
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14848–14877
August 11-16, 2024 ©2024 Association for Computational Linguistics

Learn or Recall? Revisiting Incremental Learning with Pre-trained
Language Models

Junhao Zheng, Shengjie Qiu, Qianli Ma*
School of Computer Science and Engineering,

South China University of Technology, Guangzhou, China
junhaozheng47@outlook.com, shengjieqiu6@gmail.com, qianlima@scut.edu.cn∗

Abstract

Incremental Learning (IL) has been a long-
standing problem in both vision and Natural
Language Processing (NLP) communities. In
recent years, as Pre-trained Language Models
(PLMs) have achieved remarkable progress in
various NLP downstream tasks, utilizing PLMs
as backbones has become a common practice
in recent research of IL in NLP. Most assume
that catastrophic forgetting is the biggest obsta-
cle to achieving superior IL performance and
propose various techniques to overcome this
issue. However, we find that this assumption is
problematic. Specifically, we revisit more than
20 methods on four classification tasks (Text
Classification, Intent Classification, Relation
Extraction, and Named Entity Recognition) un-
der the two most popular IL settings (Class-
Incremental and Task-Incremental) and reveal
that most of them severely underestimate the
inherent anti-forgetting ability of PLMs. Based
on the observation, we propose a frustratingly
easy method called SEQ* for IL with PLMs.
The results show that SEQ* has competitive or
superior performance compared with state-of-
the-art (SOTA) IL methods yet requires con-
siderably less trainable parameters and train-
ing time. These findings urge us to revisit the
IL with PLMs and encourage future studies to
have a fundamental understanding of the catas-
trophic forgetting in PLMs. The data, code and
scripts are publicly available 1.

1 Introduction

Learning knowledge incrementally without much
forgetting is an essential ability of human be-
ings but still an unsolved challenge for neural
networks in achieving human-level intelligence
(French, 1999). Incrementally learning a sequence

∗*Corresponding author
1https://github.com/zzz47zzz/codebase-for-incremental-

learning-with-llm and https://github.com/qianlima-
lab/codebase-for-incremental-learning-with-llm

15

31

47

63

79

Topic3datasets

17
35

53
71

89
CLINC150

14

28

43

57

72

Banking77

13
26

40
53

66

FewRel

9

19

29

39

49

TACRED

SEQ* (Ours)
LAMOL_g
LAMOL_t
LAMOL_KD

L2KD
PCLL
LFPT5
SEQ

Figure 1: The comparison between the proposed SEQ*
and SOTA IL methods on five class-incremental tasks.
We report the average accuracy after learning the final
task. The detailed results are provided in Table 1.

of tasks can be formulated into the paradigm of
Incremental Learning (IL) and has been impeded
by catastrophic forgetting (Kirkpatrick et al., 2017).
Catastrophic forgetting refers to neural networks
forgetting previous knowledge after learning new
tasks (McCloskey and Cohen, 1989).

Recent years have witnessed significant break-
throughs in Pre-trained Language Models (PLMs)
in vision and NLP tasks. Most recent studies of IL
use PLMs as the backbone and design various meth-
ods for alleviating catastrophic forgetting in NLP
tasks. However, is forgetting really catastrophic
in PLMs? More specifically, how can we quantify
forgetting and how much knowledge is forgotten in
various IL scenarios when using various backbones
and methods on various tasks? More recently, (Tao
et al., 2023) reveal for the first time that BERT-like
models have a strong anti-forgetting ability in the
task-incremental setting. Why does this happen?
Does it hold for a more challenging setting, such

14848

https://github.com/zzz47zzz/codebase-for-incremental-learning-with-llm
https://github.com/zzz47zzz/codebase-for-incremental-learning-with-llm
https://github.com/qianlima-lab/codebase-for-incremental-learning-with-llm
https://github.com/qianlima-lab/codebase-for-incremental-learning-with-llm

as class-incremental learning, and for other model
architectures, such as GPT-like models?

To answer the above questions, we carry out
extensive experiments to explore forgetting in
more than 20 methods on four classification tasks
(Text Classification, Intent Classification, Rela-
tion Extraction, and Named Entity Recognition)
under the two most popular IL settings (Class-
Incremental and Task-Incremental) with various
model architecture (encoder only and decoder only)
and scales (from 19M to 1.21B number of param-
eters). Through extensive experiments, we have
several major findings:

• The popular assumption that PLMs suffer
from catastrophic forgetting does not hold.
Even under sequential fine-tuning (SEQ), the
PLMs maintain the knowledge without much
forgetting (Sec. 3.2). From the probing per-
spective, most existing IL methods do not
learn incremental knowledge for PLMs (Sec.
4.2).

• By combining SEQ with simple strategies
(Sec. 4.1), we propose SEQ* and find that
SEQ* has competitive or even superior perfor-
mance than SOTA IL methods (Figure 1, Sec.
4.2).

• The inherent anti-forgetting ability of PLMs
comes from both the pre-training stage as well
as the architecture of Transformer (Sec. 3.4).
Randomly initialised PLMs learn incremen-
tally when SEQ is performed on a sequence
of tasks.

• The forgetting of SEQ is due to the deviation
of the classifier from the PLM rather than the
loss of old knowledge in the PLM. (Sec. 3.5).

Our study urges the NLP community to revisit
and deepen the understanding of the forgetting in
PLMs.

2 Experimental Settings

2.1 Problem formulation
Formally, the goal of IL is to learn a model
fθ : x → y ∈ Y from a sequence of tasks
D = {D1,D2, · · · ,DT }, where the t-th task Dt =
{(xt

i, y
t
i)}i=1 contains input samples xt

i ∈ Xt and
labels yti ∈ Yt. In Class-Incremental Learning
(CIL), the label sets of different tasks are exclusive:
Y1 ∩ Y2 · · · YT = ∅, and the task id is unknown

during inference. In Task-Incremental Learning
(TIL), the label sets of different tasks may be over-
lapping: Y1 ∩ Y2 · · · YT ̸= ∅, and the task id is
required during inference. In general, CIL is much
more challenging than TIL because PLMs suffer
from inter-task forgetting much more seriously than
intra-task forgetting (Tao et al., 2023). Appendix
A provides detailed description and evaluation met-
rics.

2.2 Tasks and Datasets

We consider four types of downstream tasks in
our experiments: Text classification, intent clas-
sification, relation extraction, and named entity
recognition. We use the following eight datasets:
Topic3Datasets (containing AGNews, DBPedia,
and YaHoo (Zhang et al., 2015)) for text clas-
sification; CLINC150 (Larson et al., 2019) and
Backing77 (Casanueva et al., 2020) for intent clas-
sification; FewRel (Han et al., 2018) and TA-
CRED (Zhang et al., 2017) for relation extraction;
OntoNotes5 (Hovy et al., 2006), I2B2 (Murphy
et al., 2010), Few-NERD (Ding et al., 2021) for
named entity recognition. Detailed descriptions are
provided in Appendix B.

2.3 Backbones

We consider two popular architectures as back-
bone PLMs: encoder-only and decoder-only. For
encoder-only backbones, we use bert-base-cased
and bert-large-cased (Devlin et al., 2019), the
most popular choices in previous IL studies. The
encoder-only backbones are typically used as dis-
criminant models, and linear layers are added for
downstream tasks. We use the GPT2 (Radford
et al., 2019) and Pythia suite (Biderman et al., 2023)
for decoder-only backbones. Pythia is based on
GPT-NeoX (Black et al., 2022), which contains
8 model sizes and 154 pre-training checkpoints,
enabling research in interpretability and learning
dynamics. The decoder-only backbones are typi-
cally used as generative models, and no additional
linear layers are required since the output target
is natural language. The detailed description is
provided in Appendix C.

3 Revisiting the Forgetting from the
Probing Perspective

3.1 How to Measure the Forgetting in PLMs?

This subsection describes how to measure the for-
getting inside PLMs during IL. Specifically, we

14849

Figure 2: An illustration of how we obtain the probing and the observed performance of the model when learning
the fourth task if there are a total of 15 tasks. The observed performance is used as a metric of forgetting in existing
studies. The probing performance indicates how the encoder forgets. However, it is overlooked by previous studies.

utilize the probing technique, an effective method
to evaluate the representation ability of backbones
on target tasks (Chen et al., 2023a; Tao et al., 2023;
Davari et al., 2022; Wu et al., 2021).

To probe the knowledge in PLMs for all tasks in
IL, we add probing classifiers on top of the PLM
and train the probing classifiers on all tasks in
IL. Then, we evaluate the PLM and the probing
classifiers on all tasks and obtain the probing per-
formance. The probing performance is the upper
bound performance when the classifiers do not for-
get. For clarity, the performance evaluated with the
original model is called the observed performance.
We note that measuring probing performance will
not affect the training process of IL since the back-
bone PLM is frozen when training probing clas-
sifiers. Furthermore, the original classifiers only
predict the classes of learned tasks, while the prob-
ing classifiers predict the classes of all tasks in
IL. We provide an illustration in Figure 2 and the
formal definition in Appendix A.

We consider four metrics for our probing study:
linear probing, cosine linear probing, prototype
probing, and cosine prototyping. Linear probing
has been widely adopted in previous works. In lin-
ear probing, the probing classifier is a linear layer.
Cosine linear probing adopts a cosine linear layer
as the probing classifier. Specifically, the logits
are computed as the cosine similarities between
classifier weights and extracted features. Hou et al.
(2019) show that utilizing cosine linear layers mit-
igates bias towards new classes in IL. In proto-
type probing, the probing classifier is a linear layer

whose weight matrix is calculated as the class fea-
ture centres. Previous IL studies (Zhou et al., 2023;
Chen et al., 2023b; Ma et al., 2023) show that using
class feature centres as prototypes for classification
is effective. Cosine prototype probing further uti-
lizes cosine normalization when calculating logits.
Further discussion is provided in Appendix D.1.

3.2 Is Sequential Fine-tuning Really the
Lower Bound?

Sequential fine-tuning (SEQ) has long been re-
garded as the lower bound of IL. In this subsection,
we revisit SEQ from the probing perspective, and
we find that SEQ is severely underestimated when
using PLMs for IL.

The backbone was small and randomly initial-
ized in early studies exploring IL (Kirkpatrick et al.,
2017; French, 1999; McCloskey and Cohen, 1989).
They find that SEQ usually results in models for-
getting all previous knowledge when learning new
tasks. Recent IL studies in NLP (Razdaibiedina
et al., 2023; Zheng et al., 2024a; Huang et al., 2021;
Sun et al., 2019; Qiu et al., 2024) also observe that
SEQ leads to worse performance. However, in the
era of PLMs, fine-tuning has proven to be effective
for adapting PLMs to different domains or down-
stream tasks (Aghajanyan et al., 2020; Devlin et al.,
2019; Radford et al., 2018; Zheng et al., 2023).
If fine-tuning really causes PLMs to forget nearly
all previous knowledge in IL, it should also cause
PLMs to forget all pre-trained knowledge when
adapting to new tasks. Obviously, this assump-
tion is not true since fine-tuning is still effective

14850

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100
Ac

cu
ra

cy
 (

%
)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(a) Observed Performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Lo
ss

1

5

10

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(b) Training Loss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(c) Lin. Prob

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100
Ac

cu
ra

cy
 (

%
)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(d) Cos.Lin. Prob

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(e) Proto. Prob

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(f) Cos.Proto. Prob

Figure 3: The observed and probing performance on
Class-Incremental Intent Classification. The dataset
is CLINC150. The backbones are generative models.
(a)(b) are the observed performance and training loss
during IL training. (c)-(f) are the probing performance
when different metrics are adopted.

for PLMs (OpenAI, 2023). Furthermore, prior re-
search (Tao et al., 2023) also finds that BERT-like
models suffer from little forgetting under the task-
incremental setting by the probing study.

The observed and probing performance on class-
incremental intent classification with generative
models are summarized in Figure 3. The results
on other IL settings, downstream tasks and back-
bones are in Appendix D.2. Figure 3a shows that
the observed performance drops dramatically from
approximately 98% to 10% as more new tasks are
learned, in line with our understanding of catas-
trophic forgetting. However, Figure 3c describes an
entirely different phenomenon. The PLMs achieve
high probing performance after learning the first
task. And the linear probing performance has
barely decreased since the second task. In other
words, PLMs preserve the knowledge to classify
all 15 tasks even when adapting to only new tasks
sequentially. This phenomenon is contradictory to

what we know about catastrophic forgetting and
SEQ.

Indeed, the probing performance is high since all
tasks’ data is available when training the probing
classifiers, while the observed performance is poor
since the original classifiers only train on the data
from the current task. However, with the above ob-
servation, we can boost the observed performance
with simple strategies, which will be described in
Section 4.1.

3.3 What is the Best Metric for Probing
Performance?

In Figure 3, we find that the ranking of four probing
metrics is as follows: linear > cosine linear, cosine
prototype > prototype probing. This subsection
will explain why linear probing is the best metric
for probing study.

0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=0.68
Q2=0.74
Q3=0.79

(a) Feature Sim

0.1 0.0 0.1 0.2 0.3
Cosine Similarity

0

1

2

3

4

5

Pe
rc

en
ta

ge
 (

%
)

Q1=0.04
Q2=0.07
Q3=0.09

(b) Feat-WordEmbed Sim

95.0 97.5 100.0 102.5 105.0 107.5 110.0
L2 Norm

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge
 (

%
)

Q1=109.79
Q2=110.14
Q3=110.40

(c) Feature Norm

0.4 0.6 0.8 1.0 1.2 1.4
L2 Norm

0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 (

%
)

Q1=0.72
Q2=0.77
Q3=0.86

(d) WordEmbed Norm

Figure 4: The histogram of features and different em-
beddings of Pythia-410m. The features are calculated
on the training set of CLINC150, and the output word
embeddings are loaded from pre-trained weights. The
class embeddings refer to the row vectors of the weight
matrix in the probing classifier on CLINC150. The class
prototypes refer to the class feature centres estimated
on the training set of CLINC150.

First, we need to understand what the features
(i.e., last hidden states), word embeddings of PLMs,
and the class embeddings in probing classifiers
“look like” respectively. The detailed description
is in Appendix D.3. The histograms of the L2
norm and the cosine similarity of features, word
embeddings and class embeddings are in Figure
4. Figure 4a shows that the features occupy a nar-

14851

row cone in the vector space rather than being uni-
form in all directions, which has been discussed in
(Ethayarajh, 2019). More surprisingly, Figure 4b
shows that the learned (output) word embeddings
are nearly orthogonal to the features. We infer that
the cross-entropy loss encourages all word embed-
dings except the ground truth one to become farther
away from the feature during pre-training. In other
words, the cross-entropy loss encourages a large
difference in logits, and the word embeddings to
be orthogonal to the features in order to distinguish
logits better. Therefore, it is not surprising that
linear probing has the best performance, consider-
ing that the word embedding layer is essentially
a linear layer. From this point of view, it is also
not surprising that the performance of prototype
probing is poor since the prototypes (class feature
centres) also fall in the narrow cone space, and it is
not an optimal solution for distinguishing logits.

Then, why does cosine normalization degrade
the performance of linear probing but improve pro-
totype probing? Figure 4c and 4d are the L2 norm
of the features and word embedings. We find that
the norm of word embeddings has a larger discrep-
ancy than features. It indicates that the norm of
word embeddings contains the prior knowledge
obtained from pre-training. Therefore, the cosine
linear probing ignores the difference in the norm
of features and thus has poorer performance com-
pared with linear probing. For prototype probing,
the prototype falls in a narrow cone space, and the
similarity between the prototype and features is
large and close to each other. In this case, cosine
normalization can eliminate the interference of the
norm and establish the relationship between logits
and cosine similarity between features. We provide
the detailed analysis and full results with differ-
ent backbones in Appendix D.3. An illustration of
different types of probing metrics is in Figure 7.

3.4 What is the Role of Pre-training in IL?
In this subsection, we reveal that the key to the anti-
forgetting ability of PLMs lies in both the Trans-
formers’ architecture and the pre-training knowl-
edge.

We evaluate the linear probing performance on
checkpoints with a different number of pre-training
steps: {0,16,128,1k,10k,143k(final)}. We load the
pre-trained checkpoints (or randomly-initialized
checkpoints at step 0) and evaluate their linear prob-
ing performance before and after IL using SEQ.
Figure 5 shows two main phases in pre-training:

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100

Li
n.

 P
ro

b.
 A

cc
ur

ac
y

(%
)

OverFitting Generalize

Pretraining-Downstream
 Gap

Pythia-70m
Pythia-160m
Pythia-410m

(a) Intent+Before SEQ

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100

Li
n.

 P
ro

b.
 A

cc
ur

ac
y

(%
)

OverFitting Generalize

Gap

Pythia-70m
Pythia-160m
Pythia-410m

(b) Intent+After SEQ

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100

Li
n.

 P
ro

b.
 A

cc
ur

ac
y

(%
)

OverFitting Generalize

Gap
Pythia-70m
Pythia-160m
Pythia-410m

(c) RE+Before SEQ

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100

Li
n.

 P
ro

b.
 A

cc
ur

ac
y

(%
)

OverFitting Generalize

Gap

Pythia-70m
Pythia-160m
Pythia-410m

(d) RE+After SEQ

Figure 5: The linear probing performance on check-
points with different pre-training steps. (a) and (b) are
evaluated before and after incremental learning using
SEQ. “Intent” and “RE” represent the model is evalu-
ated on the Class-Incremental Intent Classification or
Relation Extraction.

overfitting and generalization. In the first phase
(step 0 - step 128), the model memorizes the pre-
training corpus, and the linear probing performance
decreases. In the second phase (step 1k - step 143k),
the model gradually learns the pre-training knowl-
edge and the linear probing performance increases.
However, when the model further generalizes to
the pre-training corpus (step 10k - step 143k), the
linear probing performance of small backbones
(Pythia-70 m and 160m) decreases again due to the
gap between pre-training and downstream tasks.
This gap can be eliminated when adapting to down-
stream tasks (Figure 5a and Figure 3c). For larger
backbones (Pythia-410 m, 1b, and 1.4b), the model
can be adapted to new tasks directly without this
gap.

Besides, we have the following interesting find-
ings: (1) Pre-training indeed improves the linear
probing performance in IL (Figure 5b and 5d).
(2) Apart from pre-training, the architecture of
the Transformer is also a key factor in the high
linear probing accuracy during SEQ. When the
downstream task is relatively simple, such as intent
classification, even the randomly-initialized mod-
els achieve high linear probing performance (Fig-
ure 5b). Pre-training brings considerable improve-
ments when the downstream task is more complex,
such as relation extraction (Figure 5d). (3) More
surprisingly, SEQ improves the linear probing per-

14852

formance of models from nearly all pre-training
steps (Figure 5a v.s. 5b; Figure 5c v.s. 5d). This
shows that Transformers’ architecture can incre-
mentally absorb new knowledge even when just
sequential fine-tuning on new tasks. The detailed
settings, visualization of features, and additional re-
sults on text classification are provided in Appendix
E.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(a) Observed Classifier

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(b) Probing Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(c) Observed Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(d) Probing Classifier

Figure 6: Comparison between the observed linear clas-
sifier and the linear probing classifier during SEQ on
class-incremental intent classification. The backbone
is Pythia-410m. (a)(b) show the average norm of the
class embeddings of each task; (c)(d) show the average
moving distance of the class embeddings of each task.

3.5 What is really forgotten in SEQ?
As discussed in Sec. 3.2, SEQ’s linear probing
performance showed little degradation or even im-
provement across all settings. Therefore, the reason
for forgetting must lie in the classifier. In this sub-
section, we will take a closer look at the forgetting
in classifiers.

Existing studies (Wu et al., 2019; Hou et al.,
2019; Zheng et al., 2024b) find that the model
tends to predict new classes during IL. They refer
this phenomenon as the class imbalance problem
between old and new classes. In SEQ, the class
imbalance problem is more severe since only new
classes are learned. We also observe that the logits
of new classes are much larger than those of old
classes in a SEQ model. Because both features
and class embeddings determine the magnitude of
logits, the features occupy a narrow cone space,
and their norms are relatively close, we can infer
that the forgetting is caused by either (1) the norm

of class embeddings or (2) the cosine similarity
between features and class embeddings.

For the first reason (i.e., class norm), we compare
the class embedding norm between learned linear
classifiers and linear probing classifiers in Figure
6a and 6b. Surprisingly, the class embedding norm
of new tasks is not larger than those of old tasks
in the observed classifier of SEQ. It indicates that
the class norm is not the primary reason for the
forgetting in SEQ.

For the second reason (i.e., cosine similarity),
we compare the moving distance of class embed-
dings between the observed and probing classifiers
in Figure 6c and 6d. The moving distance of the
class embeddings of task t at task t+k is computed
as follows: (1) When the model finishes training
on task t, we compute the cosine distance between
all pairs of class embeddings from task t and class
feature centres from all tasks and obtain a cosine
similarity matrix Ct

t. (2) When model finishes
training on task t+ k, we compute the cosine dis-
tance between all pairs of class embeddings from
task t and class feature centres from all tasks and
obtain a cosine similarity matrix Ct

t+k. (3) Then,
the moving distance of task t’s class embeddings
is calculated as the average absolute difference be-
tween the cosine similarity matrix Ct

t and Ct
t+k.

The moving distance measures how the class em-
beddings move relatively to all class feature cen-
tres since they have been learned. If the classifier
does not forget a class, the distance from its class
embeddings to all class feature centres should re-
main constant. In other words, its moving distance
will be zero if the classifier does not forget how
to classify this class with the features extracted by
PLMs. We provide an illustration in Figure 25.
The detailed settings, definition, and additional re-
sults with frozen bert-large-cased are provided in
Appendix F.

Figure 6c and 6d show that the class embeddings
of observed classifiers change significantly com-
pared with those of probing classifiers. It indicates
that the forgetting happens because the old class
embeddings are pushed away from their initial and
optimal position. The cosine similarity matrices
are visualized in Figure 26.

4 Revisiting the SOTA Methods in IL

4.1 SEQ*: Boosting the Performance of SEQ

In this subsection, we propose SEQ* based on the
findings about the forgetting in SEQ.

14853

In the previous section, we have the following
findings about SEQ: (F1) The PLMs do not learn
new knowledge in SEQ about the downstream IL
tasks; (F2) The PLMs achieve the highest probing
performance once being adapted to downstream
tasks, and there is little performance degradation
when learning on more new tasks (See Figure 3c
and Figure 5a); (F3) The classifier forgets dramati-
cally, while the PLMs do not. The reason is that the
class embeddings are pushed away from the initial
learned optimal position.

Therefore, we propose the following strategies
for closing the gap between the probing and ob-
served performance in SEQ: (S1) Freeze the PLMs
after warm-up; (S2) Freeze the old classifiers when
learning new tasks; (S3) Use cosine linear classi-
fiers only when no old data is available in a CIL
scenario. Otherwise, use linear classifiers; (S4, op-
tional) Pre-allocate future classifiers. We call the
method with the above strategies as SEQ*, and an
illustration is provided in Figure 27.

The rationale for the above strategies is as fol-
lows: (S1) is proposed according to (F1). Further-
more, we propose to warm up (i.e., full-parameter
fine-tuning) PLMs in only the first task according
to (F2). In practice, warm-up onlt for 1-3 epochs
brings considerable improvement across backbones
and datasets. (S1) and (S2) preserve the relative po-
sition of class embeddings with respective to class
feature centres to avoid the issue in (F3). When
both PLMs and classifiers of old tasks are frozen,
only the norm of new class embeddings may lead to
the biased prediction towards new classes. Because
cosine linear layers are not optimal for exploiting
PLMs’ knowledge, we propose (S3) to avoid bias
prediction. In other words, we use linear classifiers
for the TIL scenario and the CIL scenario where
old data is stored. Finally, we propose (S4) for
better forward compatibility (Zhou et al., 2022).
(S4) is marked as an optional strategy since it re-
quires additional information on the number of
total tasks. Therefore, we report the two variants of
SEQ*, i.e., w/ and w/o (S4), when comparing with
SOTA methods. We provide detailed discussion
and explanation in Appendix G.

4.2 Comparing SOTA methods with SEQ*
In this subsection, we evaluate SEQ* under ex-
tensive settings. Despite its simplicity, SEQ* has
competitive or even superior performance in most
settings.

We provide the result under the CIL scenario in

Table 1: Comparison between SOTA methods and SEQ*
on sentence-level classification tasks. The backbone is
Pythia-410m. The IL scenario is CIL. No old samples
are stored for all models. Lin: use linear classifiers; Cos:
use cosine linear classifiers; FixB: fix backbone PLMs;
FixC: fix old classifiers; FixBC: fix both backbone PLMs
and old classifiers; W: warm up backbone PLMs; P: pre-
allocate future classifiers. The best and second best
results are bold and underlined. The full result is in
Table 7.

Topic3Datasets CLINC150 Banking77 FewRel TACRED

AT AT AT AT AT

LFPT5 16.78 3.48 7.98 5.52 7.60
L2KD 58.89 22.48 47.47 37.08 20.86
LAMOL_KD 49.94 41.99 52.60 25.77 29.03
LAMOL_g 74.45 35.43 48.40 28.10 32.70
LAMOL_t 74.05 43.37 57.00 28.44 28.81
PCLL 58.83 47.09 45.33 31.00 24.50

SEQ (Lin) 19.66 9.26 14.88 13.43 12.64
SEQ (Cos) 16.89 5.97 11.10 11.40 10.08
SEQ (FixB+Cos) 17.13 6.08 10.32 7.45 9.30
SEQ (FixC+Cos) 50.96 64.28 44.93 33.48 28.90
SEQ (FixBC+Cos) 53.18 62.72 44.09 33.58 28.02
SEQ (W+FixBC+Lin) 33.41 19.06 17.79 13.68 13.65
SEQ (P+W+FixBC+Lin) 33.70 27.20 15.09 17.08 14.54

SEQ* (W+FixBC+Cos) 50.77 75.96 53.76 46.12 36.55
SEQ* (P+W+FixBC+Cos) 70.56 84.51 67.12 61.99 44.34

Table 2: Comparison between SOTA methods and SEQ*
on word-level classification tasks. The backbone is bert-
base-cased. The IL scenario is CIL. No old samples
are stored for all models. Other notation is the same as
Table 1. The full result is in Table 13.

Few-NERD OntoNotes5 I2B2

AT AT AT

SpanKL 18.26 40.10 6.12
OCILNER 18.44 39.99 27.27
ExtendNER 20.02 48.08 20.02
DLD 20.75 47.23 30.50
SelfTrain 23.46 51.08 23.60
RDP 27.08 50.45 40.38
CPFD 34.65 55.58 43.52
ICE_O 28.98 51.81 49.12
ICE_PLO 19.94 46.52 47.76
CFNER 27.70 58.07 35.42

SEQ (Lin) 2.97 4.38 5.26
SEQ (W+FixBC+Cos) 7.26 29.12 45.95
SEQ (P+W+FixBC+Cos) 3.17 29.70 47.10

SEQ* (W+FixBC+Lin) 28.13 66.99 71.76
SEQ* (P+W+FixBC+Lin) 28.21 67.39 72.51

Figure 1, Table 1 and 2 in the main manuscript due
to the space limitation. We provide the introduction
and training details of SOTA methods in Appendix
H. The full results on other backbones, datasets,
and IL settings are summarized in Table 7, 8, 10, 11,
12, 13, 9, 15 in Appendix I. All baselines and SEQ*
use the same backbone PLM for IL. In all settings
except for sentence-level classification tasks with
discriminant backbones, SEQ* and all baselines
store no old samples.

From the results in Table 1 and 2, we have

14854

the following findings: (1) SEQ* shows compa-
rable or better performance on all datasets. Using
proper classifiers, fixing old classifiers, and pre-
allocating future classifiers improve SEQ signifi-
cantly. We highlight that we do not aim to show
SEQ* achieves SOTA performance across all set-
tings. Instead, we aim to demonstrate that SEQ*
serves as a comparable baseline in most IL settings
and should be considered in further IL studies.

(2) SEQ* does not perform best when the PLM
is required to absorb new knowledge, or there are
overlaps between new and old tasks. For exam-
ple, Few-NERD contains fine-grained entities, such
as “Airport” and “Hotel”, which PLMs may not
have seen during pre-training. In Topic3Datasets,
“Sci/Tech” and “Computers & Internet” belong to
two different tasks. Intuitively, the PLM need to
adjust the class boundary to avoid overlapping be-
tween classes.

Furthermore, we compare the linear probing
performance between SEQ* and SOTA methods
in Figure 3 and 14. The results show that the
difference in the linear probing performance is
small compared with the observed performance.
The improvement between “BeforeIL” and “Af-
terIL” mainly comes from the adaptation from pre-
training to downstream tasks (Figure 3,9,11,12). It
explains why freezing PLMs after warm-up is ef-
fective. It also explains why prompt-based methods
(Razdaibiedina et al., 2023; Wang et al., 2022) are
effective even if only a tiny portion of the param-
eters are learned. Furthermore, the performance
gap between SEQ* and linear probing performance
still exists. The reason is that backward knowledge
transfer from new tasks to old tasks is prohibited
in SEQ*.

We compare the training time and the number
of trainable parameters between SEQ* and SOTA
methods in Table 4. SEQ* requires much less train-
ing time and trainable parameters for each task.

Table 3: The linear probing performance with Pythia-
410m. Other settings are the same as Table 1.

CLINC150 FewRel

Before IL After IL Before IL After IL

SEQ (Lin)

91.05±0.65

91.08±0.20

52.18±0.50

77.39±0.28

L2KD 90.88±0.78 76.57±0.46

LAMOL_t 91.30±1.14 81.54±0.66

LAMOL_g 91.42±0.25 81.09±0.71

SEQ* (P+W+FixBC+Cos) 91.12±0.52 77.47±0.84

Table 4: The comparison of training time and trainable
parameters for each task on CLINC150. †: The model
after warm-up.

Time (Min) # Trainable Params each Task

PCLL 199 410M
L2KD 179 405M

LAMOL_KD 119 405M
LAMOL_t 70 405M
LAMOL_g 68 405M

SEQ* 24 10.24K†

5 Related Work

Previous studies have assessed catastrophic forget-
ting by measuring performance degradation on old
tasks. However, there is limited understanding
of probing performance in incremental learning.
Davari et al. (2022) use linear probing to reveal
that representations still experience significant drift
due to parameter updates. Wu et al. (2021) con-
duct layer-wise probing studies on BERT, revealing
catastrophic forgetting in the top and middle lay-
ers. They observed that, although BERT maintains
high representational ability at the last incremen-
tal step, the classifier loses the ability to classify
previously learned classes. Chen et al. (2023a)
conduct linear probing on k-shot samples from the
next task, revealing a strong correlation between
retaining past information and learning efficiency
on new tasks. Tao et al. (2023) utilize linear prob-
ing to illustrate that BERT is inherently resilient to
catastrophic forgetting, even without buffer data in
task-incremental learning. In this study, we further
investigate the influence of probing metrics, back-
bone and classifier architecture, pre-training steps,
datasets, and IL methods on the probing perfor-
mance. Furthermore, we analyze the forgetting of
classifiers from the perspective of norm and cosine
similarity. Finally, we propose simple but effective
strategies for SEQ and conduct extensive experi-
ments to validate its effectiveness.

6 Conclusion

Incremental learning is a key pillar of human cog-
nition and intelligence. As PLMs have become
popular in recent years, more and more IL stud-
ies adopt PLMs as the backbone model. However,
we reveal that existing studies ignore the inherent
anti-forgetting of PLMs and design methods based
on a problematic assumption. Our findings encour-
age the IL community to revisit the assumption of
catastrophic forgetting in PLMs and re-evaluate the

14855

proposed IL algorithms by comparing them with
frozen-based methods such as SEQ*.

We suggest two future directions for IL with
PLMs: (1) design IL benchmark where domain-
specific knowledge is required; (2) design IL al-
gorithms that update the knowledge of PLMs with
limited time, computation cost and memory budget.

Limitations

There are two limitations of this study: (1) We only
focused on the IL of classification tasks and did not
explore the forgetting of general forms of knowl-
edge in PLMs; (2) We did not fully understand the
internal mechanism of how PLMs incrementally
learn the knowledge under SEQ.

Ethical Considerations

The ethical considerations of our research are care-
fully addressed to ensure compliance with relevant
standards and transparency. To this end, we provide
the following clarifications for reproducibility:

• We provide a detailed setting of our experi-
ments.

• The source code, data, and scripts will all be
publicly available.

• Our findings are in alignment with observed
empirical outcomes.

Acknowledgements

We thank the anonymous reviewers for their
helpful feedbacks.The work described in this
paper was partially funded by the National
Natural Science Foundation of China (Grant
No. 62272173), the Natural Science Foun-
dation of Guangdong Province (Grant Nos.
2024A1515010089, 2022A1515010179), the Sci-
ence and Technology Planning Project of Guang-
dong Province (Grant No. 2023A0505050106),
and the National Key R&D Program of China
(Grant No. 2023YFA1011601).

References
Armen Aghajanyan, Akshat Shrivastava, Anchit Gupta,

Naman Goyal, Luke Zettlemoyer, and Sonal Gupta.
2020. Better fine-tuning by reducing representational
collapse. In International Conference on Learning
Representations.

Elahe Arani, Fahad Sarfraz, and Bahram Zonooz. 2022.
Learning fast, learning slow: A general continual
learning method based on complementary learning
system. In International Conference on Learning
Representations.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397–2430.
PMLR.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu Puro-
hit, Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of BigScience Episode #5 – Workshop on Chal-
lenges & Perspectives in Creating Large Language
Models, pages 95–136, virtual+Dublin. Association
for Computational Linguistics.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Da-
vide Abati, and Simone Calderara. 2020. Dark expe-
rience for general continual learning: a strong, simple
baseline. Advances in neural information processing
systems, 33:15920–15930.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz,
Matthew Henderson, and Ivan Vulić. 2020. Efficient
intent detection with dual sentence encoders. In Pro-
ceedings of the 2nd Workshop on Natural Language
Processing for Conversational AI, pages 38–45, On-
line. Association for Computational Linguistics.

Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam
Ajanthan, and Philip HS Torr. 2018. Riemannian
walk for incremental learning: Understanding forget-
ting and intransigence. In Proceedings of the Euro-
pean conference on computer vision (ECCV), pages
532–547.

Jiefeng Chen, Timothy Nguyen, Dilan Gorur, and Ar-
slan Chaudhry. 2023a. Is forgetting less a good in-
ductive bias for forward transfer? In The Eleventh
International Conference on Learning Representa-
tions.

Xiudi Chen, Hui Wu, and Xiaodong Shi. 2023b. Consis-
tent prototype learning for few-shot continual relation
extraction. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7409–7422, Toronto,
Canada. Association for Computational Linguistics.

Yung-Sung Chuang, Shang-Yu Su, and Yun-Nung Chen.
2020. Lifelong language knowledge distillation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2914–2924, Online. Association for Computa-
tional Linguistics.

14856

https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2020.nlp4convai-1.5
https://doi.org/10.18653/v1/2023.acl-long.409
https://doi.org/10.18653/v1/2023.acl-long.409
https://doi.org/10.18653/v1/2023.acl-long.409
https://doi.org/10.18653/v1/2020.emnlp-main.233

Li Cui, Deqing Yang, Jiaxin Yu, Chengwei Hu, Jiayang
Cheng, Jingjie Yi, and Yanghua Xiao. 2021. Refin-
ing sample embeddings with relation prototypes to
enhance continual relation extraction. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 232–243, Online.
Association for Computational Linguistics.

MohammadReza Davari, Nader Asadi, Sudhir Mudur,
Rahaf Aljundi, and Eugene Belilovsky. 2022. Prob-
ing representation forgetting in supervised and unsu-
pervised continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16712–16721.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh,
and Tinne Tuytelaars. 2019. Continual learning: A
comparative study on how to defy forgetting in clas-
sification tasks. arXiv preprint arXiv:1909.08383,
2(6):2.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang,
Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan
Liu. 2021. Few-NERD: A few-shot named entity
recognition dataset. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 3198–3213, Online. Association
for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Robert M French. 1999. Catastrophic forgetting in con-
nectionist networks. Trends in cognitive sciences,
3(4):128–135.

Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu,
Peng Li, Maosong Sun, and Jie Zhou. 2020. Contin-
ual relation learning via episodic memory activation
and reconsolidation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6429–6440, Online. Association
for Computational Linguistics.

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,
Zhiyuan Liu, and Maosong Sun. 2018. FewRel: A
large-scale supervised few-shot relation classification
dataset with state-of-the-art evaluation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 4803–4809,
Brussels, Belgium. Association for Computational
Linguistics.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang,
and Dahua Lin. 2019. Learning a unified classifier
incrementally via rebalancing. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 831–839.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers, pages 57–60, New
York City, USA. Association for Computational Lin-
guistics.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Yufan Huang, Yanzhe Zhang, Jiaao Chen, Xuezhi Wang,
and Diyi Yang. 2021. Continual learning for text clas-
sification with information disentanglement based
regularization. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 2736–2746, Online. As-
sociation for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv e-prints,
pages arXiv–1412.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Stefan Larson, Anish Mahendran, Joseph J. Peper,
Christopher Clarke, Andrew Lee, Parker Hill,
Jonathan K. Kummerfeld, Kevin Leach, Michael A.
Laurenzano, Lingjia Tang, and Jason Mars. 2019. An
evaluation dataset for intent classification and out-of-
scope prediction. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference

14857

https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/2021.acl-long.20
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.acl-long.248
https://doi.org/10.18653/v1/2021.acl-long.248
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/2020.acl-main.573
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://doi.org/10.18653/v1/D18-1514
https://aclanthology.org/N06-2015
https://aclanthology.org/N06-2015
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/2021.naacl-main.218
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131

on Natural Language Processing (EMNLP-IJCNLP),
pages 1311–1316, Hong Kong, China. Association
for Computational Linguistics.

Minqian Liu and Lifu Huang. 2023. Teamwork is not
always good: An empirical study of classifier drift
in class-incremental information extraction. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 2241–2257, Toronto, Canada.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Ruotian Ma, Xuanting Chen, Zhang Lin, Xin Zhou,
Junzhe Wang, Tao Gui, Qi Zhang, Xiang Gao, and
Yun Wen Chen. 2023. Learning “O” helps for learn-
ing more: Handling the unlabeled entity problem
for class-incremental NER. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
5959–5979, Toronto, Canada. Association for Com-
putational Linguistics.

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-
njoon Cho, Pascale Fung, and Zhiguang Wang. 2021.
Continual learning in task-oriented dialogue systems.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7452–7467, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Sourab Mangrulkar, Sylvain Gugger, Lysandre De-
but, Younes Belkada, Sayak Paul, and Benjamin
Bossan. 2022. Peft: State-of-the-art parameter-
efficient fine-tuning methods. https://github.
com/huggingface/peft.

Michael McCloskey and Neal J Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. In Psychology of learn-
ing and motivation, volume 24, pages 109–165. Else-
vier.

Natawut Monaikul, Giuseppe Castellucci, Simone Fil-
ice, and Oleg Rokhlenko. 2021. Continual learn-
ing for named entity recognition. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13570–13577.

Shawn N Murphy, Griffin Weber, Michael Mendis, Vi-
vian Gainer, Henry C Chueh, Susanne Churchill, and
Isaac Kohane. 2010. Serving the enterprise and be-
yond with informatics for integrating biology and the
bedside (i2b2). Journal of the American Medical
Informatics Association, 17(2):124–130.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Guangyue Peng, Tao Ge, Si-Qing Chen, Furu Wei,
and Houfeng Wang. 2023. Semiparametric lan-
guage models are scalable continual learners. arXiv
preprint arXiv:2303.01421.

Chengwei Qin and Shafiq Joty. 2021. Lfpt5: A unified
framework for lifelong few-shot language learning
based on prompt tuning of t5. In International Con-
ference on Learning Representations.

Shengjie Qiu, Junhao Zheng, Zhen Liu, Yicheng
Luo, and Qianli Ma. 2024. Incremental sequence
labeling: A tale of two shifts. arXiv preprint
arXiv:2402.10447.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485–5551.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, and Amjad Almahairi.
2023. Progressive prompts: Continual learning for
language models. In The Eleventh International Con-
ference on Learning Representations.

Chuck Rosenberg, Martial Hebert, and Henry Schneider-
man. 2005. Semi-supervised self-training of object
detection models.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107–6122, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Yijia Shao, Yiduo Guo, Dongyan Zhao, and Bing Liu.
2023. Class-incremental learning based on label gen-
eration. arXiv preprint arXiv:2306.12619.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee. 2019.
Lamol: Language modeling for lifelong language
learning. In International Conference on Learning
Representations.

Mingxu Tao, Yansong Feng, and Dongyan Zhao. 2023.
Can bert refrain from forgetting on sequential tasks?
a probing study. In The Eleventh International Con-
ference on Learning Representations.

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thram-
poulidis, and Samet Oymak. 2023. Transform-
ers as support vector machines. arXiv preprint
arXiv:2308.16898.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

14858

https://doi.org/10.18653/v1/2023.findings-acl.141
https://doi.org/10.18653/v1/2023.findings-acl.141
https://doi.org/10.18653/v1/2023.findings-acl.141
https://doi.org/10.18653/v1/2023.acl-long.328
https://doi.org/10.18653/v1/2023.acl-long.328
https://doi.org/10.18653/v1/2023.acl-long.328
https://doi.org/10.18653/v1/2021.emnlp-main.590
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://api.semanticscholar.org/CorpusID:257532815
https://doi.org/10.18653/v1/2022.emnlp-main.410
https://doi.org/10.18653/v1/2022.emnlp-main.410

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang,
Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent Perot,
Jennifer Dy, and Tomas Pfister. 2022. Learning to
prompt for continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 139–149.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang
Li, Guilin Qi, and Gholamreza Haffari. 2021. Pre-
trained language model in continual learning: A com-
parative study. In International Conference on Learn-
ing Representations.

Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. 2019. Large
scale incremental learning. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 374–382.

Duzhen Zhang, Wei Cong, Jiahua Dong, Yahan Yu, Xi-
uyi Chen, Yonggang Zhang, and Zhen Fang. 2023a.
Continual named entity recognition without catas-
trophic forgetting. arXiv preprint arXiv:2310.14541.

Duzhen Zhang, Hongliu Li, Wei Cong, Rongtao Xu,
Jiahua Dong, and Xiuyi Chen. 2023b. Task relation
distillation and prototypical pseudo label for incre-
mental named entity recognition. In Proceedings of
the 32nd ACM International Conference on Informa-
tion and Knowledge Management, pages 3319–3329.

Duzhen Zhang, Yahan Yu, Feilong Chen, and Xiuyi
Chen. 2023c. Decomposing logits distillation for in-
cremental named entity recognition. In Proceedings
of the 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 1919–1923.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
and Christopher D. Manning. 2017. Position-aware
attention and supervised data improve slot filling.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
35–45, Copenhagen, Denmark. Association for Com-
putational Linguistics.

Yunan Zhang and Qingcai Chen. 2023. A neural span-
based continual named entity recognition model. In
Proceedings of the AAAI Conference on Artificial
Intelligence.

Yingxiu Zhao, Yinhe Zheng, Zhiliang Tian, Chang Gao,
Jian Sun, and Nevin L. Zhang. 2022. Prompt condi-
tioned VAE: Enhancing generative replay for lifelong

learning in task-oriented dialogue. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 11153–11169,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Junhao Zheng, Zhanxian Liang, Haibin Chen, and
Qianli Ma. 2022. Distilling causal effect from miscel-
laneous other-class for continual named entity recog-
nition. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 3602–3615, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Junhao Zheng, Qianli Ma, Shengjie Qiu, Yue Wu,
Peitian Ma, Junlong Liu, Huawen Feng, Xichen
Shang, and Haibin Chen. 2023. Preserving common-
sense knowledge from pre-trained language models
via causal inference. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 9155–
9173, Toronto, Canada. Association for Computa-
tional Linguistics.

Junhao Zheng, Shengjie Qiu, and Qianli Ma. 2024a.
Concept-1k: A novel benchmark for instance incre-
mental learning. arXiv preprint arXiv:2402.08526.

Junhao Zheng, Ruiyan Wang, Chongzhi Zhang, Huawen
Feng, and Qianli Ma. 2024b. Balancing the causal
effects in class-incremental learning. arXiv preprint
arXiv:2402.10063.

Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, Liang Ma,
Shiliang Pu, and De-Chuan Zhan. 2022. Forward
compatible few-shot class-incremental learning. In
Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 9046–
9056.

Da-Wei Zhou, Han-Jia Ye, De-Chuan Zhan, and Ziwei
Liu. 2023. Revisiting class-incremental learning with
pre-trained models: Generalizability and adaptivity
are all you need. arXiv preprint arXiv:2303.07338.

14859

https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/D17-1004
https://doi.org/10.18653/v1/2022.emnlp-main.766
https://doi.org/10.18653/v1/2022.emnlp-main.766
https://doi.org/10.18653/v1/2022.emnlp-main.766
https://doi.org/10.18653/v1/2022.emnlp-main.236
https://doi.org/10.18653/v1/2022.emnlp-main.236
https://doi.org/10.18653/v1/2022.emnlp-main.236
https://doi.org/10.18653/v1/2023.acl-long.509
https://doi.org/10.18653/v1/2023.acl-long.509
https://doi.org/10.18653/v1/2023.acl-long.509

Appendix

A Problem Formulation 13
A.1 Overview of IL 13
A.2 Evaluation Metric for IL 13

B Datasets 14

C Backbones 14
C.1 Discriminant Backbones 14
C.2 Generative Backbones 15

D Revisiting IL with Probing Study 15
D.1 Four Probing Metrics 15
D.2 Probing Performance with Differ-

ent Backbones 15
D.3 A Closer Look at Features, Word

Embeddings, and Class Embeddings 16

E The Role of Pre-training 19

F The Forgetting in Classifiers 21
F.1 Overview of the Forgetting in Clas-

sifiers 21
F.2 The Bias in the L2 Norm of Class

Embeddings 22
F.3 The Bias in the Cosine Similarity

between Features and Class Em-
beddings 22

G SEQ*: Boosting Performance of SEQ 23

H Introduction of Baselines 24

I Revisiting SOTA Methods 25
I.1 CIL with Generative Backbones

for Sentence-Level Tasks 25
I.2 CIL with Discriminant Backbones

for Sentence-Level Tasks 26
I.3 CIL with Discriminant Backbones

for Word-Level Tasks 26
I.4 TIL for Sentence-Level Tasks . . . 26

A Problem Formulation

A.1 Overview of IL

Incremental Learning (IL) aims to learn a model
on new tasks incrementally without forgetting pre-
vious knowledge. In this paper, we only consider
classification tasks, which are popular and chal-
lenging settings in existing studies. Formally, IL
aims to learn a model fθ : x → y ∈ Y from the
sequence of tasks D = {D1,D2, · · · ,DT }, where

the t-th task Dt = {(xt
i, y

t
i)}i=1 contains input

samples xt
i ∈ Xt and labels yti ∈ Yt. There are

three popular scenarios in IL: Class-Incremental
Learning (CIL), Task-Incremental Learning (TIL),
and Domain-Incremental Learning (DIL). In CIL,
the label sets of different tasks are exclusive: Y1 ∩
Y2 · · · YT = ∅, and the task identity is unknown
during inference. In TIL, the label sets of different
tasks may be overlapping: Y1∩Y2 · · · YT ̸= ∅, and
the task identity is required during inference. In
DIL, the label sets of different tasks are the same:
Y1 = Y2 = YT . Under the data replay setting, a
buffer M is introduced for storing old represen-
tative instances. In the main experiments of this
research, we consider the most challenging sce-
nario, CIL, where catastrophic forgetting occurs
most severely. The result on TIL is also reported
when compared with state-of-the-art methods.

A.2 Evaluation Metric for IL
We adopt average accuracy (Chaudhry et al., 2018)
as the metric for evaluation. Specifically, the aver-
age accuracy at task t is defined as the following

At =
1

t

t∑

i=1

at,i, (1)

where at,i represents the accuracy evaluated on
the test set of task i after training the model incre-
mentally from tasks 1 to t. The average accuracy
indicates the performance on all learnt tasks. In
the main manuscript, we report the average accu-
racy after learning the final task, i.e., AT . Besides,
we report the average incremental accuracy Ā in
the appendix. The average incremental accuracy is
computed as follows:

Ā =
1

T

T∑

t=1

At (2)

It indicates the average of the average accuracy
over all incremental steps.

We note that the probing accuracy is calculated
as the average of the test accuracy on all T tasks:

Aprob =
1

T

T∑

i=1

aprob,i, (3)

aprob,i represents the accuracy evaluated on the
test set of task i after training probing classifiers.
The probing accuracy is the performance when
the classifier is optimal. According to the probing

14860

Table 5: The statistics on eight datasets for incremental learning. Granularity: the classification granularity.
For example, named entity recognition models classify each word into an entity type or non-entity, while intent
classification models classify sentences into intent categories. # base classes: the number of classes to learn in the
first task; # Inc. classes: the number of classes to learn in the incremental task (i.e., the second and subsequent
tasks).

Granularity Task Dataset # Classes # Tasks # Base Classes # Inc. Classes # Training Instances # Test Instances

Sentence Level

Text Classification Topic3Datasets 25 5 5 5 75000 46000

Intent Classification
CLINC150 150 15 10 10 15000 4500
Banking77 77 7 11 11 7191 2800

Relation Extraction
FewRel 80 8 10 10 33600 11200

TACRED 40 8 5 5 5909 1259

Word Level Named Entity Recognition

Few-NERD 66 11 6 6 131758 230025
Ontonotes5 18 6 8 2 59922 23836

I2B2 16 5 8 2 59376 41397

Table 6: The details of the 9 backbones. †: Non-embedding parameters according to Biderman et al. (2023).

Architecture Model Class Pretrained Weights Parameters Layers Hidden Dim Link

Encoder-Only BERT
bert-base-cased 109M 12 768 Link
bert-large-cased 335M 24 1024 Link

Decoder-Only

GPT-NeoX

Pythia-70m 19M† 6 512 Link
Pythia-160m 85M† 12 768 Link
Pythia-410m 302M† 24 1024 Link

Pythia-1b 805M† 16 2048 Link
Pythia-1.4b 1.21B† 24 2048 Link

GPT2
gpt2-base 124M 12 768 Link
gpt2-large 774M 36 1280 Link

experiments in Sec. 3, the PLMs almost do not
forget. Therefore, the probing performance can
be regarded as the upper bound performance when
using PLMs for IL.

B Datasets

The statistics of the eight datasets are summarized
in Table 5. For text classification, we construct
Topic3Datasets from AGNews, DBPedia, and Ya-
Hoo (Zhang et al., 2015). We remove Sports, Busi-
ness & Finance,Science & Mathematics from Ya-
Hoo since they overlap with the classes in AGNews.
We subsample 3000 training samples and 2000 test
samples for each class (only 1900 test samples for
the four classes in AGNews). The class order is
obtained by sorting class names alphabetically and
shuffling them using the random seed 1.

We use the default class order for Clinc150,
Banking77, FewRel, and TACRED. We follow
(Shao et al., 2023) to convert the class name to
semantic labels for generative backbones. For ex-
ample, in TARCRED, org:founded_by is converted
to organization related: founded by.

For Few-NERD, Ontontes5, and I2B2, the class

order is obtained by sorting class names alphabeti-
cally. We use the BIO schema for tagging. The #
class represents the number of entities in Table 5.

For sentence-level classification tasks, we report
the accuracy. For word-level classification tasks,
we report the macro-f1 due to the class imbalance.

C Backbones

The statistics of the 9 backbones are summarised
in Table 6. We download the pre-trained weights
from Huggingface (Wolf et al., 2019).

C.1 Discriminant Backbones
For discriminant backbones (i.e., encoder-only
backbones), we use the [CLS] feature for sentence-
level classification tasks and the feature of last hid-
den states for word-level classification tasks. We do
not use prompts for discriminant backbones. When
learning each new task, we add a linear layer on
top of the backbone for classification. For example,
in the bert-base case, we add a linear layer whose
input dimension and output dimension are 768 and
10 for learning the first task in CLINC150. Then,
we add another linear layer with the same architec-

14861

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-large-cased
https://huggingface.co/EleutherAI/pythia-70m-deduped
https://huggingface.co/EleutherAI/pythia-160m-deduped
https://huggingface.co/EleutherAI/pythia-410m-deduped
https://huggingface.co/EleutherAI/pythia-1b-deduped
https://huggingface.co/EleutherAI/pythia-1.4b-deduped
https://huggingface.co/gpt2
https://huggingface.co/gpt2-large

ture as the previous one when learning the second
task. In the CIL scenario, the output logits over all
learned categories are obtained by concatenating
the logits from all classifiers. In the TIL scenario,
the output logits are the logits from the classifier
with the same task ID as the input sample.

C.2 Generative Backbones

For generative backbones (i.e., decoder-only back-
bones), we train the model to output the class name
with causal language modelling loss. We do not use
generative backbones for word-level classification
tasks because it requires special design on input
and output format (Zhao et al., 2022) and the eval-
uation is different from that of sequential labelling
models (Monaikul et al., 2021). For text and in-
tent classification, we use the following prompt:
“Input sentence: {text}\n The label: {label}{eos
token}”. For relation extraction, we use the fol-
lowing prompt: “Input sentence: {text}\n The re-
lationship between {head entity} and {tail entity}
is {label}{eos token}”. We note that we use the
same prompt for all baseline models unless they
have special designs on prompts. Following Sun
et al. (2019), only the causal language modelling
loss of “{label}{eos token}” is optimized. For the
probing study, we use the last hidden states of the
last word as the feature.

The max sequence length is 256 in
Topic3Datasets, 50 in CLINC150, 64 in
Banking77, 100 in FewRel, and 128 in other
datasets. We use exactly the same backbone for
all baselines unless they have special designs on
backbones.

D Revisiting IL with Probing Study

D.1 Four Probing Metrics

Linear Probing trains a new linear layer on top of
the backbone model. We do not use bias for linear
probing classifiers because there is no significant
difference between the probing performance. We
train the linear probing classifier for 20 epochs
with an initial learning rate of 0.001. The linear
probing classifier is trained on the training data
from all T tasks jointly using cross-entropy loss.
The Adam (Kingma and Ba, 2014) optimizer is
used, and the batch size is set as 128. We note
that the training data from all tasks is mixed for
optimization. Otherwise, the probing performance
is degraded significantly.

Cosine Linear Probing is the same as linear

probing except that the cosine similarity is adopted
for calculating logits. We use the same training
process as the linear probing classifier to train the
cosine linear probing classifier. Hou et al. (2019)
propose to use cosine linear layers for IL to avoid
prediction bias towards new classes. However, we
find that using cosine linear layers does not improve
probing performance.

Prototype Probing requires no training of prob-
ing classifiers. It calculates the class feature centre
for each class using all training data. It makes pre-
dictions of a test sample according to its Euclidean
distances to all class centres. The prototype prob-
ing classifier can be regarded as a linear classifier
with a weight matrix specified as all class centres.

Cosine Prototype Probing is the same as pro-
totype probing except that the cosine similarity is
adopted for calculating logits. The idea of using
prototypes is widely adopted in IL (Ma et al., 2023;
Cui et al., 2021; Han et al., 2020). However, we
reveal that using prototypes for classification may
not be the best option.

D.2 Probing Performance with Different
Backbones

We provide the probing performance of SEQ on
class-incremental intent classification in Figure 3
and 8, relation extraction in Figure 9 and 10, text
classification in Figure 13 and 14, and named entity
recognition in Figure 12 and 11. We summarize
the findings as follows:

• The linear probing performance is signifi-
cantly higher than the other three metrics
across backbones, tasks, and datasets.

• For all probing metrics, the probing perfor-
mance always increases when learning the
first task.

• For generative backbones, the probing perfor-
mance has not decreased or even increased
since the second task. It indicates that the
smaller backbone can adapt to downstream
tasks by SEQ. The larger backbone can adapt
to downstream tasks without training and
maintain the knowledge during SEQ.

• For discriminant backbones, using the linear
classifier maintains the probing performance,
while the cosine linear classifier degrades the
probing performance significantly. There is

14862

(a) Lin. Prob (b) Cos.Lin. Prob (c) Proto. Prob (d) Cos.Proto Prob

Figure 7: The illustration of different metrics for probing study.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(a) Observed Performance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(b) Lin. Prob

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(c) Cos.Lin. Prob

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(d) Proto. Prob

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(e) Cos.Proto. Prob

Figure 8: The observed and probing performance on Class-Incremental Intent Classification. The dataset is
CLINC150. The backbones are generative models. (a) shows the observed performance during IL training.
(b)(c)(d)(e) show the probing performance when different metrics, including linear probing, cosine linear probing,
prototype probing, and cosine prototype probing.

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(a) Observed Performance

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(b) Lin. Prob

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(c) Cos.Lin. Prob

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(d) Proto. Prob

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100
Ac

cu
ra

cy
 (

%
)

Pythia-70m
Pythia-160m
Pythia-410m
Pythia-1b
Pythia-1.4b

(e) Cos.Proto. Prob

Figure 9: The observed and probing performance on Class-Incremental Relation Extraction. The dataset is FewRel.
The backbones are generative models. Other settings are the same as Figure 8.

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(a) Observed Performance

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(b) Lin. Prob

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(c) Cos.Lin. Prob

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(d) Proto. Prob

0 1 2 3 4 5 6 7 8
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(e) Cos.Proto. Prob

Figure 10: The observed and probing performance on class-incremental relation extraction. The dataset is FewRel.
The backbones are discriminant models. Other settings are the same as Figure 8.

no significant difference between bert-base-
cased and bert-large-cased in the probing per-
formance.

D.3 A Closer Look at Features, Word
Embeddings, and Class Embeddings

To investigate the significant difference between
the four probing metrics, we plot the histogram of

14863

0 1 2 3 4 5 6
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(a) Observed Performance

0 1 2 3 4 5 6
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(b) Lin. Prob

0 1 2 3 4 5 6
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(c) Cos.Lin. Prob

0 1 2 3 4 5 6
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(d) Proto. Prob

0 1 2 3 4 5 6
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(e) Cos.Proto. Prob

Figure 11: The observed and probing performance on class-incremental named entity recognition. The dataset is
Ontonotes5. The backbones are discriminant models. Other settings are the same as Figure 8.

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(a) Observed Performance

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(b) Lin. Prob

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(c) Cos.Lin. Prob

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(d) Proto. Prob

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(e) Cos.Proto. Prob

Figure 12: The observed and probing performance on class-incremental named entity recognition. The dataset is
I2B2. The backbones are discriminant models. Other settings are the same as Figure 8.

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m

(a) Observed Performance

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

Pythia-70m
Pythia-160m
Pythia-410m

(b) Lin. Prob

Figure 13: The observed and probing performance on
class-incremental text classification. The dataset is
Topic3datasets. The backbones are generative models.
Other settings are the same as Figure 8.

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(a) Observed Performance

0 1 2 3 4 5
Task Has Learned

0

20

40

60

80

100

Ac
cu

ra
cy

 (
%

)

bert-large-cased+Linear
bert-large-cased+CosineLinear
bert-base-cased+Linear
bert-base-cased+CosineLinear

(b) Lin. Prob

Figure 14: The observed and probing performance on
class-incremental text classification. The dataset is
Topic3datasets. The backbones are discriminant models.
Other settings are the same as Figure 8.

the features, the (output) word embeddings, and
the class embeddings in (cosine) linear classifiers.
In this research, the features of PLMs refer to the
last hidden states of the last word in generative

backbones and the [CLS] token in discriminant
backbones. The class prototype refers to the class
feature centres. The class embeddings refer to the
row vectors of the weight matrix in linear layers.
For example, for a linear layer whose input and
output dimensions are 768 and 20, respectively, its
weight matrix has the shape 20× 768. Then, each
row vector corresponds to a certain category, and
its shape is 1× 768. When using linear classifiers
for prediction, the logits of a certain category are
computed as the dot product between the feature
and the class embeddings of that category.

During pre-training, the logits over vocabulary
are computed as the dot product between features
and word embeddings. In the probing study, the
logits over categories are computed as the dot prod-
uct between features and class embeddings. There-
fore, we need to figure out the relationship between
features, word embeddings, and class embeddings.
We note that there is a dense layer (i.e., linear layer)
between backbones and linear classifiers in BERT,
and we ignore it for simplicity.

The histogram of the cosine similarity and L2
norm is provided in Figure 15 (Pythia-410m), 16
(Pythia-160m), 17 (bert-large-cased), 18 (bert-base-
cased). The dataset is CLINC150. We note that the
PLMs are loaded directly without fine-tuning. The
features are computed on the whole training set
of CLINC150. The word embeddings are loaded
directly from PLMs. The class embeddings of the
linear probing classifiers are obtained by training

14864

0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=0.68
Q2=0.74
Q3=0.79

(a) Feature Sim

0.1 0.0 0.1 0.2 0.3
Cosine Similarity

0

1

2

3

4

5

Pe
rc

en
ta

ge
 (

%
)

Q1=0.04
Q2=0.07
Q3=0.09

(b) Feat-WordEmbed Sim

0.2 0.1 0.0 0.1 0.2 0.3
Cosine Similarity

0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 (

%
)

Q1=-0.05
Q2=-0.03
Q3=-0.01

(c) Feat-ClassEmbed Sim

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Cosine Similarity

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=0.77
Q2=0.82
Q3=0.85

(d) Feat-Prototype Sim

95.0 97.5 100.0 102.5 105.0 107.5 110.0
L2 Norm

0
2
4
6
8

10
12
14
16

Pe
rc

en
ta

ge
 (

%
)

Q1=109.79
Q2=110.14
Q3=110.40

(e) Feature Norm

0.4 0.6 0.8 1.0 1.2 1.4
L2 Norm

0

1

2

3

4

5

6
Pe

rc
en

ta
ge

 (
%

)

Q1=0.72
Q2=0.77
Q3=0.86

(f) WordEmbed Norm

1.0 1.1 1.2 1.3 1.4 1.5 1.6
L2 Norm

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rc

en
ta

ge
 (

%
)

Q1=1.19
Q2=1.26
Q3=1.34

(g) ClassEmbed Norm

135 140 145 150 155 160 165
L2 Norm

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=142.02
Q2=146.52
Q3=151.03

(h) Prototype Norm

Figure 15: The histogram of features and different embeddings of Pythia-410m. The features are calculated on
the training set of CLINC150, and the output word embeddings are loaded from pre-trained weights. The class
embeddings refer to the weight in the probing classifier on CLINC150. The class prototypes refer to the class
feature centres on the training set of CLINC150.

0.75 0.80 0.85 0.90 0.95 1.00
Cosine Similarity

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (

%
)

Q1=0.98
Q2=0.99
Q3=0.99

(a) Feature Sim

0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

5

10

15

20

25

30

35

Pe
rc

en
ta

ge
 (

%
)

Q1=0.94
Q2=0.95
Q3=0.95

(b) Feat-WordEmbed Sim

0.0000.0250.0500.0750.1000.1250.1500.175
Cosine Similarity

0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 (

%
)

Q1=0.08
Q2=0.09
Q3=0.09

(c) Feat-ClassEmbed Sim

0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Cosine Similarity

0

5

10

15

20

25

Pe
rc

en
ta

ge
 (

%
)

Q1=0.99
Q2=0.99
Q3=0.99

(d) Feat-Prototype Sim

210 212 214 216 218 220 222
L2 Norm

0

5

10

15

20

25

30

Pe
rc

en
ta

ge
 (

%
)

Q1=222.02
Q2=222.17
Q3=222.28

(e) Feature Norm

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
L2 Norm

0
5

10
15
20
25
30
35
40

Pe
rc

en
ta

ge
 (

%
)

Q1=3.65
Q2=3.67
Q3=3.69

(f) WordEmbed Norm

0.90 0.95 1.00 1.05 1.10 1.15
L2 Norm

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=0.99
Q2=1.02
Q3=1.05

(g) ClassEmbed Norm

300 310 320 330 340 350 360 370
L2 Norm

0

2

4

6

8

Pe
rc

en
ta

ge
 (

%
)

Q1=316.25
Q2=327.65
Q3=339.63

(h) Prototype Norm

Figure 16: The histogram of features and different embeddings of Pythia-160m. Other settings are the same as
Figure 15

probing classifiers.
From the result, we have the following findings:

• The features of PLMs have high cosine simi-
larity, indicating that they fall in a cone space.

• The features are almost orthogonal to the
word embeddings in all backbones except for
Pythia-160m.

• The features are almost orthogonal to the class

embeddings in all backbones.

• The features have high cosine similarity with
the prototypes.

• The L2 norm of word embeddings, class em-
beddings have large discrepancy for all back-
bones except for Pythia-160m.

These findings explain why the linear classifier is
the best option to utilize the backbone’s knowledge.

14865

0.2 0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=0.61
Q2=0.71
Q3=0.78

(a) Feature Sim

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Cosine Similarity

0

1

2

3

4

Pe
rc

en
ta

ge
 (

%
)

Q1=-0.02
Q2=-0.00
Q3=0.02

(b) Feat-WordEmbed Sim

0.2 0.1 0.0 0.1 0.2 0.3 0.4
Cosine Similarity

0
1
2
3
4
5
6
7
8

Pe
rc

en
ta

ge
 (

%
)

Q1=-0.06
Q2=-0.04
Q3=-0.02

(c) Feat-ClassEmbed Sim

0.0 0.2 0.4 0.6 0.8 1.0
Cosine Similarity

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 (

%
)

Q1=0.77
Q2=0.83
Q3=0.87

(d) Feat-Prototype Sim

12 14 16 18 20 22
L2 Norm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pe
rc

en
ta

ge
 (

%
)

Q1=18.17
Q2=19.69
Q3=20.81

(e) Feature Norm

1.0 1.5 2.0 2.5 3.0
L2 Norm

0

1

2

3

4

5

Pe
rc

en
ta

ge
 (

%
)

Q1=1.39
Q2=1.51
Q3=1.65

(f) WordEmbed Norm

4.0 4.2 4.4 4.6 4.8
L2 Norm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pe
rc

en
ta

ge
 (

%
)

Q1=4.29
Q2=4.41
Q3=4.55

(g) ClassEmbed Norm

22 24 26 28 30
L2 Norm

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rc

en
ta

ge
 (

%
)

Q1=23.25
Q2=24.27
Q3=25.60

(h) Prototype Norm

Figure 17: The histogram of features and different embeddings of bert-large-cased. Other settings are the same as
Figure 15.

0.6 0.7 0.8 0.9 1.0
Cosine Similarity

0

1

2

3

4

5

Pe
rc

en
ta

ge
 (

%
)

Q1=0.84
Q2=0.88
Q3=0.91

(a) Feature Sim

0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
Cosine Similarity

0

2

4

6

8

Pe
rc

en
ta

ge
 (

%
)

Q1=-0.03
Q2=-0.01
Q3=0.01

(b) Feat-WordEmbed Sim

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Cosine Similarity

0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 (

%
)

Q1=-0.05
Q2=-0.03
Q3=-0.02

(c) Feat-ClassEmbed Sim

0.75 0.80 0.85 0.90 0.95
Cosine Similarity

0

1

2

3

4

5

Pe
rc

en
ta

ge
 (

%
)

Q1=0.91
Q2=0.93
Q3=0.95

(d) Feat-Prototype Sim

13 14 15 16 17 18
L2 Norm

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rc

en
ta

ge
 (

%
)

Q1=15.84
Q2=16.24
Q3=16.63

(e) Feature Norm

0.8 1.0 1.2 1.4 1.6 1.8
L2 Norm

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
 (

%
)

Q1=1.19
Q2=1.28
Q3=1.39

(f) WordEmbed Norm

5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6
L2 Norm

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge
 (

%
)

Q1=5.77
Q2=5.95
Q3=6.12

(g) ClassEmbed Norm

20 21 22 23 24 25
L2 Norm

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Pe
rc

en
ta

ge
 (

%
)

Q1=21.80
Q2=22.49
Q3=23.32

(h) Prototype Norm

Figure 18: The histogram of features and different embeddings of bert-base-cased. Other settings are the same as
Figure 15.

Specifically, the word embedding layer is also a lin-
ear classifier for pre-training, and thus, the features
are most discriminative when multiplied with the
class embeddings of linear classifiers. Furthermore,
the discrepancy of the L2 norm of word and class
embeddings suggests that the norm contains the
prior knowledge obtained from pre-training. We
illustrate the four probing metrics in Figure 7.

The word embeddings in Pythia-160m have high
cosine similarity with features. We speculate the
reason is that the parameters are not enough for
generalization with causal language modelling loss.

E The Role of Pre-training

The result of text classification is shown in Figure
19. It shows a similar trend as intent classification
and relation extraction in Figure 5.

We further analyze why even a randomly-
initialized model (step 0) achieves high probing
performance. We use t-SNE (Van der Maaten and
Hinton, 2008) to visualize the features of randomly
initialized models and PLMs in Figure 20 and 21.

Figure 20a shows that randomly initialized mod-
els extract discriminative features with the Trans-

14866

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100
Li

n.
 P

ro
b.

 A
cc

ur
ac

y
(%

)

OverFitting Generalize

Gap

Pythia-70m
Pythia-160m
Pythia-410m

(a) TC+Before SEQ

100 101 102 103 104 105 106

Pretraining Steps

0

20

40

60

80

100

Li
n.

 P
ro

b.
 A

cc
ur

ac
y

(%
)

OverFitting Generalize

Gap

Pythia-70m
Pythia-160m
Pythia-410m

(b) TC+After SEQ

Figure 19: The linear probing performance on PLMs with different pre-training steps. (a) and (b) are evaluated before
and after incremental learning using SEQ. “TC” represents that the model is evaluated on the Class-Incremental
Text Classification.

60 40 20 0 20 40 60

40

20

0

20

40

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

Class 11
Class 12
Class 13
Class 14
Class 15
Class 16
Class 17
Class 18
Class 19
Class 20

(a) Before SEQ w/o pre-training
40 20 0 20 40 60

40

20

0

20

40

Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

Class 11
Class 12
Class 13
Class 14
Class 15
Class 16
Class 17
Class 18
Class 19
Class 20

(b) After SEQ w/o pre-training
60 40 20 0 20 40 60

60

40

20

0

20

40

60 Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

Class 11
Class 12
Class 13
Class 14
Class 15
Class 16
Class 17
Class 18
Class 19
Class 20

(c) Before SEQ w/ pre-training
60 40 20 0 20 40 60

40

20

0

20

40

60
Class 1
Class 2
Class 3
Class 4
Class 5
Class 6
Class 7
Class 8
Class 9
Class 10

Class 11
Class 12
Class 13
Class 14
Class 15
Class 16
Class 17
Class 18
Class 19
Class 20

(d) After SEQ w/ pre-training

Figure 20: The t-SNE visualization of features on CLINC150. The backbone model is Pythia-410m. Only the first
20 classes are visualized for clarity. (a)(b): the backbone model is randomly initialized without pre-training; (c)(d):
the backbone model is pre-trained.

40 20 0 20 40

60

40

20

0

20

40

60
Class 1
Class 2
Class 3
Class 4
Class 5

Class 6
Class 7
Class 8
Class 9
Class 10

(a) Before SEQ w/o pre-training
60 40 20 0 20 40 60

40

20

0

20

40

Class 1
Class 2
Class 3
Class 4
Class 5

Class 6
Class 7
Class 8
Class 9
Class 10

(b) After SEQ w/o pre-training
60 40 20 0 20 40 60

60

40

20

0

20

40

60

Class 1
Class 2
Class 3
Class 4
Class 5

Class 6
Class 7
Class 8
Class 9
Class 10

(c) Before SEQ w/ pre-training
60 40 20 0 20 40 60

60

40

20

0

20

40

60

Class 1
Class 2
Class 3
Class 4
Class 5

Class 6
Class 7
Class 8
Class 9
Class 10

(d) After SEQ w/ pre-training

Figure 21: The t-SNE visualization of features on FewRel. The backbone model is Pythia-410m. Only the first 10
classes are visualized for clarity. (a)(b): the backbone model is randomly initialized without pre-training; (c)(d) the
backbone model is pre-trained.

former architecture, which is overlooked in pre-
vious IL studies. With SEQ or pre-training, the
representation ability is enhanced, and the category
boundaries become clearer. For the harder dataset,
FewRel, the randomly-initialized model also learns
the downstream knowledge through SEQ (Figure

21a vs 21b). It explains why the performance is
improved by SEQ without pre-training.

In summary, we highlight that both pre-training
and the architecture of Transformers are the key
factors of the anti-forgetting ability of PLMs. Most
existing studies (Scialom et al., 2022; Peng et al.,

14867

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(a) Observed Classifier

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(b) Probing Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(c) Observed Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(d) Probing Classifier

Figure 22: Comparison between the observed and probing classifiers after SEQ on class-incremental intent
classification. The backbone is Pythia-410 m and frozen during IL. (a)(b) show the average norm of the class
embeddings of each task; (c)(d) show the average moving distance of the class embeddings of each task.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(a) Observed Classifier

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(b) Probing Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(c) Observed Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(d) Probing Classifier

Figure 23: Comparison between the observed and probing classifiers after SEQ on class-incremental intent
classification. The backbone is bert-large-cased. (a)(b) show the average norm of the class embeddings of each task;
(c)(d) show the average moving distance of the class embeddings of each task.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

0

1

2

3

4

5

6

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(a) Observed Classifier

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Task ID

0

1

2

3

4

5

6

Cl
as

s E
m

be
dd

in
gs

 N
or

m

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Task 7
Task 8
Task 9
Task 10
Task 11

Task 12
Task 13
Task 14
Task 15
Averarge Norm

(b) Probing Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
Co

sin
e

Di
st

an
ce

Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(c) Observed Classifier

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Tasks Has Learned

0.0

0.1

0.2

0.3

0.4

0.5

0.6
M

ea
n

Co
sin

e
Di

st
an

ce
Task 1
Task 2
Task 3
Task 4
Task 5

Task 6
Task 7
Task 8
Task 9
Task 10

Task 11
Task 12
Task 13
Task 14
Task 15

(d) Probing Classifier

Figure 24: Comparison between the observed and probing classifiers after SEQ on class-incremental intent
classification. The backbone is bert-large-cased and frozen during IL. (a)(b) show the average norm of the class
embeddings of each task; (c)(d) show the average moving distance of the class embeddings of each task.

2023) only attribute it to the pre-training stage. Our
findings are consistent with the recent advance in
the incremental learning dynamics of Transformers
(Tarzanagh et al., 2023). Tarzanagh et al. (2023)
discover that the rank of attention head weights
gradually increases during training. We leave a
deeper analysis of the incremental learning dynam-
ics of the Transformers architecture to the future.

F The Forgetting in Classifiers

F.1 Overview of the Forgetting in Classifiers

Recall that we train probing classifiers on top of
PLMs and achieve superior performance during
SEQ. In contrast, the observed performance has

dropped consistently since the second task. In pre-
vious studies (Wu et al., 2019; Hou et al., 2019),
they attributed the reason for catastrophic forget-
ting to the bias prediction between new and old
categories. Indeed, a model trained with SEQ con-
sistently achieves high performance on the new task
while the accuracy on old tasks becomes nearly
zero. In other words, the model predicts larger log-
its on new classes and smaller logits on old classes.
Then, we investigate the dynamics of L2 norm and
cosine similarity between features and class em-
beddings during SEQ.

14868

(a) Initial Learned (b) Forgetting (c) No Forgetting

Figure 25: The illustration of the moving distance of class embeddings. (a) shows the cosine similarity between
class embeddings and class feature centres after a new task is learned; (b) shows that forgetting happens when the
relative cosine similarity is changed; (c) shows that forgetting will not happen when the relative cosine similarity is
maintained.

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(a) Obs. Cls. after Task 1

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(b) Obs. Cls. after Task 5

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(c) Obs. Cls. after Task 10

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(d) Obs. Cls. after Task 15

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(e) Prob. Cls. after Task 1

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(f) Prob. Cls. after Task 5

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(g) Prob. Cls. after Task 10

10 20 30 40 50 60 70 80 90 100110120130140150
Class Embeddings

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Cl
as

s F
ea

tu
re

 M
ea

n

Learned Class Embeddings

(h) Prob. Cls. after Task 15

Figure 26: Comparison between the cosine similarity matrix between the linear classifiers (Obs. Cls.) and probing
classifiers (Prob. Cls.). The backbone is Pythia-410m. The model is trained on class-incremental intent classification
and is evaluated after learning 1,5,10,15 tasks. The result shows that the class embeddings in observed classifiers
change significantly compared with probing classifiers.

F.2 The Bias in the L2 Norm of Class
Embeddings

We summarize the results of SEQ when the back-
bone is Pythia-410m in Figure 6, frozen Pythia-
410m in Figure 22, bert-large-cased in Figure 23,
and frozen bert-large-cased in Figure 24. The class
embeddings in each task are sorted according to
the norm for clarity. The results show no apparent
tendency in the norm of the class embeddings in
both observed classifiers and probing classifiers.
The norm of the class embeddings of newer classes
even decreases when the backbone is bert-large-

cased. Therefore, the norm is not the critical factor
in the bias prediction towards new classes in SEQ.

F.3 The Bias in the Cosine Similarity between
Features and Class Embeddings

First, we define the moving distance to measure
how the cosine similarity between features and
class embeddings changes during SEQ. After a
new task is learned, the relative position between
features and class embeddings is optimal for this
task. Intuitively, the forgetting happens only when
the relative position changes. Ideally, if all pairs of

14869

(a) S1: warm-up and freeze PLM (b) S2: freeze old classifiers

(c) S3: use proper classifiers (d) S4, optional: pre-allocate future classifiers

Figure 27: An illustration of the proposed SEQ*.

features and class embeddings remain at the same
angle, forgetting will not occur. In practice, we
measure the cosine similarity between class em-
beddings and class feature centres instead of all
features. An illustration is provided in Figure 25.

Formally, we define the moving distance of class
embeddings of the i-th task at the i+ k-th task as
follows:

MDi
i+k =

1

mn

m=|Yall|∑

m=1

n=|Yt|∑

n=1

|Ci
i+k[m,n]−Ci

i[m,n]|

(4)
The Yall and Yt represent the label set of all T
tasks and the t-th task respectively. C represent
the cosine similarity matrix between all pairs of
class embeddings and class feature centres. Ci

i+k

represents the cosine similarity matrix between all
pairs of class embeddings from task i and all class
feature centres, and it is measured at task i + k.
Ci

i+k[m,n] is the entry of the cosine similarity ma-
trix Ci

i+k at position [m,n]. This entry represents
the cosine similarity between the n-th class embed-
dings of task t and the m-th class embeddings of
all T tasks.

We summarize the moving distance of SEQ
when the backbone is Pythia-410m in Figure 6,
frozen Pythia-410m in Figure 22, bert-large-cased
in Figure 23, and frozen bert-large-cased in Figure
24. The results clearly show that the old class em-

beddings in observed classifiers have drifted out of
position since they were learned. Besides, the mov-
ing distance becomes larger when the backbone is
frozen. In contrast, the old class embeddings in
the probing classifier do not deviate much from the
initial position.

We provide instances of the cosine similarity
matrix in Figure 26. The cosine similarity matrix
of observed classifiers changes significantly when
new tasks are learned. The forgetting is more ap-
parent when we focus on the diagonal.

In summary, we reveal that the change of relative
position between class embeddings and features
leads to the forgetting of classifiers. Additionally,
the old knowledge is preserved if the relative posi-
tion is maintained, as in probing classifiers.

G SEQ*: Boosting Performance of SEQ

We illustrate the proposed four strategies in Figure
27. (S1) Freeze the PLMs after warm-up. For
generative backbones, we train models with causal
language modelling loss to generate the ground-
truth class name in the warm-up stage. For dis-
criminant backbones, we train models with classi-
fiers to predict the class ID with cross-entropy loss.
We warm up 1 epoch for discriminant backbones
and 3 epochs for generative backbones. After the
warm-up stage at the first task, all parameters of
backbones are frozen and will not be updated in

14870

the subsequent incremental tasks.
(S2) Freeze the old classifiers. When the model

finishes training on the current task, we freeze the
classifier of the current task. When learning more
tasks, we only update the new classifier while the
old classifiers are frozen.

(S3) Use cosine linear classifiers only when no
old data is available in the CIL scenario. Oth-
erwise, use linear classifiers. We use linear clas-
sifiers even without old samples for named entity
classification because the non-entity tokens (i.e.,
“Other” tokens) can be regarded as old samples
from previous tasks (Zheng et al., 2022).

(S4, optional) Pre-allocate future classifiers.
For example, when learning the 10 classes in the
first task of CLINC150, the future classifiers from
task 2 to task 15 are pre-allocated. The future
classifiers are trained in advance in the first task
through the softmax layer even when there are no
instances from task 2 to task 15. This strategy is
especially effective for generative backbones. The
reason may be that it enhances the forward compat-
ibility of classifiers, and thus, new classifiers are
easier to adapt to new classes when old classifiers
are frozen.

H Introduction of Baselines

Except for Topic3Datasets, we train all baselines
for 5 epochs for each incremental task. On
Topic3Datasets, we train all baselines for 3 epochs
for each incremental task. The learning rate of
backbones and classifiers are 1×10−5 and 1×10−3

respectively. We use AdamW (Loshchilov and Hut-
ter, 2018) optimizer. We use RTX 3090 GPUs for
our experiments. Each experiment is repeated three
times, and the average and standard deviations are
reported. We train SEQ* and all baselines with ex-
actly the same training settings for fair comparison.
We search the best hyper-parameters for each com-
pared method and use the same hyper-parameters
across backbones and datasets.

The introduction of SOTA methods is as follows:

• SEQ: SEQ refers to sequential fine-tuning.
For generative backbones, SEQ trains models
to output the class name with causal language
modelling loss. For discriminant backbones,
SEQ trains models with classifiers to predict
the correct class ID.

• LAMOL (Sun et al., 2019): LAMOL trains
a generative model with question-answering

and generation targets and generates pseudo
samples before learning each new task. The
weight of the generation target λ = 0.25. The
ratio of pseudo samples with respect to the
training data of new task γ = 0.20. The
top-k sampling for generating pseudo samples
K = 20. There are two variations of LAMOL,
including LAMOL_t and LAMOL_g. The dif-
ference is whether or not to use task-specific
tokens for generation.

• L2KD (Chuang et al., 2020): L2KD proposes
to add knowledge distillation targets based
on LAMOL. We implement the word-level
(Word-KD) variation since it performs best on
text classification tasks.

• LAMOL_KD: LAMOL_KD further uti-
lizes knowledge distillation based on
LAMOL_t. Unlike L2KD, the teacher model
in LAMOL_KD is trained on all previous
tasks. The new data is for learning both
LOAMOL targets, and the pseudo data is
for word-level knowledge distillation as
regularization terms. LAMOL_KD is an
extension to LAMOL.

• PCLL (Zhao et al., 2022): PCLL is build upon
LAMOL. Furthermore, PCLL utilizes the tar-
gets of varational autoencoders and word-
level knowledge distillation to train generative
models.

• LFPT5 (Qin and Joty, 2021): LFPT5 fur-
ther utilizes knowledge distillation based on
LAMOL. Besides, LFPT5 utilizes prompt tun-
ing instead of fine-tuning the whole model.
The number of tokens for prompt tuning is 10.

• AdapterCL (Madotto et al., 2021): AdapterCL
learns one adapter (Houlsby et al., 2019) for
each task. During inference in CIL, the model
predicts the task ID according to causal lan-
guage modelling loss, which requires T for-
ward passes for each instance.

• LoRA (Hu et al., 2021): LoRA learns one
LoRA adapter for each task. We only compare
LoRA in the TIL setting. We set the rank
r = 4 and the scaling parameter α = 8. We
use the implementation of LoRA in the PEFT
library (Mangrulkar et al., 2022).

• ProgPrompt (Razdaibiedina et al., 2023): Pro-
gressive Prompt learns soft prompt for each

14871

task progressively. Following (Razdaibiedina
et al., 2023), we Use a residual two-layer MLP
to encode soft prompt, and the number of soft
prompt tokens for each task is 5. ProgPrompt
can only be used for the TIL setting because
the task ID is required during inference.

• ER: Experience replay stores representative
old samples and jointly optimizes both new
and old samples when learning new tasks.

• DER++ (Buzzega et al., 2020): DER++ is
based on data replay. Besides, DER++ adds
an MSE loss to regularize the logits of old
samples between teacher and student.

• CLSER (Arani et al., 2022): CLSER is based
on DER++. Besides, CLSER additionally
stores two models (i.e., fast model and slow
model) for selecting teacher logits when com-
puting the MSE loss.

• SpanKL (Zhang and Chen, 2023): SpanKL
converts the named entity recognition task
from entity-level annotation to Span-level an-
notation, using a binary cross-entropy loss
function and a distillation loss, with the distil-
lation loss coefficient λ is 1.

• OCILNER (Ma et al., 2023): OCILNER uti-
lizes contrastive learning to adaptively de-
tect entity clusters and utilizes two distance-
based methods to label non-entity tokens. The
threshold for labelling Non-entity is the me-
dian class similarity of all classes in the mem-
ory.

• ExtendNER (Monaikul et al., 2021): Extend-
NER utilizes knowledge distillation to review
old entity types, and the distillation loss coef-
ficient λ is 2.

• DLD (Zhang et al., 2023c): DLD improves
the knowledge distillation method in Extend-
NER, dividing it into negative terms and posi-
tive terms for knowledge distillation, and the
distillation loss coefficient λ is 2.

• SelfTrain (Rosenberg et al., 2005; De Lange
et al., 2019): SelfTrain utilizes the teacher
model to directly label current data and train
it together with samples of new entity types.

• RDP (Zhang et al., 2023b): RDP utilizes the
previous model to pseudo-label new data and

increases self-entropy loss to improve the con-
fidence of model prediction. The self-entropy
loss coefficient λ is 0.1.

• CPFD (Zhang et al., 2023a): CPFD designed
a pooled feature distillation loss and proposed
a confidence-based pseudo-label annotation
method. The feature distillation loss coeffi-
cient λ is 2.

• ICE (Liu and Huang, 2023): ICE includes
two methods, ICE_O and ICE_PLO. These
methods freeze the backbone model and the
old classifiers. ICE_O combine the non-entity
logits with the new task logits to obtain the
output probability during training. ICE_PLO
uses all previous logits and new logits dur-
ing training. Unlike ICE, SEQ* addition-
ally warm-up the PLMs and pre-allocating
future classifiers. Furthermore, ICE is limited
to class-incremental information extraction,
while SEQ* can be applied to both sentence
and word-level classification tasks.

• CFNER (Zheng et al., 2022): CFNER pro-
poses a causal effect framework to alleviate
the forgetting of old entity types and uses cur-
riculum learning methods to reduce the impact
of noisy labels. The number of matched to-
kens K is 3.

I Revisiting SOTA Methods

I.1 CIL with Generative Backbones for
Sentence-Level Tasks

The results of SOTA methods and SEQ* with
Pythia-410m, Pythia-160, gpt2-base, gpt2-large are
provided in Table 7, 8, 9. We compare AdapterCL
only on GPT2 because Adapter is not implemented
for Pythia. From the results, we have the following
findings:

SEQ* shows competitive or even superior per-
formance on all datasets. The warm-up strategy
(S1) is effective when the gap between pre-training
and downstream data is large (CLINC150, Bank-
ing77, FewRel, TACRED). In contrast, it is not so
effective when the gap is small (Topic3Datasets).
Freezing old classifiers (S2) is more important than
freezing backbones. The result also validates that
the forgetting results from classifiers instead of
backbone PLMs. Using cosine linear classifiers
(S3) is crucial when the IL scenario is CIL, and no
old samples are stored. Otherwise, models will be

14872

strongly biased towards new classes. Pre-allocating
future classifiers (S4) are very effective for gener-
ative backbones and brings considerable improve-
ments. The reason may be that training future clas-
sifiers in advance reduces the overlapping between
class embeddings.

The LAMOL-based methods achieve superior
performance on the topic classification datasets.
It indicates that generating pseudo samples is ef-
fective when the downstream data have close data
distribution with the pre-training data. However,
their performance is much worse than SEQ* when
more tasks are learned (Clinc150), or the gap be-
tween pre-training and downstream data is larger
(FewRel, TACRED). LFPT5 has the worst perfor-
mance in our settings. LFPT5 was originally de-
signed for T5 (Raffel et al., 2020), and we find that
the decoder-only models do not learn to generate
pseudo samples by just learning soft prompts.

SEQ* fails to achieve superior performance
on gpt2-base. We find the training loss hard
to decrease when adding cosine classifiers on
top of the gpt2-base. On gpt2-large, SEQ* out-
performs AdapterCL significantly while updating
much fewer parameters.

I.2 CIL with Discriminant Backbones for
Sentence-Level Tasks

We compare SEQ* with two strong rehearsal-based
methods, DER++ and CLSER. Both DER++ and
CLSER store teacher models for knowledge distil-
lation and require updating all parameters in PLMs.

From the results in Table 10 and 11, we find that
both DER++ and CLSER bring considerable im-
provement upon ER. However, SEQ* again shows
competitive or superior performance on all datasets.
It indicates that knowledge distillation is effective
for preserving knowledge. However, fully fine-
tuning PLMs causes more forgetting. Therefore,
stability is more important than plasticity when
designing IL algorithms for PLMs.

Besides, we have the following minor find-
ings: (1) Pre-allocating future classifiers with dis-
criminant backbones is less effective than genera-
tive backbones. (2) Freezing only old classifiers
achieves the best performance on CLINC150 and
TACRED. It shows that freezing backbone PLMs
may not be necessary for some datasets. The rela-
tive position between old class embeddings and fea-
tures may still be preserved when SEQ with frozen
old class embeddings. (3) Using bert-large-cased
may not lead to better results than bert-base-cased.

We empirically find that training with bert-large-
cased is more unstable than bert-base-cased.

I.3 CIL with Discriminant Backbones for
Word-Level Tasks

We evaluate SEQ* on class-incremental named
entity recognition since its popularity. In class-
incremental named entity recognition, the non-
entity tokens (“Other” tokens) can be regarded as
old samples (Zheng et al., 2022). Existing methods
such as (Monaikul et al., 2021; Zheng et al., 2022)
utilize the Other tokens for knowledge distillation.
And Zhang et al. (2023b), Zhang et al. (2023c),
Zhang et al. (2023a) also verify the effectiveness
of applying knowledge distillation. However, the
results in Table 12, 13 show that SEQ* outperforms
them by a large margin on OntoNotes5 and I2B2.
On the challenging dataset Few-NERD, SEQ* beat
7 SOTA methods for class-incremental named en-
tity recognition.

When using bert-large-cased, the performance
of CFNER, DLD, and SpanKL becomes more un-
stable. In contrast, SEQ* are more robust to the
choice of PLMs and show consistent superior per-
formance.

Finally, we also find that the choice of classifier
is crucial for class-incremental named entity recog-
nition. When using cosine linear classifiers, the per-
formance is degraded significantly. Therefore, we
use linear classifiers for all baselines and SEQ* for
a fair comparison, although CFNER, DLD, RDP,
and CPFD adopt cosine linear classifiers in their
original implementation. We speculate the reason
is that using cosine linear classifiers prevents mod-
els from learning the prior distribution between
classes, which is crucial for class-imbalanced tasks.

The result in Table 14 shows that the linear prob-
ing performance of both SEQ* and SOTA methods
increases. It indicates that all models enable PLMs
to adapt to downstream tasks. Furthermore, SEQ*,
SelfTrain and ExtendNER have higher linear prob-
ing performance than SEQ (Lin). It indicates that
forgetting causes the degradation of linear probing
performance, and it can be alleviated by freezing
PLMs or knowledge distillation.

I.4 TIL for Sentence-Level Tasks
We consider LoRA and ProgPrompt for the base-
lines in TIL. LoRA has been widely adopted for
adapting PLMs to downstream tasks. The result in
Table 15 shows that SEQ* achieves competitive per-
formance but requires much fewer new parameters

14873

Table 7: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
Pythia-410m. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as Table
1.

Topic3Datasets CLINC150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā
LFPT5 16.78 39.23 3.48 19.99 7.98 19.87 5.52 9.05 7.60 15.90
L2KD 58.89 72.82 22.48 51.23 47.47 75.11 37.08 57.29 20.86 41.15
LAMOL_KD 49.94 70.61 41.99 68.08 52.60 73.44 25.77 49.46 29.03 48.38
LAMOL_g 74.45 84.36 35.43 60.67 48.40 73.93 28.10 50.81 32.70 49.90
LAMOL_t 74.05 84.84 43.37 67.77 57.00 78.13 28.44 51.19 28.81 48.41
PCLL 58.83 74.18 47.09 71.72 45.33 72.25 31.00 51.93 24.50 51.59

SEQ (Lin) 19.66 45.55 12.26 28.33 14.88 34.17 13.43 35.78 12.64 32.06
SEQ (Cos) 16.89 41.68 5.97 18.27 11.10 15.62 11.40 17.76 10.08 16.75
SEQ (FixB+Cos) 17.13 42.38 6.08 18.31 10.32 12.72 7.45 19.59 9.30 15.73
SEQ (FixC+Cos) 50.96 55.69 64.28 56.54 44.93 36.40 33.48 34.74 28.90 26.61
SEQ (FixBC+Cos) 53.18 57.35 62.72 56.43 44.09 33.96 33.58 33.54 28.02 26.50
SEQ (W+FixBC+Lin) 33.41 54.47 19.06 33.90 17.79 40.93 13.68 36.14 13.65 33.78
SEQ (P+W+FixBC+Lin) 33.70 52.33 27.20 37.50 15.09 36.70 17.08 37.00 14.54 34.12

SEQ* (W+FixBC+Cos) 50.77 61.69 75.96 74.29 53.76 50.02 46.12 50.36 36.55 33.51
SEQ* (P+W+FixBC+Cos) 70.56 83.69 84.51 89.43 67.12 75.54 61.99 73.97 44.34 48.52

Table 8: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
Pythia-160m. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as Table
1.

Topic3Datasets CLINC150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā
LFPT5 11.61 34.39 0.00 5.17 2.85 8.80 0.78 4.31 5.14 15.02
L2KD 52.33 70.76 21.84 47.06 37.43 56.40 21.70 47.51 10.79 28.61
LAMOL_KD 45.66 65.92 34.05 56.15 40.39 61.96 22.35 42.96 18.08 37.07
LAMOL_g 66.09 80.98 32.35 54.50 44.78 66.15 21.33 42.18 25.93 39.24
LAMOL_t 66.11 80.27 32.62 58.99 45.93 64.08 21.09 44.27 19.75 40.21
PCLL 44.43 66.43 39.89 64.26 41.25 63.07 26.79 48.76 21.14 42.53

SEQ (Lin) 19.99 44.28 10.94 25.49 13.16 32.10 12.69 34.07 11.56 31.65
SEQ (Cos) 12.33 18.78 5.22 8.22 6.75 7.28 5.99 10.67 8.77 12.55
SEQ (FixB+Cos) 8.98 14.80 5.42 8.98 7.07 8.23 6.80 8.16 9.44 12.70
SEQ (FixC+Cos) 42.89 33.35 43.53 36.47 28.66 20.04 26.55 23.74 23.51 19.29
SEQ (FixBC+Cos) 44.57 32.20 43.11 37.67 27.01 22.47 26.80 22.87 23.96 20.29
SEQ (W+FixBC+Lin) 23.35 46.60 7.51 24.93 13.24 29.78 11.70 34.38 10.59 28.72
SEQ (P+W+FixBC+Lin) 18.45 45.66 10.02 23.56 13.73 31.39 13.54 33.05 10.90 29.25

SEQ* (W+FixBC+Cos) 42.30 47.28 67.97 62.37 45.80 37.40 47.38 50.54 34.27 31.25
SEQ* (P+W+FixBC+Cos) 57.71 52.33 77.94 83.73 62.66 64.81 59.57 72.23 36.99 40.21

Table 9: Comparison between SOTA methods and SEQ* on CLINC150. The backbone is gpt2-base and gpt2-large.
The IL scenario is CIL. No old samples are stored for all models. Aprob,0: the linear probing performance before
IL; Aprob,T : the linear probing performance after IL. Other notation is the same as Table 1.

Backbone Method AT Ā Aprob,0 Aprob,T # New Params per Task

gpt2-base

AdapterCL 71.64 75.57 83.71 84.05 894K
SEQ (Cos) 1.31 4.34 83.71 85.28 7.68K
SEQ* (W+FixBC+Cos) 4.55 9.22 83.71 86.84 7.68K
SEQ* (P+W+FixBC+Cos) 10.17 14.59 83.71 86.76 7.68K

gpt2-large

AdapterCL 70.42 78.91 91.95 91.87 7421K
SEQ (Cos) 6.48 20.25 91.95 93.89 12.8K
SEQ* (W+FixBC+Cos) 72.95 68.28 91.95 94.06 12.8K
SEQ* (P+W+FixBC+Cos) 87.93 91.41 91.95 94.18 12.8K

to learn compared with LoRA. ProgPrompt relies
heavily on the choice of PLMs and shows poor
performance on Pythia-410m and 160m. Since the
scenario of TIL is much simpler than that of CIL,

and all methods achieve high accuracy, we did not
conduct as many experiments in TIL as in CIL.

14874

Table 10: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
bert-large-cased. The IL scenario is CIL. Each model stores 1 sample for each class. Other notation is the same as
Table 1.

Topic3Datasets CLINC150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā
ER 56.65 74.93 65.32 82.57 49.07 72.79 38.94 66.23 36.36 54.69
CLSER 56.36 74.68 73.12 86.80 50.07 70.85 45.59 67.9 42.53 57.41
DER++ 61.49 78.83 72.7 86.49 56.15 76.67 44.41 68.32 42.5 59.05

SEQ (Lin) 20.28 45.4 7.62 25.45 13.19 22.78 14.72 36.11 13.6 33.08
SEQ (Cos) 17.55 24.17 8.33 15.56 10.04 12.4 9.55 15.8 9.46 14.79
SEQ (FixB+Lin) 44.58 67.70 24.35 57.02 20.29 49.23 14.09 35.62 12.50 26.12
SEQ (FixC+Lin) 58.24 76.63 78.86 89.90 58.34 75.17 44.36 69.77 45.26 60.46
SEQ (FixBC+Lin) 61.20 80.52 47.11 70.17 46.29 64.24 29.43 49.85 23.14 32.73
SEQ (W+FixBC+Cos) 36.52 59.05 44.9 58.49 31.09 51.25 34.15 49.52 23.8 40.78
SEQ (P+W+FixBC+Cos) 33.48 55.2 10.95 12.44 14.53 25.84 21.7 35.71 16.9 30.78

SEQ* (W+FixBC+Lin) 62.63 80.63 73.12 86.81 62.02 80.04 51.57 72.5 43.8 58.47
SEQ* (P+W+FixBC+Lin) 64.39 81.92 72.52 86.49 61.15 79.42 49.71 70.87 41.98 58.2

Table 11: Comparison between SOTA methods and SEQ* on sentence-level classification tasks. The backbone is
bert-base-cased. The IL scenario is CIL. Each model stores 1 sample for each class. Other notation is the same as
Table 1.

Topic3Datasets CLINC150 Banking77 FewRel TACRED

AT Ā AT Ā AT Ā AT Ā AT Ā
ER 51.90 72.76 63.11 82.33 49.76 73.20 40.32 64.02 35.50 53.17
CLSER 57.23 75.67 71.77 86.46 51.17 74.75 43.33 67.63 42.13 55.24
DER++ 64.78 79.29 69.05 86.13 55.84 76.63 44.67 67.73 40.58 56.11

SEQ (Lin) 23.62 48.38 11.09 30.88 14.07 23.78 15.16 36.29 12.77 35.60
SEQ (Cos) 17.65 25.84 7.06 14.77 9.48 11.80 8.54 13.78 9.98 16.54
SEQ (FixB+Lin) 39.98 64.44 25.26 57.33 21.07 49.61 14.38 36.56 14.36 26.20
SEQ (FixC+Lin) 53.90 74.28 78.08 89.03 59.64 77.19 46.06 66.87 45.65 57.79
SEQ (FixBC+Lin) 61.81 79.63 44.97 69.10 40.77 63.96 32.24 50.07 21.26 29.28
SEQ (W+FixBC+Cos) 31.91 54.39 13.11 14.09 15.74 25.82 18.47 31.04 22.53 40.77
SEQ (P+W+FixBC+Cos) 26.45 51.71 40.23 53.29 30.73 49.88 33.96 49.64 14.86 23.29

SEQ* (W+FixBC+Lin) 63.12 81.77 69.30 84.21 61.95 80.18 53.66 72.56 40.63 56.44
SEQ* (P+W+FixBC+Lin) 63.58 80.39 68.50 83.24 61.94 80.20 52.76 72.41 42.08 56.95

14875

Table 12: Comparison between SOTA methods and SEQ* on word-level classification tasks. The backbone is
bert-large-cased. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as
Table 1.

Few-NERD OntoNotes5 I2B2

AT Ā AT Ā AT Ā
SpanKL 0.00 0.00 0.00 0.00 0.00 1.98
OCILNER 22.83 31.78 37.67 53.58 36.94 52.12
ExtendNER 20.69 31.77 46.46 57.65 26.22 44.62
DLD 21.46 38.42 48.96 58.17 0.00 28.75
SelfTrain 25.73 40.48 49.31 57.70 36.83 55.00
RDP 30.66 45.93 54.41 64.30 42.96 61.59
CPFD 35.65 48.88 59.02 64.51 24.75 52.98
ICE_O 25.61 29.35 47.19 48.21 53.03 55.07
ICE_PLO 17.54 22.11 42.53 46.16 47.76 53.21
CFNER 29.90 44.02 48.62 57.96 1.23 27.05

SEQ (Lin) 3.31 16.49 4.42 21.42 4.77 25.46
SEQ (W+FixBC+Cos) 9.21 21.40 32.60 50.51 43.64 59.50
SEQ (P+W+FixBC+Cos) 5.09 18.25 33.95 50.94 46.25 61.71

SEQ* (W+FixBC+Lin) 27.72 42.27 67.21 73.23 74.76 77.17
SEQ* (P+W+FixBC+Lin) 28.52 42.57 68.87 73.70 72.66 75.79

Table 13: Comparison between SOTA methods and SEQ* on word-level classification tasks. The backbone is
bert-base-cased. The IL scenario is CIL. No old samples are stored for all models. Other notation is the same as
Table 1.

Few-NERD OntoNotes5 I2B2

AT Ā AT Ā AT Ā
SpanKL 18.26 39.28 40.10 53.88 6.12 34.84
OCILNER 18.44 29.80 39.99 54.70 27.27 47.74
ExtendNER 20.02 36.34 48.08 57.02 20.02 36.34
DLD 20.75 35.53 47.23 58.04 30.50 48.03
SelfTrain 23.46 39.88 51.08 57.41 23.60 39.49
RDP 27.08 43.43 50.45 60.32 40.38 58.12
CPFD 34.65 46.92 55.58 59.34 43.52 56.15
ICE_O 28.98 33.94 51.81 53.06 49.12 54.56
ICE_PLO 19.94 29.31 46.52 49.79 47.76 53.35
CFNER 27.70 42.13 58.07 63.76 35.42 51.44

SEQ (Lin) 2.97 16.21 4.38 21.20 5.26 25.26
SEQ (W+FixBC+Cos) 7.26 19.72 29.12 47.60 45.95 61.29
SEQ (P+W+FixBC+Cos) 3.17 19.65 29.70 48.30 47.10 60.42

SEQ* (W+FixBC+Lin) 28.13 42.72 66.99 71.80 71.76 73.71
SEQ* (P+W+FixBC+Lin) 28.21 43.06 67.39 72.27 72.51 75.48

14876

Table 14: The linear probing performance with backbone bert-base-cased. Other settings are the same as Table 13.

OntoNotes5 I2B2

Before IL After IL Before IL After IL

SEQ (Lin)

52.89±0.41

71.93±1.04

58.18±0.92

73.40±0.94

SelfTrain 74.29±0.75 74.54±0.57

ExtendNER 73.96±0.85 76.40±0.55

SEQ* (P+W+FixBC+Lin) 74.05±1.02 75.08±1.15

Table 15: Comparison between SOTA methods and SEQ* on CLINC150 and FewRel. The backbone is Pythia-410m,
Pythia-160m, bert-large-cased and bert-base-cased. The IL scenario is TIL. No old samples are stored for all models.
Other notation is the same as Table 1.

Backbone Method
CLINC150 FewRel

AT Ā # New Params per Task AT Ā # New Params per Task

Pythia-410m

LoRA 97.04 98.60 393K 95.29 96.62 393K
ProgPrompt 57.91 98.00 5.12K 46.73 55.05 5.12K
SEQ* (W+FixBC+Lin) 98.04 98.01 10.24K 90.02 93.03 10.24K
SEQ* (P+W+FixBC+Lin) 98.27 98.02 10.24K 91.25 93.61 10.24K

Pythia-160m

LoRA 51.62 50.81 147K 83.93 87.35 147K
ProgPrompt 13.00 27.03 3.84K 14.79 22.36 3.84K
SEQ* (W+FixBC+Lin) 95.94 96.75 7.68K 88.42 91.35 7.68K
SEQ* (P+W+FixBC+Lin) 96.42 97.09 7.68K 88.62 92.23 7.68K

bert-large-cased

LoRA 98.86 98.97 393K 93.63 95.27 393K
ProgPrompt† 94.82 96.85 15.36K 90.96 92.90 15.36K
SEQ* (W+FixBC+Lin) 97.80 97.80 10.24K 85.56 87.75 10.24K
SEQ* (P+W+FixBC+Lin) 97.70 97.64 10.24K 85.93 88.29 10.24K

bert-base-cased

LoRA 98.53 98.46 147K 94.00 95.42 147K
ProgPrompt† 98.15 98.25 11.52K 92.38 94.03 11.52K
SEQ* (W+FixBC+Lin) 96.71 96.64 7.68K 86.50 88.64 7.68K
SEQ* (P+W+FixBC+Lin) 96.30 96.20 7.68K 86.65 88.73 7.68K

14877

