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Abstract

The world’s languages exhibit certain so-called
typological or implicational universals; for
example, Subject-Object-Verb (SOV) lan-
guages typically use postpositions. Explaining
the source of such biases is a key goal of
linguistics. We study word-order universals
through a computational simulation with
language models (LMs). Our experiments
show that typologically-typical word orders
tend to have lower perplexity estimated
by LMs with cognitively plausible biases:
syntactic biases, specific parsing strategies,
and memory limitations. This suggests that the
interplay of cognitive biases and predictability
(perplexity) can explain many aspects of
word-order universals. It also showcases the
advantage of cognitively-motivated LMs,
typically employed in cognitive modeling, in
the simulation of language universals.

https://github.com/kuribayashi4/
word-order-universals-cogLM

1 Introduction

There are thousands of attested languages, but they
exhibit certain universal tendencies in their design.
For example, Subject-Object-Verb (SOV) word or-
der often combines with postpositions, while SVO
order typically employs prepositions (Greenberg
et al., 1963). Researchers have argued that such im-
plicational universals are not arbitrary but shaped
by their advantage for humans (Hawkins, 2004;
Culbertson et al., 2012, 2020).

Such language universals have been recently
studied through neural-based computational sim-
ulation to elucidate the mechanisms behind the
universals (Lian et al., 2023). The languages which
emerge, however, have typically not been human-
like (Chaabouni et al., 2019a,b; Rita et al., 2022;
Ueda et al., 2022). Such mismatch arguably stems
from the lack of human-like cognitive biases in
neural agents (Galke et al., 2022), but injecting
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Figure 1: We compare the word orders that are challeng-
ing for LMs to those that are infrequent in attested lan-
guages (§3). We examine the advantage of cognitively-
motivated LMs (§5) in simulating the word-order uni-
versals (the world’s word-order distribution) with their
inductive biases (§6).

cognitive biases into systems and showing their
benefits has proved challenging (Lian et al., 2021).

In this study, expanding on a study of word-
order biases in language models (LMs: White and
Cotterell (2021)), we demonstrate the advantage
of cognitively-motivated LMs, which can simu-
late human cognitive load during sentence process-
ing well (Hale et al., 2018b; Futrell et al., 2020a;
Yoshida et al., 2021; Kuribayashi et al., 2022), and
thus predict many implicational word-order univer-
sals in terms of their inductive biases (Figure 1).
Specifically, we train various types of LMs in artifi-
cial languages with different word-order configura-
tions (§3). Our experiments show that perplexities
estimated by cognitively-motivated LMs (§5) corre-
late better with frequent word-order configurations
in attested languages than standard LMs (§6). This
confirms that such biases are a potential source of
the word-order universals as well as demonstrate
the plausibility of cognitively-motivated LMs as
models of human language processing.
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2 Related research

2.1 Impossible languages and LMs

Generative linguistic theory has focused on delin-
eating the impossible from possible languages in
terms of universal grammar. Chomsky et al. (2023)
has recently argued that neural LMs cannot dis-
tinguish possible human languages from impossi-
ble, unnatural languages, based on the experiments
by Mitchell and Bowers (2020), and are, therefore,
of no interest to linguistic theory. Kallini et al.
(2024) challenge this claim, demonstrating that a
standard transformer-based autoregressive model
(GPT-2) assigns higher perplexity and greater sur-
prisal to a range of artificially-generated, unat-
tested, and thus putatively impossible candidate
languages when compared to English. In this
work, by contrast, we explore the ability of a
variety of neural LMs to distinguish typologi-
cally rare combinations of word orders from the
common attested combinations as predicted by
Greenberg’s implicational universals (Greenberg
et al., 1963).

2.2 The Chomsky hierarchy and LMs

We test how easy it is to learn a specific artificial
language (with a specific word-order configuration)
for certain LMs. Such exploration is related to the
investigation of the capabilities of neural LMs to
generate formal, artificial languages in a specific
class of the Chomsky hierarchy, such as irreducibly
context-free (e.g., the Dyck languages) or mildly
context-sensitive (e.g., anbncn) languages (Weiss
et al., 2018; Suzgun et al., 2019; Hewitt et al., 2020;
Deletang et al., 2022). While this line of research
can elucidate whether specific models (LSTMs,
transformers, etc.) are capable in principle of ex-
pressing and generalizing such languages, and thus
also generating their putative analogs in natural
language, in this work we focus on artificial lan-
guages which are more human language-like
in that they exhibit a range of attested construc-
tion types, a more realistic vocabulary, and are less
marked in terms of features like average sentence
length, at least compared to the formal languages
adopted in this line of research (App. A).

2.3 Word order preferences of LMs

Researchers have asked what kind of language is
hard to language-model (Cotterell et al., 2018;
Mielke et al., 2019), motivated by concern over
whether the current language-modeling paradigm is

equally suitable for all languages. However, exper-
iments using only attested language corpora made
it difficult to single out impactful factors since they
differ from each other in multiple dimensions (Cot-
terell et al., 2018; Mielke et al., 2019). Thus, prior
studies adopted the use of artificially controlled
language(-like) data as a lens to quantify the induc-
tive bias of models (Wang and Eisner, 2016; White
and Cotterell, 2021; Hopkins, 2022). Specifically,
White and Cotterell (2021) pointed out some differ-
ences between LM’s word-order preferences and
common attested word orders (typological marked-
ness). We expand on their research by exploring
which models, including cognitively-motivated
ones, exhibit preferences more aligned with com-
mon typological patterns (Figure 1).

2.4 Cognitively-motivated LMs

Cognitively-motivated LMs is a reference to a par-
ticular class of language model, typically exam-
ined and preferred in the cognitive modeling field.
In brief, in the cognitive modeling field, the next-
word probability and human reading behavior are
compared (Beinborn and Hollenstein, 2023), based
on surprisal theory (Levy, 2008; Smith and Levy,
2013), to reverse-engineer what humans compute
during language processing. Cognitively-motivated
LMs typically yield a better fit to human behaviors
than standard LMs. In Section 5.2, we specifi-
cally focused on three aspects which are well es-
tablished in the cognitive modeling literature: (i)
syntactic bias (Hale et al., 2018b), (ii) parsing strat-
egy (Resnik, 1992; Yoshida et al., 2021), and (iii)
memory limitations (Futrell et al., 2020a; Kurib-
ayashi et al., 2022). Our interest is that if lan-
guage design is shaped by cognitive biases, such
cognitively-motivated LMs should simulate the
typological distribution of natural languages.

3 Preliminary

We explain the assumptions behind this research.

3.1 Need for computational simulation

This research aims to determine whether/how at-
tested word order universals can stem from cogni-
tive biases underlying human language process-
ing. Perhaps the strongest evidence would be
obtained through counterfactual ablations. That
is, researchers should compare word orders that
emerged in different, controlled scenarios: one
emerged in our world with humans, and the other
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one emerged in the same world except for hav-
ing non-human agents. If the attested word order
universals can emerge only in the scenario with
humans, this can be evidence that the attested word
order universal is related to human-like cognitive
biases. Nevertheless, unfortunately, such a con-
trolled ablation is not feasible in the real world.
Instead, this study adopts computational simula-
tion to explore the source of word order universals.
That is, we virtually simulate several scenarios,
each involving neural agents with different induc-
tive biases, including human-like ones, and inves-
tigate under which biases our world’s word order
universals can emerge.

3.2 Likning hypothesis
We further explain the assumptions underlying our
computational simulations of the emergence of
word order universals.

Assumption 1: Given the theory that lan-
guage has evolved to promote its processing ef-
ficiency (Hawkins, 2004; Gibson et al., 2019), we
posit that word orders frequently adopted in the
world should be easily learned for human-like
agents, and then, they can process it efficiently.
That is, we assume that the frequency of word or-
der o within the attested languages should correlate
with its (negative) learning/processing cost:

frequency(o) ∝ −cost(o) . (1)

See §4.1 for word order configurations o.
See §4.2 for the frequency(o) term.
See §4.3 and assumption 2 for the cost(o) term.
See §4.4 for the correlation metrics ∝.

Assumption 2: We further posit that humans con-
tinuously predict the upcoming word during lan-
guage processing, based on expectation-based the-
ory (Levy, 2008; Smith and Levy, 2013). That is,
we assume that the costθ(o) for a particular model
θ is determined by how the word order o is diffi-
cult to learn and then incurs worse predictability
through next-word prediction. Such a processing
difficulty is measured as the average processing
cost required to process sentences with word order
o for a particular model θ trained over a certain
period of time of language acquisition (language
modeling). This can be quantified by perplexity
(PPL),1 the geometric mean of word predictability,

1Using the average surprisal − 1
|xo|

∑
i log p(x

o
i |xo

<i)

(entropy) instead of PPL is more aligned with surprisal the-

of a corpus with tokens xo following word order o
under a learner θ:

costθ(o) ∼
∏

xo
i∈xo

pθ(x
o
i |xo

<i)
− 1

|xo| , (2)

:= PPLθ(x
o) . (3)

Here, pθ(xoi |xp
<i) is a probability of the i-th word

in context for a model θ that is trained on a cor-
pus with word order o. We analyze which LM θ
computes PPLθ(w

o) that well correlates with its
typological frequency as expected in Eq.1.

See §5 for LMs θ we examine.
See §6.1 and §6.2 for main results.
See §6.3 for other variants of PPLs.
See §8 for the connection to the bi-dimensional
view of communicative efficiency.

4 Problem settings

4.1 Word-order configurations

Branching directionality ∈ {L, R}, the concept
of whether a dependent phrase is positioned left
(L) or right (R) of its head in a particular con-
stituent, is a key component of the typological
theory. We define six word-order parameters to
classify attested languages as shown in Table 1.
For example, the parameter

S
determines the

order of the subject NP and the VP. Then,
the combination of word order parameter assign-
ments defines a word order configuration o =

(
S
,

VP
,

PP
,

NP
,

Rel
,

Case
) ∈ O :=

{L, R}6, denoted by a sequence of L/R. For example,
LRLLLR ∈ O is the configuration where all phrases,
except for VP and Case, are left-branching. Such
parameter combinations result in 26 = 64 word
order configurations.

4.2 Frequencies of word order

The 64 word-order configurations are not
uniformly distributed among attested lan-
guages (blue points in Figure 2). This dis-
tribution is estimated by the frequency of
word orders in The World Atlas of Language
Structures (WALS: Dryer and Haspelmath
(2013)),2 which is also denoted as a vector f =

ory (Smith and Levy, 2013), but such a logarithmic conversion
did not alter our findings (§7). Thus, we use PPL, follow-
ing White and Cotterell (2021).

2We used the word order statistics of 1,616 languages,
out of 2,679, where at least one parameter is annotated. If a
particular parameter is missing or non-binary (X), one count
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Param. L R

S
Cat eats. Eats cat.

VP
Cat mouse eats. Cat eats mouse.

PP
Cat table on eats. Cat on table eats.

NP
Small cat eats. Cat small eats.

Rel
Likes milk that cat eats. Cat that likes milk eats.

Case
Cat-sub eats. Sub-cat eats.

Table 1: Word-order parameters and example construc-
tions with different assignments, L or R (See Apps. A
and B and White and Cotterell (2021) for details).

[freq(LLLLLL), freq(LLLLLR), ..., freq(RRRRRR)].
Notably, particular configurations, typically with
harmonic (consistent) branching-directionality,
e.g., LLLLLL, LRRRRR, are common; such a
skewed distribution (typological markedness or
word-order universals) has been studied from
multiple perspectives typically tied with human
cognitive biases (Vennemann, 1974; Gibson et al.,
2000; Briscoe, 2000; Levy, 2005; Christiansen and
Chater, 2008; Culbertson et al., 2012; Temperley
and Gildea, 2018; Futrell and Levy, 2019; Futrell
et al., 2020b).

4.3 Processing costs of word order

Artificial languages: We quantify which word
orders are harder for a particular LM. Here,
we adopt3 the set of artificial languages created
by White and Cotterell (2021) as a lens to quantify
the LMs’ biases. These languages share the same
default probabilistic context-free grammar (PCFG)
and differ from each other only in their word-order
configuration o ∈ O (§4.1) overriding the word
order rules in the default grammar, resulting in
26 = 64 corpora with different word order o. Note
that the 64 corpora generated have the same prob-
abilities under the respective grammar and gold
parser; thus, differences in language-modeling dif-
ficulties can only stem from the model’s biases.
See App. A for the detailed configurations of artifi-
cial languages.

is distributed between its compatible word orderings, e.g.,
LLLLLR, LLLLRR, LRLLLR, and LRLLRR each gets a 1/4 count
for LXLLXR. See App. B for the details of the WALS.

3We introduce the Case parameter determining the posi-
tion of case marker, while White and Cotterell (2021) fixed it
to be L. We omitted the Comp switch controlling the com-
plementizer position, e.g., “that,” due to the lack of large-scale
statistics on its order. We experimented with prepositional
and postpositional complementizer settings in each of the 64
settings and used the average perplexities of the two settings.

Normalized frequency 
within attested langs.
Preference of LM A
Preference of LM B

Figure 2: The frequency distribution of 26 = 64 word-
order configurations within attested languages (blue
points) sorted in descending order. Suppose particu-
lar LMs A/B prefer word order as green/red points. The
LM A (green points) is considered to have typologically
more aligned inductive bias than the LM B (red points).

Quantifying perplexities: We train an LM on
each corpus with word order o and measure the PPL
of tokens xo in the respective held-out set. Repeat-
edly conducting the training/evaluation across the
64 corpora produces a PPL score vector, PPLθ =
[PPLθ(x

LLLLLL),PPLθ(x
LLLLLR),PPLθ(x

LLLLRL),
...,PPLθ(x

RRRRRR)], which indicates the word-
order preferences of an LM.

4.4 Frequency–perplexity correlations

Global correlation: We measure the Pearson
correlation coefficient r(·, ·) between word order
frequencies f (§4.2) and their negative PPLθ

(§4.3), considering lower PPL is better. We call
r(f ,−PPLθ) global correlation. A high global
correlation indicates that the LMs’ word-order pref-
erences reflect typological markedness.

Local correlation: White and Cotterell (2021)
reported that simulating the word-order dis-
tribution among subject, object, and verb
(SOV≻SVO≻VOS≻OVS), which is determined
by the first two parameters of

S
and

VP
, is chal-

lenging. Therefore, we assess how easy it is to sim-
ulate the markedness of the other parameters’ as-
signments. Specifically, we measure a relaxed ver-
sion of the correlation ignoring the subject, object,
and verb order (local correlation), which is defined
by the averaged correlation within each base word-
order group: SOV (

S
= L,

VP
= L), SVO

(
S
= R,

VP
= L), OVS (

S
= L,

VP
= R),

and VOS (
S
= R,

VP
= R).

1

4
(r(f SOV,−PPLSOV

θ ) + r(f SVO,−PPLSVO
θ )

+ r(f OVS,−PPLOVS
θ ) + r(f VOS,−PPLVOS

θ )) .
(4)
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Here, f X and PPLX
θ are the list of frequencies

and perplexities, limited to the languages with the
assignments of

S
and

VP
corresponding to X.

If this relaxed correlation is high and the global
correlation is low, the ordering of subject, object,
and verb remains challenging, and indeed, this is
the case (see §7.1).

5 Models

We examine 23 types of uni-directional LMs,
which adopt subwords split by byte-pair-
encoding (Sennrich et al., 2016) and are trained for
10 epochs. For each type of LM, we train/evaluate
five models with different random seeds. In each
run, 20K sentences (train:dev:test is 8:1:1) are
generated from PCFG to train/evaluate the model.
See App. C for model details.

5.1 Standard LMs
We test the PPL estimated by a Transformer
(Vaswani et al., 2017), LSTM (Hochreiter and
Schmidhuber, 1997), simple recurrent neural net-
work (SRN) (Elman, 1990), and N-gram LMs.4

See App. C.2 for the model details.

5.2 Cognitively-motivated LMs
We further test cognitively-motivated LMs em-
ployed in cognitive modeling and incremental pars-
ing, mentioned in §2.4. We target three properties:
(i) syntactic inductive/processing bias, (ii) pars-
ing strategy, and (iii) working memory limitations,
following recent works in cognitive modeling re-
search (Dyer et al., 2016; Hale et al., 2018b; Resnik,
1992; Oh et al., 2021; Yoshida et al., 2021; Futrell
et al., 2020a; Kuribayashi et al., 2022).

Syntactic LMs and parsing strategy: We be-
gin with syntactic LMs to explore the cognitively-
motivated LMs. Under a particular word order con-
figuration o, they jointly predict tokens xo and their
syntactic structures yo by incrementally predict-
ing parsing actions ao, such as “NT(S) NT(NP)
GEN(I) REDUCE(NP)...”:

pθ(x
o,yo) =

∏

t

pθ(a
o
t |ao

<t) . (5)

Here, we examine two commonly-adopted strate-
gies to convert the (xo,yo) into the actions ao: top-
down (TD) and left-corner (LC) strategies (Kun-

4Neural LMs are trained with the fairseq toolkit (Ott
et al., 2019). N-gram LMs are trained with the KenLM
toolkit (Heafield, 2011) with Kneser-Ney smoothing.

coro et al., 2017).5 The LC strategy is theoreti-
cally expected to estimate more human-like cogni-
tive loads than the TD (Abney and Johnson, 1991;
Resnik, 1992) in a sense that LC parsers can esti-
mate the cognitive load of center-embedding con-
structions, typically with disharmonic word order
configurations, which tend to be avoided by hu-
mans (Miller and Isard, 1964).6

Memory limitation: Humans generally have lim-
ited working memory (Miller, 1956) and struggle
with processing long-distance dependencies during
sentence processing (Hawkins, 1994; Gibson et al.,
2019; Hahn et al., 2021). We thus expect that model
architectures with more severe memory access, e.g.,
in the order of SRN≻LSTM≻Transformer, have
such human-like biases and exhibit higher corre-
lations with the word-order universals. We also
apply such a memory limitation to syntactic LMs
(next paragraph). We expect that memory-limited
syntactic LMs can softly reflect the stack-depth, a
standard concept of working memory demand (Ab-
ney and Johnson, 1991; Noji and Miyao, 2014),
since the requirement of more stack depth needs
the model to maintain longer parsing histories, pre-
sumably incurring a high cost for memory-limited
syntactic LMs (Jin and Schuler, 2020).

Implementations: We train (i) Parsing-as-
Language-Model (PLM) (Choe and Charniak,
2016) and (ii) recurrent neural network grammar
(RNNG) (Dyer et al., 2016; Kuncoro et al., 2017),
using the syntactic structures obtained during
generating the corpus from PCFG (§4.3). PLMs
are the same as standard LMs expect that they
are trained on the action sequences a. Four
PLMs with different architectures (Transformer,
LSTM, SRN, and N-gram) are tarined. RNNGs
also predict the action sequences, but they have
an explicit composition function to compute
phrase representations. We use the stack-only
RNNG implementation by Noji and Oseki (2021),
and we newly introduce its memory-limited
version (simple recurrent neural network grammar;
SRNNG), where (Bi)LSTMs are replaced by SRNs.
Note that the cognitive plausibility of RNNGs has

5TD and LC are also denoted as pre-order and in-order
traversals, respectively.

6We adopted the arc-standard LC strategy, following Kun-
coro et al. (2018) and Yoshida et al. (2021). Strictly speak-
ing, an arc-eager LC strategy is cognitively plausible, and an
arc-standard one has similar characteristics with bottom-up
traversal (Resnik, 1992). That is, our LC results may be biased
towards L assignments.
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Memory limit. Memory limit. Memory limit.
w/o syntax TD syntactic LM LC syntactic LM

Memory limit. Memory limit. Memory limit.
w/o syntax TD syntactic LM LC syntactic LM

Figure 3: The results of global/local correlations. Each point corresponds to each run. Their colors and shapes
denote the syntactic bias of the models. The TD and LC variants in the Transformer, LSTM, SRN, and N-gram
settings correspond to the respective PLMs. The box presents the lower/upper quartiles.

been reported in both cognitive modeling (Hale
et al., 2018a; Yoshida et al., 2021) and language
generalization test (Kuncoro et al., 2018; Wilcox
et al., 2019). Henceforth, syntactic LMs refer to
the PLMs and (S)RNNGs.

PPL computation: We measure the PPL over
action sequences in each word order o when quan-
tifying the word-order preference of syntactic
LMs (§4.3): PPLθ(x

o,yo) :=
∏

t pθ(a
o
t |ao

<t)
1

|ao| .
We also examine a token-level predictability
PPLθ(x

o) in §8 and App. D.1, but such variations
did not alter the conclusions.

5.3 Baselines

We set two baselines: (i) a chance rate with ran-
dom assignments of perplexities (gray lines in Fig-
ure 3), and (ii) perplexities estimated by pre-trained
LLaMA2 (7B) (Touvron et al., 2023), a repre-
sentative of the large language models (LLMs),
prompted with several example sentences (blue
lines in Figure 3) (App. C.3) as a naive baseline.

6 Experiments

We compare the LM’s word-order preferences with
attested word-order distributions (§6). Then, we

further analyze what kind of word-order combina-
tions LMs prefer (§7).

6.1 Results

Figure 3 shows global and local correlations (see
App. D for the full results). The TD and LC
variations of the Transformer, LSTM, SRN, and
N-gram LMs correspond to the PLMs with their
respective architecture. We expect syntactic LMs
with the LC strategy to exhibit higher correlations
than the LMs without syntactic biases ( > ) and
those with cognitively unmotivated TD syntactic
bias ( > ).

Most LMs beat the chance rate: Overall, most
global and local correlations were higher than the
random baseline, reproducing the general trend
that common word orders induce lower PPL (Hahn
et al., 2020).7 As a sanity check, we also observed
that the LLaMA-2 exhibited weaker correlations
than cognitively-motivated LMs; the current suc-
cess of LLMs is orthogonal to our results.

7With a one-sample, one-sided t-test, models except for
LSTM LM, TD SRN PLM, TD RNNG, LC RNNG, TD
SRNNG yielded global correlations significantly larger than
zero, and models except for TD RNNG yielded local correla-
tions significantly larger than zero.
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Syntactic biases and parsing strategies: First,
the LC syntactic LMs generally outperformed the
standard LMs ( > ) in each setting except for
SRNs. This indicates the advantage of cognitively-
motivated syntactic biases in simulating the
word-order universals. Second, LMs with the
LC strategy tend to exhibit higher correlations than
TD syntactic LMs ( > ), especially in terms of lo-
cal correlation. That is, the cognitively-motivated
LC parsing strategy better simulates the word-
order implicational universals. Note that RN-
NGs, on average, exhibited low correlations, al-
though they are often claimed to be cognitively
plausible LMs.

Memory limitation: The results show that
memory-limited models tend to exhibit better corre-
lations, with the exception of PLMs. In particular,
RNNGs typically benefited from memory lim-
itations (SRNNG≻RNNG), while PLMs did not
(SRN≺Transformer). This implies a superiority
of RNNGs’ memory decay over hierarchical tree
encoding to PLMs’ simple linear memory decay.

6.2 Statistical test
Settings: We statistically test the advantage of
cognitively-motivated factors toward higher corre-
lations. Specifically, we train the following regres-
sion model to predict the global or local correlation
scores obtained in the experiment (§6.1):8

r(f ,−PPLθ) ∼ ModelClass(θ)

+MemLim(θ) + Syntax(θ) + LC(θ) .
(6)

Here, ModelClass denotes the coarse type (e.g.,
neural model or not) of the model θ yielding the
respective correlation score, MemLim denotes its
strength of context limitation (higher is severer,
e.g., SRN≻LSTM≻Transformer), Syntax denotes
whether the model is syntactic LMs (1 for syntac-
tic LMs; otherwise 0), and LC denotes whether
the model uses the LC strategy (1 for LC syntactic
LMs; otherwise 0). Positive coefficients for these
features indicate their contribution to higher corre-
lations. See App. E for the details of the regression.

Results: We observe that the coefficients for the
Syntax and LC features were significantly larger
than zero with one-sample, two-sided t-test in both
cases of predicting global and local correlations.9

8We used the statsmodels (Seabold and Perktold, 2010).
9p = 0.07 for the Syntax and p < 0.05 for the LC in

the case of global correlation. p < 0.01 for the Syntax and
p < 0.01 for the LC in the case of local correlation.

0.0 0.2 0.4 0.6 0.8
Local correlation

SRNNG LC
LC 3-gram PLM
TD 3-gram PLM
LC Trans. PLM
TD Trans. PLM

SRN
LSTM
Trans. PPL^0.5

PPL
PPL^2
PPL^3
log(PPL)

Figure 4: Mean and standard deviation of local correla-
tions with different linking functions: PPL of order k
and logarithmic PPL

The coefficient for the MemLim feature was not
significantly larger than zero when targeting all
the models (p > 0.1); however, when PLMs were
excluded, the coefficient of the MemLim feature
was also significantly larger than zero with one-
sample, two-sided t-test (p < 0.001 in both global
and local correlations) as suggested in §6.1. To
sum up, these corroborate the findings in §6.1.

6.3 Linking functions
The experiments so far have assumed the linearity
between PPL and word-order frequency (Eq. 1)—
did this choice bias our results? We investigated
various linking functions between PPL and word
order frequency: the perplexity of order k and log-
arithmic PPL (entropy). Our findings robustly hold
with other linking functions (full results are in Ap-
pendix D.2). Figure 4 illustrates LMs’ local corre-
lations under differently converted perplexities.

7 Analyses: what kind of word order is
particularly (un)preferred?

7.1 {S,O,V} word-order biases
Observation: White and Cotterell (2021) re-
ported that LMs could not show the subject, object,
verb word-order biases attested in natural language
(SOV≻SVO≻VOS≻OVS). Even our cognitively-
motivated LMs did not overcome this limitation,
based on the global correlations being consistently
lower than the local ones (§6.1; Figure 3). This ten-
dency is visualized in Figure 5; within each base
group (SOV, SVO, OVS, VOS), common word or-
ders tend to obtain high predictability (i.e., lower
PPL; bigger circles are at the top) except OVS-
order’s high predictability and SVO-order’s low
predictability. This made it clear that predictability
generally explains word-order universals, but the
markedness of word orders among subject, object,
and verb must stem from additional factors.
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Figure 5: Illustration of the relationship between pre-
dictability (y-axis) and word order frequency in each of
the four base-order groups (SOV, SVO, OVS, and VOS).
Each circle corresponds to each word order; larger ones
are frequent word orders. Predictability is the negative
PPL converted through the min-max normalization; thus
higher predictability indicates lower PPL. The results
are from the 3-gram PLM with the LC strategy.

Implication: This finding is consistent with: (i)
humans arguably have an agent-first bias in event
cognition, which could be the source of the subject-
initial word order (Wilson et al., 2022); and (ii)
agent-preference in human sentence processing
cannot be explained by surprisal estimated by neu-
ral LMs in N400 amplitudes modeling (Huber et al.,
2024). Our findings corroborate that cognitively-
motivated LMs still lack such a human-like bias.
Orthogonally, the artificial language ignores some
important linguistic aspects, such as information
structure (Gundel, 1988; Verhoeven, 2015; Ranjan
et al., 2022), which may explain subject-object or-
der; refining the artificial data would also be one
direction to explore in future work.

7.2 Branching directionality preferences
Settings: Human languages, on average, do not
favor either left- or right-branching (Dryer and
Haspelmath, 2013). Given this, we measure how
strongly a model prefers a specific branching di-
rectionality. We calculate the Pearson correlation
(L-pref.) between negative PPL and the number of
L assignments #L(·)10 of the word order:

r(l,−PPLθ) , (7)

l := [#L(LLLLLL),#L(LLLLLR), ...,#L(RRRRRR)] .
(8)

As a sanity check, the word-order frequency distri-
bution of attested languages, indeed, is weakly cor-
related (0.11) with the left-branching directionality.
Thus, LMs are not expected to have an extremely
high or low L-pref. score. Notably, the branching

10For example, #L(LLLRLL) = 5.

bias of LMs/parsers has been of interest in the NLP
research (Li et al., 2020a,b; Ishii and Miyao, 2023).

Results: Figure 6 shows the results of branching
preferences. LMs with the TD strategy are theoreti-
cally expected to have a lower L-pref. score (favor-
ing right-branching) than the LC models (Resnik,
1992) ( < ). While the PLMs faithfully reflect
such characteristics, RNNGs, surprisingly, exhib-
ited opposite trends, suggesting the challenge in
controlling the inductive bias of neural syntactic
LMs. We also observed architecture-dependent
branching preference; Transformers prefer left-
branching, while LSTMs prefer right-branching
as suggested by Hopkins (2022). Such architecture-
dependent biases seem to have more impact on the
branching preferences than the parsing strategies
in PLMs.

8 Connection to predictability and
parsability

Background: Human language is arguably de-
signed to minimize complexity (how unpredictable
symbols are) while maintaining informativity (how
easy it is to extract a message from symbols) (i Can-
cho and Solé (2003); Piantadosi et al. (2012); Kemp
and Regier (2012); Frank and Goodman (2012);
Kirby et al. (2015); Kanwal et al. (2017); Gib-
son et al. (2019); Xu et al. (2020); Hahn et al.
(2020); inter alia). We revisit this bi-dimensional
view. Concretely, Hahn et al. (2020) showed that
both PPL of an LM and parsability for a (not-
cognitively-motivated) parser (Kiperwasser and
Goldberg, 2016) explain word-order universals.

Oveview: We demonstrate that predictability
(PPL)11 of syntactic LMs entails parsability. That
is, they can provide a more concise information-
theoretic measurement of word-order universals
(syntactically-biased predictability).

Settings: We decompose the performance of syn-
tactic LMs into two parts: token-level perplex-
ity PPLθ(x

o) (predictability) and parsing perfor-
mance parseθ(x

o,yo) (parsability), using word-
synchronous beam-search (Stern et al., 2017).
When computing the token-level predictability
PPLθ(x

o), next-word probability is computed
while predicting the upcoming partial syntactic

11Predictability is typically measured as entropy, but again,
the choice of entropy or PPL did not substantially change the
correlation scores (See §6.3 and App. D.2).
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Figure 6: The results of branching directionality scores. Each point corresponds to each run. The colors and shapes
denote the syntactic bias of the models. The TD and LC variants in the Transformer, LSTM, SRN, and N-gram
settings correspond to the respective PLMs. The box presents the lower/upper quartiles.

trees.12 We measure parseθ(x
o,yo) as the F1-

score of the top-1 parse found with the beam
search.13 Then, we test whether the parsability
factor contributes to explaining the frequency of
word order o in addition to PPL, using the follow-
ing nested regression models:

Base: freq(o) ∼ PPLθ(x
o) ,

+Parse: freq(o) ∼ PPLθ(x
o) + parseθ(x

o,yo) .

Results: The increase in log-likelihood scores
of the +Parse model over the Base model is not
significant with the likelihood-ratio test (p > 0.1)
in all the RNNG settings ({TD, LC}×{SRNNG,
RNNG}×{seeds}).14 That is, at least in our setting,
we cannot find an advantage of parsability over
predictability in explaining word-order universals.
This may be because the next-word prediction for
the syntactic LMs is explicitly conditioned by the
parsing states, which might sufficiently bias the
predictability measurements to reflect parsability.

Figure 7 also illustrates the predictability and
parsability estimated by the LC SRNNG. Here, the
predictability identifies more types of word orders
as typologically marked (left small circles) than
the parsability does (bottom small circles). This is
contrary to the picture of both predictability and
parsability as complementary factors explaining
word-order universals (Hahn et al., 2020). Never-
theless, our artificial data could be easier to parse

12PPLθ(x
o) :=

∏
t pstx(x

o
t |xo

<t)
1

|xo| . pstx(x
o
t |xo

<t) :=∑
y′∈Y(xo

<t)
p(xo

t , y
′|xo

<t) Here, given a context x<t, a set
of its upcoming compatible partial syntactic trees Y(x<t) is
predicted. Next word xo

t is predicted by each candidate parse
y′ ∈ Y(xo

<t), then such predictions are merged over Y(xo
<t).

13Evalb (https://nlp.cs.nyu.edu/evalb/) was used.
14We only tested RNNGs given the limited availability of

batched beam-search implmentations (Noji and Oseki, 2021).
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Figure 7: Predictability and parsability of each word
order. These measurements are converted through the
min-max normalization to be [0, 1] scale (higher is
better). Each circle corresponds to each word order;
larger ones are frequent word orders.

than natural language in the sense that our data have
less structural ambiguity; thus, future work should
explore this using more real artificial language.

9 Conclusions

We have shown that cognitively-motivated LMs bet-
ter led to the emergence of word-order universals
than standard LMs. From the linguistic typology
perspective, we provide computational evidence
that the universals emerge from cognitive biases,
which has been challenging to demonstrate in pre-
vious work (Lian et al., 2021; Galke et al., 2022).
From the cognitive modeling perspective, our re-
sults demonstrate that cognitively-motivated LMs
have human-like biases that are sufficient to repli-
cate some human word-order universals. Our re-
sults also clarified what typological patterns can
still not be modeled by cognitively-motivated LMs
(agent-first bias), as well as opened the direction
to relate LMs in the traditional linguistic theory of
delineating possible language from the impossible.
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Limitations

Artificial language: We used artificial data to
quantify the LMs’ inductive/processing biases for
word-order configurations. While the use of ar-
tificial languages has typically been adopted to
conduct controlled experiments (§2.2), such artifi-
cial data lack some properties of natural languages,
such as the semantic relationships between the lin-
guistic constituents (§7.1). In future work, we hope
to devise further artificially controlled languages
that exhibit some of these properties.

In addition, our PCFG implementation of artifi-
cial languages and word-order configurations un-
reasonably limited the candidate word-order vari-
ations; for example, the production rules (i) S →
NPsubject VP, and (ii) VP → NPobject Verb
could not produce variations with V and O apart
(VSO and OSV) (Table 12). Exploring more flex-
ible ways to create and cover artificial langauge
variations will be another interesting direction.

Furthermore, our used data (White and Cotterell,
2021) is relatively small scale, which might in-
cur unintended bias in LM performance, although
there is a perspective to analyze inductive bias
via measuring training efficiency (Kharitonov and
Chaabouni, 2021; Warstadt et al., 2023).

Estimating word-order distribution: The word
order frequency estimates derived from WALS
might also be biased; for example, Indo-European
languages tend to have richer meta-linguistic in-
formation in WALS, although our study takes the
statistics from as many as 1,616 languages into
account. A richer estimation of missing parame-
ter information is desirable. As a more general
concern, the frequency of a word-order configu-
ration can be estimated in various ways, such as
the number of native speakers or the number of
language families adopting a particular word order.
Furthermore, word order variation can be inher-
ently non-binary (Levshina et al., 2023). Our study,
as an initial foray, relied on the number of unique
languages, a commonly used metric in linguistic
typology research (Dryer and Haspelmath, 2013;
Hammarström, 2016), considering that other ap-
proaches raise additional complications, such as
an estimation of the speaker numbers or language
family variability.

Ethical Considerations

We only used artificial language, which does not
have information with potential risks, e.g., human
privacy data. One concern is the bias in our word
order frequency estimates; this might have led to
biased conclusions, e.g., diminishing the impact of
minority languages, although we used the largest
publicly available data (WALS) to date. We used
AI assistance tools within the scope of “Assistance
purely with the language of the paper” described in
the ACL 2023 Policy on AI Writing Assistance.
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A Details of artificial languages

Table 1215 shows the default grammar to create
artificial language data, which adopts the config-
uration of White and Cotterell (2021). The “rele-
vant parameter” column indicates the parameter
that controls the order of right-hand items in the
respective production rule (the order is swapped
when the parameter assignment is R). Note that the
subcategory of non-terminal symbols (e.g., VP_S)
was only used for generating the data; in the final
data for training/evaluating syntactic LMs, these
subcategories are omitted (e.g., VP_S should be
VP), and the resulting uninformative edge in the
syntactic structure (e.g., VP → VP) was also re-
moved. Table 2 shows the example of a sentence
with different word-order configurations. Different
word order parameters yield a syntactic structure
with different branching directionalities; for exam-
ple, the constituency tree of LLLLLL extends to the
bottom left (left-branching). The average sentence
length was 11.8 tokens, and the average tree depth
was 9.1. The vocabulary size of pseudowords is
1,314 same as White and Cotterell (2021).

B WALS data statistics

Table 3 shows the statistics of the WALS data and
the details about word order parameters. Out of the
2,679 languages listed in the WALS, 1,616 lan-
guages are involved, and approximately 2/3 of
their word order parameters were annotated in the
WALS; the missing values are completed as ex-
plained in §4.1 (footnote 1). As a sanity check,
we observe the ratio of the assignments of the first
two parameters (

S
and

VP
), which controls the

order of subject, object, and verb; these approxi-
mately replicate the ratio reported in Dryer (2013f),
e.g., SOV and SVO orders occupy over 80% of
languages.

C Model details

The license of the used models/data is listed in Ta-
ble 4; all of them are used under their intended use.
All the models were trained/tested with a single
NVIDIA A100 GPU (40GB). All of the experi-
ments were done within approximately 600 GPU
hours. The LLaMA-2 (7B) model was used via the
hugging face toolkit (Wolf et al., 2020).

15The corresponding Table is positioned in the later part
of the Appendix for readability.

C.1 Parsing strategies

Figure 8 shows the parsing actions converted with
different strategies (TD and LC). PLMs are trained
to predict such a sequence of parsing actions in a
left-to-right manner.

C.2 Hyperparamteres

Tables 13 and 14 show the hyperparameters of
LMs,15 which basically follow their default set-
tings. Standard LMs and PLMs use the same hy-
perparameters. Their vocabulary size is set to 512.

C.3 Word order preference of LLaMA-2

We employed few-shot settings instead of full-
finetning with the limits in computational cost.
Specifically, we create a prompt consisting of the
instruction “The below sentences are written in an
artificially created new language:” and ten exam-
ple sentences extracted from the respective train-
ing set. The probability of each test sentence is
computed conditioned with this prompt, and aggre-
gating these probabilities results in the PPL of an
entire corpus.

D Results

The full results of the experiment (§6) and analysis
(§7) are shown in Table 6. This also shows the
top-3 preferred word orders by each LM, which
demonstrates the model-dependent differences in
their word-order preferences. We also include the
baseline of average stack depth required to process
sentences for each parsing algorithm in each word
order as a standard measurement of memory cost.

D.1 Beam-search in RNNG/SRNNGs

Table 7 shows the results of RNNG/SRNNGs with
and without word-synchronous beam search (Stern
et al., 2017). The settings without beam-search
are adopted in §6, and the advantages of memory
limitation (SRRNG) and the LC strategies were
replicated even with beam-search, where the token-
level perplexity PPL(x) is used (§8).

D.2 Results with different linking functions

Tables 8, 9, 10, and 11 show the detailed results
with different linking functions (PPL1/2, PPL2,
PPL3, log PPL) between model-computed com-
plexity measurements and word order frequencies.
Experiments with different linking hypotheses did
not alter the conclusions. This supports the gener-
ality of our findings.
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Right-branching Mixed-branching Left-branching

Parameteres RRRRRR LRRRLR LLLLLL

S

VP

Verb

strovokicizeda

NP

NP

fusbenders

Rel

rel

VP

Verb

povify

NP

Pronoun

me

S

NP

NP

fusbenders

Rel

rel

VP

Verb

povify

NP

Pronoun

me

VP

Verb

strovokicizeda

S

NP

VP

NP

Pronoun

me

Verb

povify

Rel

rel

NP

fusbenders

VP

Verb

strovokicizeda

Table 2: Example sentences and their structures generated with different word-order configurations.

All languages in WALS 2,679
Targeted languages 1,616
Targeted parameters 9,696 (=1,616×6)
Missing parameters 3,343

LLXXXX (SOV) 46.7%
LRXXXX (SVO) 34.3%
RLXXXX (VOS) 3.6%
RRXXXX (OVS) 15.5%

sS (S → NPsubj VP) 82A Order of Subject and
Verb (Dryer, 2013e)

sVP (VP → NPobj Verb) 83A Order of Object and
Verb (Dryer, 2013c)

sPP (PP → Prep NP) 85A Order of Adposition and Noun
Phrase (Dryer, 2013b)

sNP (NP → Adj NP) 87A Order of Adjective and
Noun (Dryer, 2013a)

sRel (NP → VP Rel NP) 90A Order of Relative Clause and
Noun (Dryer, 2013d)

sCase (NP → NP Case) 51A Position of Case Affixes (Dryer,
2013g)

Table 3: Statistics of the WALS data and the source of
word-order configuration information

E Details of regression analysis

We explored which factor impacts the global/local
correlation scores obtained by various LMs θ. As
explained in §6.2, we train a regression model to
predict the correlation score obtained by a partic-
ular LM θ, given the features characterizing the
LMs:

Correlθ ∼ModelClass(θ) +MemLim(θ)

+ Syntax(θ) + LC(θ) .
(9)

Table 5 shows the features used for the regres-
sion analysis in §6.2. The regression model is
trained with the ordinary least squares setting, us-
ing statsmodel package in Python (Seabold and
Perktold, 2010).

Data/model Licence

Artificial data (White and Cotterell, 2021) MIT
WALS (Dryer and Haspelmath, 2013) Creative Com-

mons CC-BY 4.0
Fairseq (Ott et al., 2019) MIT
RNNG (Noji and Oseki, 2021) MIT
KenLM (Heafield, 2011) LGPL
LLaMA-2 (Touvron et al., 2023) LLAMA 2 Com-

munity License
Sentencepiece (Kudo and Richardson, 2018) Apache 2.0

Table 4: Licence of the data and models

Model ModelClass
(categorical)

MemLim
(int)

Syntax
(binary)

LC
(binary)

Transformer NLM 0 False False
LSTM NLM 1 False False
SRN NLM 2 False False

Trans. PLM TD NLM 0 True False
Trans. PLM LC NLM 0 True True
LSTM PLM TD NLM 1 True False
LSTM PLM LC NLM 1 True True
SRN PLM TD NLM 2 True False
SRN PLM LC NLM 2 True True

Word 5-gram CLM 0 False False
Word 4-gram CLM 1 False False
Word 3-gram CLM 2 False False

5-gram PLM TD CLM 0 True False
5-gram PLM LC CLM 0 True True
4-gram PLM TD CLM 1 True False
4-gram PLM LC CLM 1 True True
3-gram PLM TD CLM 2 True False
3-gram PLM LC CLM 2 True True

RNNG RNNG 0 True False
RNNG LC RNNG 0 True True
SRNNG RNNG 1 True False
SRNNG LC RNNG 1 True True

Table 5: Features used for the regression analysis
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GEN(povify) NT(NP) GEN(me) REDUCE(NP) REDUCE(VP) REDUCE(NP)…
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Standard LM

TD syntactic LM

LC syntactic LM

predict

predict

predict

Figure 8: Different parsing strategy converts a syntactic structure into a different parsing action sequence. PLMs
and RNNGs predict such action sequences with different model architectures.

Model Lim. Stx. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Natural Lang. 100.0 100.0 10.5 LRRRRL, LRRRRR, LLLRRL

Transformer 12.1 ± 4.3 16.7 ± 6.4 23.8 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 10.7 ± 14.7 26.9 ± 7.4 -1.2 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.3 ± 9.4 38.3 ± 3.0 -3.6 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.4 ± 1.0 17.0 ± 1.7 -5.8 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.5 ± 1.0 16.5 ± 1.6 -6.4 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.8 ± 0.7 17.5 ± 1.0 -6.1 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.4 ± 5.7 29.5 ± 9.1 35.9 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.3 ± 2.1 42.3 ± 1.1 35.2 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 11.9 ± 12.2 37.0 ± 7.3 -27.1 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.5 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.4 ± 8.3 8.7 ± 7.8 -53.7 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.5 ± 4.9 27.5 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.8 ± 2.4 50.4 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.6 ± 0.9 47.0 ± 1.3 28.8 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.4 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.7 ± 0.6 50.6 ± 0.6 22.2 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.3 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 18.0 ± 0.2 55.7 ± 0.3 27.0 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 2.0 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.0 ± 9.6 23.7 ± 13.0 -40.6 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.4 ± 2.5 -4.6 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Stack depth TD -47.5 ± 0.2 -12.0 ± 0.6 -56.2 ± 1.3 RRLRRR, RRLLRR, RRRRRR
Stack depth LC -13.3 ± 0.3 -4.8 ± 0.2 57.6 ± 0.5 RLLLLL, RLLRLL, RLRLLL

Chance rate 0.0 0.0 0.0 -

Table 6: Word-order preferences of LMs. “Lim.” and “Stx.” indicate the working memory limitation and syntactic
biases in the respective model architecture, respectively.

Model Syntax Lim. Beam Global r ↑ Local r ↑ L-pref. → Top3 langs.

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
SRNNG TD ✓ 2.0 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG LC ✓ 19.0 ± 9.6 23.7 ± 13.0 -40.6 ± 8.5 LRRRRR, LRLRRR, LLLRRR

RNNG TD ✓ 9.4 ± 3.5 -31.5 ± 11.6 -30.1 ± 5.7 RRRRLL, RRRLLL, RRLLLL
SRNNG TD ✓ ✓ 14.6 ± 8.7 -2.8 ± 5.9 -21.5 ± 8.9 LLLRRR, LLRRRR, RLRRRR
RNNG LC ✓ -23.4 ± 7.0 26.5 ± 13.9 -26.2 ± 7.2 RLRLRL, RLRRLL, RRRRRL
SRNNG LC ✓ ✓ 17.2 ± 8.5 18.3 ± 12.4 -36.7 ± 9.7 LRRRRR, LRLRRR, RLLRRR

Table 7: Comparson of the RNNG/SRNNG results with and without word-synchronous beam search
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Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 12.4 ± 4.3 16.7 ± 6.4 24.1 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 11.2 ± 14.7 27.0 ± 7.4 -0.8 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.5 ± 9.4 38.4 ± 3.0 -3.5 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.5 ± 1.0 17.1 ± 1.7 -6.0 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.6 ± 1.0 16.7 ± 1.6 -6.7 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.9 ± 0.7 17.7 ± 1.0 -6.3 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.5 ± 5.7 29.4 ± 9.1 36.2 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.2 ± 2.1 42.3 ± 1.1 35.7 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 11.9 ± 12.2 37.0 ± 7.3 -27.2 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.6 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.4 ± 8.3 8.8 ± 7.8 -53.8 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.3 ± 4.9 27.6 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.8 ± 2.4 50.5 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.5 ± 0.9 47.0 ± 1.3 29.0 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.3 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.6 ± 0.6 50.5 ± 0.6 22.4 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.3 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 17.9 ± 0.2 55.7 ± 0.3 27.0 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.1 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 1.9 ± 9.3 10.7 ± 7.8 10.1 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.1 ± 9.6 23.7 ± 13.0 -40.7 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.4 ± 2.5 -4.6 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 8: The results of PPL1/2

Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 11.6 ± 4.3 16.5 ± 6.4 23.1 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 9.8 ± 14.7 26.6 ± 7.4 -1.8 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.1 ± 9.4 38.3 ± 3.0 -3.6 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.4 ± 1.0 16.7 ± 1.7 -5.3 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.4 ± 1.0 16.1 ± 1.6 -5.8 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.5 ± 0.7 17.1 ± 1.0 -5.6 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.3 ± 5.7 29.7 ± 9.1 35.3 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.3 ± 2.1 42.5 ± 1.1 34.1 ± 2.3 LLLLLL, LLRLLL, LLRRLL

LSTM PLM ✓ TD 11.8 ± 12.2 37.0 ± 7.3 -27.1 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.4 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.5 ± 8.3 8.7 ± 7.8 -53.7 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.9 ± 4.9 27.4 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.9 ± 2.4 50.4 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.7 ± 0.9 47.1 ± 1.3 28.5 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.4 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.9 ± 0.6 50.6 ± 0.6 22.0 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.3 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 18.2 ± 0.2 55.6 ± 0.3 26.9 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.6 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 2.1 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.0 ± 9.6 23.6 ± 13.0 -40.4 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.5 ± 2.5 -4.8 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 9: The results of PPL2
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Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 11.1 ± 4.3 16.3 ± 6.4 22.5 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 9.2 ± 14.7 26.4 ± 7.4 -2.3 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.1 ± 9.4 38.3 ± 3.0 -3.5 ± 10.4 RLLLLL, RLRLLL, RLRRLL
Word 5-gram ✓ 5.3 ± 1.0 16.3 ± 1.7 -4.8 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.3 ± 1.0 15.7 ± 1.6 -5.3 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 8.3 ± 0.7 16.8 ± 1.0 -5.1 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.2 ± 5.7 29.9 ± 9.1 34.7 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.3 ± 2.1 42.6 ± 1.1 33.0 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 11.8 ± 12.2 36.9 ± 7.3 -27.0 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.3 ± 2.5 0.2 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.7 ± 8.3 8.6 ± 7.8 -53.6 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 10.2 ± 4.9 27.3 ± 10.5 2.7 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.9 ± 2.4 50.3 ± 2.8 10.1 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.8 ± 0.9 47.2 ± 1.3 28.2 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.5 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 22.1 ± 0.6 50.6 ± 0.6 21.7 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.4 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 18.4 ± 0.2 55.6 ± 0.3 26.8 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.5 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.2 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 2.2 ± 9.3 10.7 ± 7.8 10.2 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 18.9 ± 9.6 23.6 ± 13.0 -40.2 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.9 ± 31.0 15.5 ± 2.5 -4.9 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 10: The results of PPL3

Model Syntax Lim. Global r ↑ Local r ↑ L-pref. → Top3 langs.

Transformer 12.6 ± 4.3 16.8 ± 6.4 24.4 ± 6.1 LLLLLL, LLRLLL, RLRLLL
LSTM ✓ 11.8 ± 14.7 27.2 ± 7.4 -0.4 ± 11.3 RLRLLL, RLLLLL, RRRRRR
SRN ✓ 16.7 ± 9.4 38.4 ± 3.0 -3.5 ± 10.4 RLLLLL, RLRLLL, RLRRLL

Word 5-gram ✓ 5.5 ± 1.0 17.3 ± 1.7 -6.3 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 4-gram ✓ 6.7 ± 1.0 16.8 ± 1.6 -7.0 ± 1.6 RRLRRR, RRRRRR, LRLRRR
Word 3-gram ✓ 9.0 ± 0.7 17.9 ± 1.0 -6.6 ± 1.0 RRRRRR, RRLRRR, LRLRRR

Trans. PLM TD 30.5 ± 5.7 29.4 ± 9.1 36.5 ± 4.7 LLRRLL, LLRRRL, LLRLLL
Trans. PLM LC 30.2 ± 2.1 42.2 ± 1.1 36.2 ± 2.3 LLLLLL, LLRLLL, LLRRLL
LSTM PLM ✓ TD 12.0 ± 12.2 37.1 ± 7.3 -27.2 ± 10.5 LRRRRL, LRLRRL, LRRRRR
LSTM PLM ✓ LC 23.6 ± 3.6 40.4 ± 2.5 0.7 ± 5.5 RLLRRR, LLLLLL, LLLRLL
SRN PLM ✓ TD -5.3 ± 8.3 8.8 ± 7.8 -53.8 ± 7.4 RLRRRR, LRLRRR, RLLRRR
SRN PLM ✓ LC 9.1 ± 4.9 27.6 ± 10.5 2.8 ± 5.2 RLRRLL, RLRRRR, RLLRLL

5-gram PLM ✓ TD 11.8 ± 2.4 50.5 ± 2.8 10.2 ± 7.8 RLLRRL, RLRRRL, RLLLLL
5-gram PLM ✓ LC 18.4 ± 0.9 46.9 ± 1.3 29.1 ± 1.4 LLLRLL, RLLRLL, RLRRLL
4-gram PLM ✓ TD 29.2 ± 0.6 40.0 ± 1.6 4.3 ± 5.4 LLRRRL, RLRRRL, LLRRRR
4-gram PLM ✓ LC 21.5 ± 0.6 50.5 ± 0.6 22.5 ± 0.9 RLLRLL, RLRRLL, LLLRLL
3-gram PLM ✓ TD 19.9 ± 0.7 29.0 ± 1.8 17.2 ± 2.0 RLLRRL, LLLRRL, RLLRRR
3-gram PLM ✓ LC 17.8 ± 0.2 55.7 ± 0.3 27.0 ± 0.5 RLLRRR, RLLRRL, RLRRRR

RNNG TD -22.7 ± 4.7 6.0 ± 14.5 14.5 ± 10.8 RLLRLL, RRRRLL, RRRLLL
RNNG LC -17.6 ± 6.4 25.1 ± 13.4 -21.1 ± 2.0 RRRRRL, RRLLRL, RRLRRL
SRNNG ✓ TD 1.8 ± 9.3 10.7 ± 7.8 10.1 ± 7.0 RLLRRR, RLRRRR, RLLRRL
SRNNG ✓ LC 19.1 ± 9.6 23.8 ± 13.0 -40.7 ± 8.5 LRRRRR, LRLRRR, LLLRRR

LLaMA2 (7B) 6.8 ± 31.0 15.4 ± 2.5 -4.5 ± 31.0 LRLLLL, LRRLLL, LRLRLL

Table 11: The results of log PPL
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Probability Production rule Relevant parameter

1 ROOT → S
1/2 S → NP_Subj_S VP_S S

1/2 S → NP_Subj_P VP_P S

1/3 VP_S → VP_Past_S
1/3 VP_S → VP_Pres_S
1/3 VP_S → VP_Comp_S
1/3 VP_P → VP_Past_P
1/3 VP_P → VP_Pres_P
1/3 VP_P → VP_Comp_P
1/2 VP_Comp_S → VP_Comp_Pres_S
1/2 VP_Comp_S → VP_Comp_Past_S
1/2 VP_Comp_P → VP_Comp_Pres_P
1/2 VP_Comp_P → VP_Comp_Past_P
1/2 VP_Past_S → IVerb_Past_S
1/2 VP_Past_S → NP_Obj TVerb_Past_S VP

1/2 VP_Pres_S → IVerb_Pres_S
1/2 VP_Pres_S → NP_Obj TVerb_Pres_S VP

1/2 VP_Past_P → IVerb_Past_P
1/2 VP_Past_P → NP_Obj TVerb_Past_P VP

1/2 VP_Pres_P → IVerb_Pres_P
1/2 VP_Pres_P → NP_Obj TVerb_Pres_P VP

1 VP_Comp_Pres_S → S_Comp Verb_Comp_Pres_S VP

1 VP_Comp_Past_S → S_Comp Verb_Comp_Past_S VP

1 VP_Comp_Pres_P → S_Comp Verb_Comp_Pres_P VP

1 VP_Comp_Past_P → S_Comp Verb_Comp_Past_P VP

1 S_Comp → S Comp Comp

1 NP_Subj_S → NP_S Subj Case

1 NP_Subj_P → NP_P Subj Case

1/2 NP_Obj → NP_S Obj Case

1/2 NP_Obj → NP_P Obj Case

5/21 NP_S → Noun_S
5/21 NP_S → Adj Noun_S NP

5/21 NP_S → VP_S Rel Noun_S Rel

5/21 NP_S → Pronoun_S
1/21 NP_S → PP NP_S PP

10/43 NP_P → Noun_P
10/43 NP_P → Adj Noun_P NP

10/43 NP_P → VP_P Rel Noun_P Rel

10/43 NP_P → Pronoun_P
2/43 NP_P → PP NP_P PP

1/172 NP_P → NP_S CC NP_S
1/172 NP_P → NP_P CC NP_P
1/172 NP_P → NP_P CC NP_S
1/172 NP_P → NP_S CC NP_P

1/2 PP → NP_S Prep PP

1/2 PP → NP_P Prep PP

1/43 Adj → Adj CC Adj
1/566 TVerb_Past_S → TVerb_Past_S CC TVerb_Past_S
1/566 TVerb_Pres_S → TVerb_Pres_S CC TVerb_Pres_S
1/566 IVerb_Past_S → IVerb_Past_S CC IVerb_Past_S
1/566 IVerb_Pres_S → IVerb_Pres_S CC IVerb_Pres_S
1/566 TVerb_Past_P → TVerb_Past_P CC TVerb_Past_P
1/566 TVerb_Pres_P → TVerb_Pres_P CC TVerb_Pres_P
1/566 IVerb_Past_P → IVerb_Past_P CC IVerb_Past_P
1/566 IVerb_Pres_P → IVerb_Pres_P CC IVerb_Pres_P

1 Verb_Comp_Past_S → word ∼ Dict[Verb_Comp_Past_S] # 22 types
1 Verb_Comp_Past_P → word ∼ Dict[Verb_Comp_Past_P] # 22 types

565/566 IVerb_Past_S → word ∼ Dict[IVerb_Past_S] # 113 types
565/566 IVerb_Past_P → word ∼ Dict[IVerb_Past_P] # 113 types
565/566 TVerb_Past_S → word ∼ Dict[TVerb_Past_S] # 113 types
565/566 TVerb_Past_P → word ∼ Dict[TVerb_Past_P] # 113 types

1 Verb_Comp_Pres_S → word ∼ Dict[Verb_Comp_Pres_S] # 22 types
1 Verb_Comp_Pres_P → word ∼ Dict[Verb_Comp_Pres_P] # 22 types

565/566 IVerb_Pres_S → word ∼ Dict[IVerb_Pres_S] # 113 types
565/566 IVerb_Pres_P → word ∼ Dict[IVerb_Pres_P] # 113 types
565/566 TVerb_Pres_S → word ∼ Dict[TVerb_Pres_S] # 113 types
565/566 TVerb_Pres_P → word ∼ Dict[TVerb_Pres_P] # 113 types

1 Noun_S → word ∼ Dict[Noun_S] # 162 types
1 Noun_P → word ∼ Dict[Noun_P] # 162 types
1 Pronoun_S → word ∼ Dict[Pronoun_S] # 5 types
1 Pronoun_P → word ∼ Dict[Pronoun_P] # 2 types

42/43 Adj → word ∼ Dict[Adj] # 42 types
1 Prep → word ∼ Dict[Prep] # 4 types
1 CC → da
1 Comp → sa
1 Rel → rel
1 Subj → sub
1 Obj → ob

Table 12: The base grammar we used to create artificial language data. The relevant switch in the third column
overwrites the linearization order in the corresponding rule. The lexical items are randomly sampled from the
pseudoword dictionary.

14541



Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
ffn_embed_dim 512
layers 2
heads 2
dropout 0.3
attention_dropout 0.1
#params. 462K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(a) Transformer.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 128
hiden_size 512
layers 2
dropout 0.1
#params. 3,547K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(b) LSTM.

Fairseq
model

share-decoder-input-output-embed True
embed_dim 64
hiden_size 64
layers 2
dropout 0.1
#params. 49K

Optimizer
algorithm AdamW
learning rates 5e-4
betas (0.9, 0.98)
weight decay 0.01
clip norm 0.0

Learning rate scheduler type inverse_sqrt
warmup updates 400
warmup init learning rate 1e-7

Training batch size 512 tokens
sample-break-mode none
epochs 10

(c) SRN.

Table 13: Hyperparameters of standard LMs and PLMs
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model

composition BiLSTM
recurrence LSTM
embed_dim 256
hiden_size 256
layers 2
dropout 0.3
#params. 2,440K

Optimizer
algorithm Adam
learning rates 1e-3
betas (0.9, 0.98)
max grad norm 5.0

Training
batch size 2,048 tokens
sample-break-mode none
epochs 10

Inference
beam size 100
word beam size 10
shift size 1

(a) RNNG.

model

composition Simple RNN
recurrence Simple RNN
embed_dim 64
hiden_size 64
layers 2
dropout 0.3
#params. 68K

Optimizer
algorithm Adam
learning rates 1e-3
betas (0.9, 0.98)
max grad norm 5.0

Training
batch size 2,048 tokens
sample-break-mode none
epochs 10

Inference
beam size 100
word beam size 10
shift size 1

(b) SRNNG.

Table 14: Hyperparameters of RNNGs
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