > 0 is a scalar tem-
perature parameter that controls the concentration
or separation of probability distribution.

Alternatively, we also present how to utilize the
MINE estimator to maximize I(X;Z). Specifi-
cally, we use a neural network to approximate the
lower bound of I(X;Z), i.e.,

I(X;Z) ≥ IΩ(X;Z)

= sup
ω∈Ω

EPXZ
[Tω(Z|X)]− log(EPX⊗PZ

[eTω(Z|X̃)]),
(3)

where PXZ is the joint distribution and PX ⊗ PZ

is the product of the marginals. Tω is a function
parametrized by an MLP (i.e., a fully-connected
neural network with two hidden layers) with the
parameter ω ∈ Ω. The expectations of IΩ(X;Z)
are estimated by shuffling the samples from the
joint distribution along the batch axis. Additionally,

2InfoNCE is a softmax-based version of noise-contrastive
estimation (Gutmann and Hyvärinen, 2010).
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an exponential moving average is used to make a
biased estimate.

2.2 Conditional Information Minimization
In the information flow of X → Z, InfoMax princi-
ple may introduce excessive and noisy information
(Tian et al., 2020). In our IFM, the task-irrelevant
redundant nuisances features obtained by maxi-
mizing I(X;Z) interfere with the optimization of
maximizing I(Y ;Z). There are spurious correla-
tions among these redundant features, forcing the
model to learn a biased representation Z.

To address the issue, we design a new condi-
tional information minimization (CIM) term to
eliminate negative redundant features while pre-
serve noise-invariant features from inputs. As
shown in Figure 1, we categorize all redundant
information (i.e., region 2⃝ and 3⃝) into two broad
categories: negative (i.e., region 3⃝) and non-
negative (i.e., region 2⃝), depending on whether
it impedes the prediction ability of the target task.
The negative features mean the nuisances that exist
spurious correlations among redundant informa-
tion and have a negative impact on task prediction.
These non-negative features may encompass some
inherent structured characteristics in the data, and
preserving them during the learning process con-
tributes to improving the model’s generalization.

Given the target Y , we define the conditional
effective mutual information between the input X
and the representations Z as the subset of effective
information that is irrelevant to the target Y . Here,
effective information (Achille et al., 2019; Terzi
et al., 2021) in the activations Zδ can be seen as
the amount of information about the input X that
is retained after adding the noise δ. The CIM prin-
ciple can be formulated as the minimization of the
conditional effective information between the input
X and the activations Zδ given the target Y , i.e.,

min I(X;Zδ|Y ), (4)

where Zδ = ϕw+δ(X) are the activations of
the intermediate layer computed by the perturbed
weights w + δ. Under the target Y , the higher the
noise level δ (∥ δ ∥2 ≤ ϵ), the effective information
in the activations Zδ about X gradually decreases
to the optimum (i.e., region 2⃝ + 3⃝ in Figure 1)
with the maximum noise level ϵ.

Implementation of CIM Based on the relation
between Fisher information and effective informa-
tion (Achille et al., 2019), we use the Fisher Infor-

mation of the weights to control the lower bound
of the conditional effective information:

I(X;Zδ|Y ) ≈ H(X|Y )− Ex,y

[
1

2
log

(
(2πe)k

|Fz|x,y|

)]
, (5)

where Fz|x,y represents the the Fisher information
in the activations Zδ given the input X and target
Y , i.e., Fz|x,y = Ez[∇2

x log p(z|x, y)]. H(X|Y ) is
the conditional entropy of input X given target Y .
To reduce the conditional effective information be-
tween inputs X and activations Zδ given the target
Y , it is sufficient to decrease the Fisher |Fz|x,y|,
that is, increasing ϵ while keeping the target Y of
the noise features remains the same.

Inspired by Terzi et al. (2021), we use gradient-
based adversarial training (Goodfellow et al., 2015;
Miyato et al., 2017) to approximately estimate the
minimization of the Fisher information Fz|x,y in
the activations Zδ given the input X and target
Y . Formally, denote (x, y) as a mini-batch in-
put sampled from distribution D and p(y|x; θ) as
a model with the parameter θ. The worst-case
perturbation δ under the given Y can be com-
puted by the back-propagation in the network,
i.e., max∥δ∥q≤ϵKL(p(·|x; θδ); p(·|x; θ)) with a
Lagrange constraint LIFM (x, y; θδ) and an Lq

norm constraint. At each step of training, we iden-
tify the adversarial perturbations δ against the cur-
rent network with the parameter θ̂, and put them on
the weights of first several hidden layers of the net-
work. When using a Transformer-based network
(e.g., RoBERTa) as the model backbone, we prob-
abilistically put the perturbations on the weights
of an embedding layer and the first hidden layer
of the Transformer based on a predefined perturba-
tion rate. With a linear approximation (Goodfellow
et al., 2015), an Lq norm-ball constraint, a certain
radius ϵ for δ, and the original objective LIFM , the
formulation of adversarial objective LCIM is,

min
θ

E(x,y)∼D max
∥δ∥2≤ϵ

LIFM (x, y; θδ),

where δ = −ϵg/∥g∥q, g = ∇x log p(y|x; θ̂).
(6)

Under the objective of LIFM , the conditional in-
formation minimization loss LCIM can be viewed
as an adversarial regularizer.

2.3 CIFM Framework
We incorporate the conditional information min-
imization into information flow maximization,
named conditional information flow maximization
(CIFM). The total optimization principle can be,

max I(Y ;Z) + βI(X;Z)− I(X;Zδ|Y ). (7)
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The first two terms simultaneously maximize both
input-representation and representation-label mu-
tual information, which can learn more sufficient
representations for the input and target. The last
term eliminates negative redundant features while
preserves noise-invariant features from the input to
mitigate the negative effect of potential redundant
features. Totally, CIFM can extract noise-invariant
sufficient representations for the input and target.
It promotes the learned representations have good
uniformity and sufficient predictive ability, which
can enhance the generalization of pre-trained lan-
guage models for the target task.

As shown in Figure 1, given the target task, Info-
Max maximizes information between the represen-
tations Z and the target task Y (e.g., the CE loss for
classification), which preserves a lot of potential
redundant features for the target task. There are
spurious correlations among these redundant fea-
tures (i.e., region 3⃝) , forcing the model to learn
biased representations Z. IB is prone to learning
over-compressed representations due to the chal-
lenge in balancing between compression and task
prediction. Directly minimizing the mutual infor-
mation between the input X and representations
Z can easily reduce necessary information (i.e.,
region 1⃝) for the target task Y to some extent un-
der the Markov chain constraint. Different from
them, CIFM finds more sufficient representations
(i.e., region 1⃝ and 2⃝) for the input and target, as
well as adversarially eliminates negative redundant
features (i.e., region 3⃝) from the input.

3 Experiments

3.1 Experimental Setups

Downstream Tasks and Datasets We conduct
experiments on a variety of classification and re-
gression tasks. Specifically, we utilize 10 classifica-
tion benchmarks: EmojiEval (Barbieri et al., 2018)
for emoji prediction, HatEval (Basile et al., 2019)
for hate speech detection, IronyEval (Hee et al.,
2018) for irony detection, OffensEval (Zampieri
et al., 2019) for offensive language detection, Sen-
tiEval (Rosenthal et al., 2017) for sentiment analy-
sis, StanceEval (Mohammad et al., 2016) for stance
detection, and 4 emotion-related benchmarks from
different domains (i.e., EmotionEval (Mohammad
et al., 2018), ISEAR (Scherer and Wallbott, 1994),
MELD (Poria et al., 2019), and GoEmotions (Dem-
szky et al., 2020)) for categorical emotion analy-
sis. For regression, we use 3 benchmarks: STS-B

(Cer et al., 2017) for semantic similarity prediction,
CLAIRE (Roth et al., 2022) for plausible clarifica-
tion ranking, and EmoBank (Buechel and Hahn,
2017) for dimensional emotion analysis. More de-
scriptions can be found in Appendix B.1.

Comparison Methods We compare against the
4 universal models (i.e., SVM (Cortes and Vap-
nik, 1995), FastText (Joulin et al., 2017), BiLSTM
(Hochreiter and Schmidhuber, 1997), and GPT-
3.53) and 7 representative deep representation learn-
ing technologies (i.e., CE/MSE, CE+CP (Pereyra
et al., 2017), CE/MSE+AT (Miyato et al., 2017),
CE+SCL (Gunel et al., 2021), VIB (Alemi et al.,
2017; Mahabadi et al., 2021), MINE-IB (Belghazi
et al., 2018) and MEIB (An et al., 2023)) with 2
different backbone models. For these represen-
tation learning technologies, we use two PLMs,
i.e., BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019), as the backbone models for fine-
tuning on downstream tasks. Concretely, we use
bert-base-uncased4 and roberta-base4 to initial-
ize BERT and RoBERTa for fine-tuning on down-
stream tasks. See Appendix B.2 for more details.

Evaluation Metrics We use the same evaluation
metric from the original tasks. For classification
tasks, the macro-averaged F1 over all classes is
applied in most cases. There are three exceptions:
stance (macro-averaged of F1 of favor and against
classes), irony (F1 of ironic class), and sentiment
analysis (macro-averaged recall). For regression
tasks, we use both Pearson and Spearman corre-
lation coefficients on STS-B and CLAIRE, and
Pearson correlation for each VAD dimension on
EmoBank. We also report a global metric based
on the average of all dataset-specific metrics, i.e.,
1
T

∑T
t=1

1
Nt

∑Nt
n−1Mt,n,. Here, Mt,n denotes the

performance for the n-th metric in the t-th task,
Nt denotes the number of metrics in the t-th task,
and T refers to the number of tasks. Besides, for
the target dataset, the t-test (Kim, 2015) is used
to verify the statistical significance of the differ-
ences between the results of our CIFM and the best
non-CIFM methods using the same backbone.

Implementation Details All experiments are
conducted on a single NVIDIA Tesla A100 80GB
card. The validation sets are used to tune hyper-
parameters and choose the optimal model. For
each method, we run five random seeds and re-

3https://chat.openai.com
4https://huggingface.co/

14092

https://chat.openai.com
https://huggingface.co/


Methods EmojiEval EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval ISEAR MELD GoEmotions Avg.M-F1 M-F1 M-F1 F1(i.) M-F1 M-Recall M-F1 (a. & f.) M-F1 M-F1 M-F1
SVM† 29.30 64.70 36.70 61.70 52.30 62.90 67.30 - - - -
FastText† 25.80 65.20 50.60 63.10 73.40 62.90 65.40 - - - -
BiLSTM† 24.70 66.00 52.60 62.80 71.70 58.30 59.40 - - - -
GPT-3.5 6.34±0.01 73.23±0.18 48.30±0.11 66.81±3.26 63.71±0.13 40.40±3.13 39.45±0.10 67.22±0.09 41.46±0.11 25.21±0.08 47.21
BERT backbone
CE 22.30±0.60 76.05±1.41 44.67±1.78 59.38±3.01 80.16±1.26 70.54±0.44 65.21±0.71 67.17±0.78 39.80±0.84 46.29±0.79 57.16
CE+CP 21.91±0.71 76.28±1.20 45.97±2.93 64.06±2.41 78.99±1.57 70.68±0.31 65.83±0.39 67.20±0.95 39.54±1.61 46.39±0.63 57.69
CE+AT 22.93±0.70 75.08±1.23 46.30±3.61 64.23±2.04 79.68±1.59 70.55±0.57 66.46±1.13 65.70±0.69 39.84±0.38 47.37±0.54 57.81
CE+SCL 21.72±0.51 75.43±1.37 45.86±1.15 65.39±2.46 80.20±0.56 70.70±0.79 65.34±0.60 67.54±0.64 40.00±1.96 46.50±0.46 57.87
VIB 21.31±0.62 77.37±0.71 45.99±1.93 63.82±1.00 80.37±1.11 70.39±0.31 65.43±0.60 67.24±0.57 38.52±0.51 45.89±1.10 57.63
MINE-IB 21.29±0.31 76.60±0.41 47.64±2.11 65.86±2.57 78.67±2.28 69.85±0.54 65.35±0.88 67.62±0.40 41.23±0.67 46.87±0.42 58.10
MEIB 21.87±0.73 76.70±0.82 48.27±1.72 65.87±2.14 80.49±0.81 70.55±0.57 65.59±1.58 67.44±0.50 39.30±0.61 46.26±0.81 58.23
CIFM 24.28∗±0.39 77.74±1.07 59.22∗±1.75 65.51±1.61 80.67±0.99 70.66±0.28 67.81∗±0.97 71.51∗±0.51 41.72∗±0.80 48.42∗±0.74 60.75
RoBERTa backbone
CE 30.25±1.32 77.41±1.33 45.49±4.70 57.99±4.96 78.74±2.20 71.80±0.93 66.78±1.34 70.00±0.45 39.23±0.41 46.64±1.15 58.43
CE+CP 31.12±0.84 77.54±0.70 48.59±3.28 58.75±6.19 79.50±0.98 72.82±0.29 66.89±1.67 70.58±0.71 40.74±0.89 47.98±0.65 59.45
CE+AT 32.00±0.93 77.30±1.07 44.71±4.76 60.17±3.17 79.81±1.11 72.51±0.44 67.81±0.95 70.97±0.68 40.10±0.60 47.89±1.21 59.33
CE+SCL 31.09±1.85 76.98±2.02 49.51±2.86 60.71±4.23 80.39±0.83 73.16±0.44 66.73±1.54 70.26±0.45 40.64±1.02 47.87±0.86 59.72
VIB 29.71±0.79 77.99±0.86 49.39±3.08 59.93±4.57 79.63±0.66 72.81±0.39 68.40±0.52 70.74±0.44 38.94±0.55 46.23±0.18 59.38
MINE-IB 31.70±0.45 78.79±0.58 46.39±2.82 57.39±8.27 79.76±0.67 72.85±0.56 67.27±1.00 70.15±0.58 41.80±2.14 48.88±1.04 59.50
MEIB 29.94±1.30 78.73±0.90 49.34±2.42 60.54±2.70 79.68±0.98 72.78±0.29 67.89±1.70 70.86±0.61 39.00±0.37 47.18±1.15 59.59
CIFM 32.32±0.87 79.63∗±0.57 59.55∗±0.91 63.02∗±3.81 80.96∗±0.55 72.93±0.27 69.01∗±0.80 71.66∗±0.68 43.99∗±1.10 49.51∗±0.31 62.26

Table 1: Classification evaluation (%) on 10 benchmarks. BERT and RoBERTa are the backbone models for
fine-tuning on each benchmark. † means the results are from Barbieri et al. (2020). For other methods, we run five
random seeds and report the average result on test sets. Best results for each benchmark are highlighted in bold. ∗

represents statistical significance over state-of-the-art scores for the same backbone under the t-test (p < 0.05).

Methods
STS-B CLAIRE EmoBank Avg.

Spearman Pearson Spearman Pearson Pearson (v) Pearson (a) Pearson (d)
MSE 88.33±0.32 88.80±0.36 50.37±5.90 49.10±5.74 80.62±0.64 55.43±1.95 49.51±1.64 66.72
MSE+AT 88.40±0.50 89.01±0.37 53.09±0.64 51.87±0.65 81.04±0.82 56.73±1.16 51.48±1.46 68.15
VIB 88.45±0.50 89.01±0.40 52.86±0.88 51.66±0.78 79.41±0.82 55.07±0.96 46.50±3.85 67.10
MEIB 88.61±0.14 89.13±0.17 52.85±0.72 51.39±0.81 79.32±0.63 55.58±1.15 46.63±3.10 67.17
CIFM 88.94∗±0.38 89.52∗±0.32 53.62∗±0.51 52.88∗±0.30 81.64∗±0.84 57.06∗±0.95 51.60±1.11 68.64

Table 2: Regression evaluation (%) on 3 benchmarks with RoBERTa backbone. ∗ represents statistical significance
over state-of-the-art scores under the t-test (p < 0.05).

Methods
Avg. Classification Avg. Regression
BERT / RoBERTa RoBERTa

CIFM 60.75 / 62.26 68.64
- w/o CIM 58.96 / 60.96 66.77
- w/o CIM & IFM 57.27 / 57.92 67.32

Table 3: Ablation results (%). We report the average
results on 10 classification benchmarks and 3 regression
benchmarks. See Appendix C.1 for the detailed results.

port the average result of the test sets. The net-
work parameters are optimized by using Adamax
optimizer (Kingma and Ba, 2015) with the learn-
ing rate of 5e−5, the weight decay coefficient of
{0, 0.01, 0.001}. More implementation details are
listed in Appendix B.3.

3.2 Overall Results

The overall results for 10 classification bench-
marks and 3 regression benchmarks are summa-
rized in Table 1 and Table 2, respectively. Our
CIFM consistently obtains the best average per-
formance over comparison methods. When using
RoBERTa, CIFM improves average performance

by +3.8% and +1.9% for classification and regres-
sion tasks compared to CE/MSE, respectively. The
results indicate the good generalization ability of
our method to unseen test sets and show the superi-
ority of our method. We notice that CIFM achieves
big improvements for HatEval and IronyEval, i.e.,
+14.1% macro-F1 scores and +5.0% F1 scores of
ironic. In HateEval, there is a phenomenon of dis-
parity in topic distribution between the validation
set and the test set. Besides, the task of IronyEval
requires complex semantic understanding, and the
differences between ironic and non-ironic texts are
usually subtle. The results indicate that CIFM has
a good generalization capability on the above sce-
narios, i.e., topic shifts and subtle semantic labels.

3.3 Ablation Study
Loss Analysis Table 3 shows an ablation study
by removing the conditional information minimiza-
tion (w/o CIM) and information flow maximization
(w/o IFM). From results, the full CIFM achieves
the best performance on classification and regres-
sion tasks. It proves the effectiveness of combing
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Figure 2: Comparison results of CIFM with different MI
Estimators and the CE baseline on classification tasks.
RoBERTa is the default backbone model.

Methods
EmotionEval ISEAR MELD Avg.→ GoEmotions → GoEmotions → GoEmotions

CE 73.79±2.57 42.99±2.10 30.71±0.54 49.16
CE+AT 72.54±3.89 44.11±1.44 32.05±1.69 49.57
VIB 74.73±3.52 41.88±1.65 30.50±1.05 49.03
MEIB 75.55±2.05 42.10±0.61 30.11±1.33 49.25
CIFM 75.88±0.93 58.85±1.93 36.44±1.76 57.06

Table 4: Out-of-distribution evaluation results (%). For
example, MELD→ GoEmotions refers to training the
model on training set of MELD and predicting with the
test set of GoEmotions. We experiment with RoBERTa
backbone. We run five random seeds and report the
average results on test sets of target domains. Labels that
do not appear in the training corpus are not evaluated.

CIM and IFM. Specifically, learning more suffi-
cient representations by IFM can boost the per-
formance of classification tasks. Mitigating the
negative effect of redundant features by CIM is
more helpful for regression.

Effectiveness Evaluation with Different MI Esti-
mators We further implement our CIFM by re-
placing the default InfoNCE estimator with MINE
(Belghazi et al., 2018) to estimate I(X,Z). Fig-
ure 2 shows comparison results of CIFM with
different mutual information (MI) estimators and
the CE baseline on the classification benchmarks.
From results, our CIFM and its variant CIFM w/
MINE consistently achieve better results on all
tasks. It confirms the effectiveness of our CIFM
principle under different MI estimators.

3.4 Generalization Evaluation

We evaluate the generalization of CIFM under
the following two settings, i.e., out-of-distribution
(OOD) and data-constrained scenarios.

Out-of-Distribution Generalization Evaluation
We choose emotion-related benchmarks (e.g., Emo-
tionEval, ISEAR, MELD, and GoEmotions), which
are collected from different domains and aim to
predict the label of different emotion taxonomies.

To implement OOD scenarios, we train the model
on the original training set from a source domain,
select the best model based on the validation set
of the source domain, and test on the test set of a
target domain. To avoid the interference of label
mapping bias between different taxonomies, each
model is trained on the dataset with coarse-grained
taxonomy to predict the label for another dataset
with fine-grained taxonomy (i.e., GoEmotions). Ta-
ble 4 shows the performance under OOD scenarios.
CIFM obtains the best results on all OOD settings.
Comparing to CE, CIFM achieves +7.9% improve-
ments in terms of average scores. This results ex-
hibit that CIFM can promote the learning of more
sufficient representations for target task than oth-
ers, which enhances the generalization in handling
OOD scenarios across different domain shifts.

Evaluation under Data-constrained Scenarios
We experiment under different ratios of the train-
ing set to evaluate the generalization when training
with data-constrained scenarios. Specifically, given
a predefined ratio (e.g., 20%) and a random seed,
we randomly sample from the original training set.
We obtain 5 training subsets by independently and
repeatedly sampling five times from the original
training set with 5 different random seeds. All
methods are trained on these 5 subsets of the train-
ing set, and we report the average results on the
test set. Figure 3 shows results of CE, CE+AT,
VIB, MEIB, and our CIFM against different sizes
of training set with RoBERTa backbone. With a
smaller ratio, the comparison methods struggle to
capture complex patterns from the limited data,
resulting in poor generalization on the test sets.
Our CIFM achieves superior performance on all
classification tasks against different ratios of the
training set. This proves that CIFM can enhance
the model’s generalization ability, even under con-
ditions of limited training data.

3.5 Robustness Evaluation

We experiment to evaluate the model’s robustness
to noise samples under various optimization objec-
tives during training. We adjust different strengths
of random and adversarial perturbations on the test
set. The random perturbations are from a multivari-
ate Gaussian, and the adversarial perturbations are
produced by a fast gradient method (Miyato et al.,
2017). These perturbations are scaled by the L2

norm and then applied to the embedding layer in
the testing process. Following the empirical robust

14094



Figure 3: Results of different methods against different sizes of training set with RoBERTa backbone.

Figure 4: Robust scores against different random perturbation strengths. RoBERTa is the default backbone.

Figure 5: Robust scores against different adversarial perturbation strengths. RoBERTa is the default backbone.

evaluation (Carlini and Wagner, 2017; Hu et al.,
2023), we report the robust scores in terms of orig-
inal evaluation metrics on noise samples generated
from original test sets for each benchmark.

From Figure 4 and Figure 5, CIFM gains better
robust scores over other objectives on all classifi-
cation tasks. Compared to CE, CIFM achieves an
average increase of +3.2% and +3.6% in robust
scores under random and adversarial noise, respec-
tively. It indicates that CIFM can safely discard
the specific redundancy regions (i.e., region 3⃝ in
Figure 1) that are negative to the target task. That
is, CIFM learns noise-invariant features from input,
which could be beneficial to noise scenes.

3.6 Transferability Evaluation

Unlike IB-based methods that learn representa-
tions by eliminating all target-irrelevant informa-

tion, CIFM adversarially preserves noise-invariant
but target-irrelevant features from the input, i.e.,
region 2⃝ in Figure 1. We believe that although
the information of this region may not directly be
relevant to the target, it can be valuable in learning
more sufficient representations for the input data,
accordingly to enhance the model’s transferability.
To prove this, we evaluate both linear and nonlinear
transferability to new tasks. Two large-scale GoE-
motions and SentiEval datasets are selected as the
source dataset for pre-training. After pre-training,
we freeze parameters of feature extractor (including
parameters of an embedding layer and all hidden
layers of the Transformer) and fine-tune a new clas-
sifier for each target task. We implement linear and
nonlinear transferability evaluations by employing
a linear hidden layer (Linear) and a convolutional
neural network (CNN) as classifiers, respectively.
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Methods GoEmotions→ Others SentiEval→ Others
Cls. Pre-train Obj. EmojiEval EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval ISEAR MELD Avg. Avg.

Linear

CE 5.89 59.39 58.52 49.36 74.86 66.42 38.47 49.58 31.57 48.23 37.88
CE+AT 5.74 59.65 58.47 46.23 74.67 65.86 37.43 48.63 31.62 47.59 38.20
VIB 5.64 52.51 58.01 45.54 72.57 64.87 39.05 47.11 30.00 46.14 37.07
MEIB 4.44 51.10 57.64 44.67 71.38 62.79 37.89 47.98 28.61 45.17 35.26
CIFM 8.10 59.74 59.33 47.96 75.41 67.03 38.41 50.17 31.71 48.65 40.44

CNN

CE 11.43 72.33 45.40 59.35 75.84 70.22 56.89 61.88 41.29 54.96 55.13
CE+AT 10.74 73.03 49.16 57.36 78.30 70.49 55.29 61.93 41.20 55.28 55.40
VIB 12.52 72.02 48.52 57.83 75.43 69.62 55.91 60.38 40.06 54.70 53.07
MEIB 10.03 71.45 47.09 51.39 75.10 68.43 47.33 58.93 38.55 52.03 50.94
CIFM 15.19 75.30 50.58 57.14 78.64 70.99 58.80 64.71 41.37 56.97 56.21

Table 5: Transferability results (%) of GoEmotions→ Others and SentiEval→ Others with RoBERTa backbone.
GoEmotions and SentiEval are the source datasets for pre-training. Pre-train Obj. indicates the pre-training objective.
Cls. refers to the classifier when fine-tuning. Best results for linear (i.e., Linear) and nonlinear (i.e., CNN) classifiers
are highlighted in bold. Detailed results of SentiEval→ Others are listed in Appendix C.2.

Figure 6: Quality analysis of the learned representations by different optimization objectives. The X-axis refer to
the uniformity of hidden representations, and the Y-axis refer to the ARI score of output representations. The lower
uniformity means the better sufficiency for the input, and the higher ARI means the better sufficiency for the target.

Table 5 summarizes the average scores over the
other nine target tasks against two types of classi-
fiers. Notably, the pre-trained CIFM consistently
achieves the best average scores on new tasks by
fine-tuning linear and non-linear classifiers. The
results demonstrate that CIFM can capture more
sufficient representations from the input and the
learned representations are more transferable. Be-
sides, employing a CNN classifier tends to yield
higher scores compared to a linear classifier. This
proves nonlinear classifiers are instrumental in en-
hancing the model’s adaptability across tasks.

3.7 Representation Quality Evaluation

To evaluate the quality of the learned representa-
tions, we use two metrics to measure the sufficiency
of both the input and target task. Following Wang
and Isola (2020), we choose the uniformity metric
to measure the preserved maximal information of
hidden representations from the input. Following
Hu et al. (2023), we apply the adjusted rand index
(ARI) metric to assess the preserved maximal infor-
mation of output representations for label structure.
The lower the uniformity, the better sufficiency for
the data. Conversely, a higher ARI indicates a bet-

ter sufficiency for the target.
Figure 6 shows uniformity and ARI of represen-

tations learned by various optimization objectives.
CIFM not only extracts more uniform distributions
on the hidden feature space, but also achieves better
supervised clustering ability on the output represen-
tations. This implies that our CIFM exhibits more
sufficient representations for the input and target,
and the learned representations have good feature
uniformity and sufficient predictive ability.

4 Conclusion

We propose an information-theoretic CIFM frame-
work to extract noise-invariant sufficient represen-
tations for the input data and target task. Firstly, an
IFM principle is proposed to learn more sufficient
representations for the input and target. Besides, a
CIM principle is designed to eliminate negative re-
dundant features while preserve noise-invariant fea-
tures from the input. Experiments on 13 language
understanding benchmarks demonstrate that CIFM
effectively improves the performance of PLMs for
classification and regression. Extensive experi-
ments show that the learned representations are
more sufficient, robust and transferable.
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Limitations

This paper introduces a new information-theoretic
framework to extract sufficient representations for
the input data and target task, as well as eliminates
negative redundant features from the input. It pro-
motes learned representations with good uniformity
and sufficient predictive ability, thereby enhancing
the generalization of pre-trained language models
for the target task. However, the technique is stud-
ied only for different classification and regression
tasks; its effectiveness in generation tasks remains
to be further validated. Additionally, the princi-
ples proposed in this paper require more in-depth
theoretical investigations.
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Appendix Overview

In the appendix, we will 1) briefly illustrate related
work, 2) provide detailed experimental setups, and
3) report detailed experimental results.

A Related Work

Information-theoretic representation learning has
become the workhorse of several impressive deep
learning achievements, ranging from practical ap-
plications (Pereyra et al., 2017; Alemi et al., 2017;
Belghazi et al., 2018) to theoretical investigations
(Xu and Raginsky, 2017; Steinke and Zakynthinou,
2020; Kawaguchi et al., 2023). The aim is typically
to discover useful and informative latent represen-
tations in a principled and systematic manner. In
the context of the training principle, information-
theoretic representation learning approaches can
be broadly categorized into InfoMax-based and IB-
based methods.

In the field of machine learning, the informa-
tion maximization (InfoMax) principle was first
introduced by Linsker (1988). It suggests that a
linear or nonlinear network can be viewed as an
information channel and the goal is to transmit as
much information as possible from the input data
through the network. In recent years, InfoMax has
extensive applications in the field of self-supervised
representation learning (Chen et al., 2016; van den
Oord et al., 2018; Hjelm et al., 2019; Tschannen
et al., 2020; Kong et al., 2020). Chen et al. (2016)
extend generative adversarial networks to learn dis-
entangled representations by similarly using Info-
Max. Tschannen et al. (2020) study the usage of
InfoMax in representation learning and shows the
success depend on the inductive bias by the model
architectures and mutual information (MI) estima-
tors. Kong et al. (2020) explore several embedding
models based on InfoMax, and introduce an ob-
jective that maximizes MI between the sentence
representation and the n-grams. In supervised sce-
narios, minimizing the standard cross-entropy is
actually equivalent to maximizing the mutual infor-
mation between the representations and the target
task (Achille and Soatto, 2018; Kolchinsky et al.,
2019; Boudiaf et al., 2020). Moreover, Pereyra
et al. (2017) add the negative entropy to the nega-
tive log-likelihood to penalize overconfident output
distributions in a supervised manner.

The information bottleneck (IB) principle
(Tishby et al., 1999; Tishby and Zaslavsky, 2015)
aims to balance the trade-off between the compres-

sion of representation and the power of predicting.
Alemi et al. (2017) propose an efficient variational
estimation method VIB based on the IB princi-
ple. Peng et al. (2019) use IB to constrain informa-
tion flow in the discriminator for better adversarial
learning. Then, Mahabadi et al. (2021) use VIB
to suppress irrelevant features when fine-tuning on
low-resource language understanding tasks. For
tractable application of IB in a continuous setting,
Belghazi et al. (2018) propose a mutual information
neural estimation method to estimate MI and design
an IB principle based on the estimator. Ragonesi
et al. (2021) employ MINE-IB to learn unbiased
representations. Fischer (2020) and Ramé and Cord
(2021) introduce a conditional mutual information
term to alleviate the over- and under-compression
issue of IB. An et al. (2023) explicitly use the con-
ditional entropy of the stochastic embedding as a
confidence indicator and encourage the model to
assign larger variance to more certain inputs. Re-
cently, Hu et al. (2024) propose a probabilistic cod-
ing framework to mitigate the over-compression
issue of IB by simultaneously performing compres-
sion and prediction using a shared learnable net-
work. They also introduced a regularization term to
promote class-level uniformity for better task pre-
diction. Moreover, variational autoencoder (VAE)
(Kingma and Welling, 2014) can be seen as a spe-
cial case of an unsupervised VIB and have shown
impressive results in self-supervised learning (Sohl-
Dickstein et al., 2015; Higgins et al., 2017; Hu
et al., 2022).

B Detailed Experimental Setups

B.1 Downstream Datasets and Tasks

We conduct experiments on 13 natural language
understanding benchmarks, including 10 classifica-
tion benchmarks (i.e., emoji prediction, hate speech
detection, irony detection, offensive language de-
tection, sentiment analysis, stance detection, and
4 categorical emotion analysis tasks from differ-
ent domains), and 3 regression benchmarks (i.e.,
semantic similarity prediction, plausible clarifica-
tions ranking, and dimensional emotion analysis).
The detailed statistics are shown in Table 6.

The descriptions of 10 classification benchmarks
are listed as follows: EmojiEval (Barbieri et al.,
2018) is designed for emoji prediction, which aims
to predict its most likely emoji given a tweet. Emo-
tionEval (Mohammad et al., 2018) involves detect-
ing the emotion evoked by a tweet and is based on
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Dataset Task # Label # Train # Val # Test # Total
Classification Benchmarks
EmojiEval Emoji prediction 20 45,000 5,000 50,000 100,000
EmotionEval Social emotion detection 4 3,257 374 1,421 5,052
HatEval Hate speech detection 2 9,000 1,000 2,970 12,970
IronyEval Irony detection 2 2,862 955 784 4,601
OffensEval Offensive language detection 2 11,916 1,324 860 14,100
SentiEval Sentiment analysis 3 45,389 2,000 11,906 59.295
StanceEval Stance detection 3 2,620 294 1,249 4,163
ISEAR Emotion reaction prediction 7 3,066 767 3,833 7,666
MELD Conversational emotion recognition 7 9,989 1,109 2,610 13,708
GoEmotions Fine-grained emotion detection 28 36,308 4,548 4,591 45,447
Regression Benchmarks
STS-B Semantic similarity prediction - 7,000 1,500 1,400 9,900
CLAIRE Plausible clarification ranking - 19,975 2,500 2,500 24,975
EmoBank Dimensional Emotion Analysis - 8,062 1,000 1,000 10062

Table 6: The statistics of all datasets and tasks.

the Affects in Tweets conducted during SemEval-
2018. Following Barbieri et al. (2020), the most
common four emotions (i.e., anger, joy, sadness,
and optimism) are selected as the label sets. HatE-
val (Basile et al., 2019) stems from SemEval-2019
HatEval and is used to predict whether a tweet is
hateful towards immigrants or women. IronyEval
(Hee et al., 2018) is from SemEval-2018 Irony De-
tection and consists of identifying whether a tweet
includes ironic intents or not. OffensEval (Zampieri
et al., 2019) is from SemEval-2019 OffensEval and
involves predicting if a tweet contains any form
of offensive language. SentiEval (Rosenthal et al.,
2017) comes from SemEval-2017 and includes data
from previous runs (2013, 2014, 2015, and 2016)
of the same SemEval task. The goal is to determine
if a tweet is positive, negative, or neutral. StanceE-
val (Mohammad et al., 2016) involves determin-
ing if the author’s text has a favorable, neutral, or
negative position towards a proposition or target.
ISEAR (Scherer and Wallbott, 1994) is from In-
ternational Survey On Emotion Antecedents And
Reactions project and contains reports on seven
emotions each by close to 3000 respondents in 37
countries on all 5 continents. It aims to predict the
emotion reaction. Due to the lack of a predefined
split in the original corpus, we use the processed
version by Hu et al. (2024) that randomly splits
the dataset into train/valid/test sets in a ratio of
4:1:5 based on the label distribution. MELD (Po-
ria et al., 2019) contains multi-party conversation
videos collected from Friends TV series. It is used
to detect emotions in each utterance. The corpus
contains many types of context, including dialogue,
speaker, and multi-modal signals. Following Hu
et al. (2024), this paper only considers the context-
free textual utterance to better evaluate sentence

classification performance. GoEmotions (Demszky
et al., 2020) is a corpus of comments from Reddit,
with human annotations to 27 emotion categories or
neutral. It is used fine-grained emotion prediction.
Following Hu et al. (2024), nearly 16% of multi-
label data was removed from the source corpus
to better evaluate the performance of multi-class
classification.

The descriptions of 3 regression benchmarks are
listed as follows: STS-B (Cer et al., 2017) is a col-
lection of English sentence pairs drawn from news
headlines, video and image captions, and natural
language inference data. The semantic similarity
prediction task is to predict the semantic textual
similarity score from 0 (very dissimilar) to 5 (very
similar) given each sentence pair. CLAIRE (Roth
et al., 2022) dataset consists of manually clarified
how-to guides from wikiHow5 with generated alter-
native clarifications and human plausibility judge-
ments. The goal of plausible clarifications ranking
task is to predict the continuous plausibility score
on a scale from 1 (very implausible) to 5 (very
plausible) given the clarification and its context. In
our experiments, a special token pair (i.e., <e>and
</e>) is introduced as the boundary of filler words.
Emobank (Buechel and Hahn, 2017) is a large-scale
text corpus across 6 domains and 2 perspectives and
manually annotated with continuous VAD scores.
Each sentence has three scores representing VAD
in the range of 1 to 5.

B.2 Comparison Methods

We compare against the 4 universal models (i.e.,
SVM, FastText, BiLSTM, and GPT-3.5) and 7
representative deep representation learning tech-

5https://www.wikihow.com/
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Hyperparameter EmojiEval EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval ISEAR MELD GoEmotions STS-B CLAIRE EmoBank
B

E
R

T
Trade-off weight β 1 0.1 10 0.01 0.01 0.1 0.1 0.1 0.1 0.1 - - -
Temperature τ 0.1 0.1 0.1 1 0.1 0.5 0.1 0.1 0.1 0.1 - - -
Perturbation rate 1 1 1 1 0.1 1 1 1 1 1 - - -
Perturbation radius ϵ 0.1 1 0.1 5 5 1 1 5 1 0.1 - - -
Weight decay 0 0.001 0.01 0.001 0 0 0.001 0 0.001 0 - - -

R
oB

E
R

Ta

Trade-off weight β 0.01 1 10 1 1 0.01 0.1 0.1 1 0.1 0.001 0.01 0.01
Temperature τ 0.1 0.5 0.1 1 1 0.1 0.5 0.1 1 0.1 0.1 1 1
Perturbation rate 1 0.1 1 0.1 1 1 1 1 1 1 1 0.1 0.1
Perturbation radius ϵ 0.1 5 0.1 0.1 1 1 0.1 0.1 1 1 5 0.1 1
Weight decay 0 0 0.01 0.01 0.001 0 0 0 0 0 0 0 0

Table 7: Hyperparameters of CIFM on 13 natural language understanding tasks.

Methods EmojiEval EmotionEval HatEval IronyEval OffensEval SentiEval StanceEval ISEAR MELD GoEmotions Avg.
BERT backbone
CIFM 24.28±0.39 77.74±1.07 59.22±1.75 65.51±1.61 80.67±0.99 70.66±0.28 67.81±0.97 71.51±0.51 41.72±0.80 48.42±0.74 60.75
- w/o CIM 24.05±0.35 77.30±0.62 55.69±2.11 60.89±3.11 80.35±1.19 70.12±0.73 65.66±1.12 67.65±0.76 40.30±0.74 47.57±0.66 58.96
- w/o CIM & IFM 22.17±0.88 75.13±1.73 46.96±5.69 59.04±4.55 80.26±1.26 70.57±0.79 65.38±0.57 66.96±0.64 40.13±0.49 46.11±0.72 57.27

RoBERTa backbone
CIFM 32.32±0.87 79.63±0.57 59.55±0.91 63.02±3.81 80.96±0.55 72.93±0.27 69.01±0.80 71.66±0.68 43.99±1.10 49.51±0.31 62.26
- w/o CIM 30.90±1.27 78.72±0.72 58.84±2.05 61.31±3.60 78.43±0.50 72.51±0.72 67.10±1.01 70.59±0.38 43.23±1.61 48.00±1.10 60.96
- w/o CIM & IFM 30.67±1.48 77.37±1.04 43.88±4.57 47.01±7.05 80.29±0.35 72.74±0.40 67.60±0.74 70.42±0.47 41.30±1.67 47.96±0.73 57.92

Table 8: Ablation results (%) on 10 classification benchmarks. We bolded best results for each task under BERT
and RoBERTa backbones.

Methods STS-B CLAIRE EmoBank Avg.Spearman Pearson Spearman Pearson Pearson (v) Pearson (a) Pearson (d)
CIFM 88.94±0.38 89.52±0.32 53.62±0.51 52.88±0.30 81.64±0.84 57.06±0.95 51.60±1.11 68.64

- w/o CIM 88.37±0.43 89.03±0.29 51.71±0.80 50.36±1.52 79.33±1.90 55.01±1.82 47.35±3.67 66.77
- w/o CIM & IFM 88.44±0.42 89.10±0.37 51.45±1.00 50.82±1.36 80.37±1.58 55.83±0.68 49.96±3.65 67.32

Table 9: Ablation results (%) on 3 regression benchmarks with RoBERTa backbone.

Methods SentiEval→ Others Avg.
Cls. Pre-train Obj. EmojiEval EmotionEval HatEval IronyEval OffensEval StanceEval ISEAR MELD GoEmotions

Linear

CE 4.83 38.15 58.86 52.60 76.60 37.37 36.11 25.03 11.38 37.88
CE+AT 4.89 37.81 57.54 51.62 78.14 37.26 37.96 26.47 12.07 38.20
VIB 3.81 42.14 57.38 50.51 76.08 36.69 34.54 23.90 8.55 37.07
MEIB 3.51 37.33 59.57 47.42 75.33 36.44 30.50 21.21 6.03 35.26
CIFM 8.69 43.04 56.42 53.75 77.88 39.59 40.60 28.98 15.02 40.44

CNN

CE 24.37 73.83 51.49 64.82 80.07 62.67 60.52 41.71 36.66 55.13
CE+AT 25.61 74.21 49.09 66.62 80.43 62.70 61.17 41.34 37.41 55.40
VIB 16.93 72.09 54.66 64.11 79.51 59.69 57.22 40.51 32.95 53.07
MEIB 13.94 70.81 54.32 62.25 78.78 57.44 52.48 38.54 29.87 50.94
CIFM 26.43 74.88 50.12 65.02 80.64 63.57 62.81 43.20 39.23 56.21

Table 10: Transferability results (%) of SentiEval→ Others with RoBERTa backbone. Pre-train Obj. indicates
the pre-training objective. Cls. refers to the classifier when fine-tuning. Best results for linear (i.e., Linear) and
nonlinear (i.e., CNN) classifiers are highlighted in bold.

nologies (i.e., CE/MSE, CE+CP, CE/MSE+AT,
CE+SCL, VIB, MINE-IB, and MEIB) with 2 differ-
ent backbone models. VIB, MINE-IB, and MEIB
belong to IB-based methods. The descriptions of
these methods are listed as follows:

SVM (Cortes and Vapnik, 1995) is a machine
learning algorithm with a hinge loss that aims to
find the best hyperplane to separate data points into
different classes. FastText (Joulin et al., 2017)
is an efficient classification method with negative
log-likelihood loss based on n-gram features and a
hierarchical softmax. BiLSTM is a bidirectional
recurrent neural network (Hochreiter and Schmid-
huber, 1997). GPT-3.56 is an enhanced genera-

6https://chat.openai.com

tive pre-trained transformer model based on text-
davinci-003, optimized for chatting.

CE/MSE means a fine-tuned baseline with a
cross-entropy (CE) loss for classification or a mean
squared error (MSE) loss for regression. CE+CP
(Pereyra et al., 2017) is an entropy regularization
method that fits a deterministic network by opti-
mizing an objective that combines the CE loss with
a confidence penalty term. MSE/CE+AT (Miyato
et al., 2017) uses CE/MSE with classical adversar-
ial training. CE+SCL (Gunel et al., 2021) com-
bines CE and supervised contrastive learning (SCL)
(Khosla et al., 2020). SCL allows for multiple posi-
tives per anchor, thus adapting contrastive learning
to the fully supervised setting. VIB (Alemi et al.,
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2017; Mahabadi et al., 2021) is an efficient varia-
tional estimation method based on IB (Tishby and
Zaslavsky, 2015). MINE-IB (Belghazi et al., 2018)
is a neural estimation method based on IB with a
continuous setting. MEIB (An et al., 2023) is a
variational approach to stochastic embedding in
which maximum entropy acts as the bottleneck.

B.3 Implementation Details
All methods are conducted with the epoch num-
ber of 20, total batch size of 128, and maximum
token length of 128. The maximum patience of
early stopping is set to 5 epochs. The dropout
rate is set to 0.2. For the default InfoNCE es-
timator used in IFM, the trade-off parameter β
is searched from {0.01, 0.1, 1, 10} for classifica-
tion and {0.001, 0.01, 0.1} for regression, and the
temperature τ is searched from {0.1, 0.5, 1}. For
the adversarial estimator used in CIM, the Lq

norm constraint is L2, the perturbation rate is
searched from {0.1, 1}, and the perturbation ra-
dius is searched from {0.1, 1, 5}. Table 7 shows
the best parameters of our method with RoBERTa
and BERT backbones.

For the compared GPT-3.5, we present the zero-
shot results of the GPT-3.5-turbo snapshot from
June 13th 2023 based on specific inputs, including
task descriptions, instructions, and evaluation texts.

C Supplementary Results

C.1 Details of Ablation Studies
Table 8 and Table 9 report detailed ablation results
on classification and regression tasks, respectively.

C.2 Details of Transferability Evaluation
Table 10 shows detailed transferability results of
SentiEval→ Others.
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