
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1467–1480
August 11-16, 2024 ©2024 Association for Computational Linguistics

Transitive Consistency Constrained Learning for
Entity-to-Entity Stance Detection

Haoyang Wen, Eduard Hovy, Alexander Hauptmann
† Language Technologies Institute, Carnegie Mellon University

‡ School of Computing and Information Systems, The University of Melbourne
{hwen3, hovy, alex}@cs.cmu.edu

Abstract

Entity-to-entity stance detection identifies the
stance between a pair of entities with a directed
link that indicates the source, target and polar-
ity. It is a streamlined task without the com-
plex dependency structure for structural sen-
timent analysis, while it is more informative
compared to most previous work assuming that
the source is the author. Previous work per-
forms entity-to-entity stance detection training
on individual entity pairs. However, stances
between inter-connected entity pairs may be
correlated. In this paper, we propose transitive
consistency constrained learning, which first
finds connected entity pairs and their stances,
and adds an additional objective to enforce
the transitive consistency. We explore consis-
tency training on both classification-based and
generation-based models and conduct exper-
iments to compare consistency training with
previous work and large language models with
in-context learning. Experimental results il-
lustrate that the inter-correlation of stances in
political news can be used to improve the entity-
to-entity stance detection model, while overly
strict consistency enforcement may have a neg-
ative impact. In addition, we find that large
language models struggle with predicting link
direction and neutral labels in this task.1

1 Introduction

Detecting polarity from text has been widely stud-
ied in different forms, such as sentence-level (Pang
et al., 2002) or aspect-level sentiment analysis (Pon-
tiki et al., 2014), target-oriented stance detec-
tion (Hu and Liu, 2004; Somasundaran and Wiebe,
2010), and structured analysis (Kim and Hovy,
2004; Wiebe et al., 2005; Barnes et al., 2022).
Some recent efforts explore a streamlined and infor-
mative form, entity-to-entity stance detection (Park

1Our code is available at https://github.com/wenhycs
/ACL-2024-Transitive-Consistency-Constrained-Lea
rning-for-Entity-to-Entity-Stance-Detection.

Richard Pilger attorney general new policy

Negative Positive

Negative

(e1, Richard Pilger), director of the elections crimes
branch in the Justice Department’s Public Integrity Sec-
tion, told colleagues in an email that the (e2, attorney
general) was issuing “an important (e3, new policy) abro-
gating the forty-year-old Non-Interference Policy for ballot
fraud investigations in the period prior to elections becom-
ing certified and uncontested”.

Figure 1: An example of three entity-to-entity stances
and their consistency. If we know “Richard Pilger” was
against the “attorney general”, and the “attorney general”
supported the “new policy”, we may infer that “Richard
Pilger” was also likely against the “new policy”.

et al., 2021; Zhang et al., 2022), which identifies the
stance between a pair of entities with a directed link
that indicates source, target, and polarity. Entity-
to-entity stance detection can be used to analyze
more objective contexts such as news articles in an
effective way without the extraction of complex de-
pendency structure with opinion expressions (Kim
and Hovy, 2004; Wiebe et al., 2005; Barnes et al.,
2022), especially compared to most previous work
that usually assumes opinions come from the au-
thor (Pang et al., 2002; Hu and Liu, 2004; Soma-
sundaran and Wiebe, 2010; Pontiki et al., 2014;
Mohammad et al., 2016).

The input of a typical entity-to-entity stance de-
tection system consists of a context and a pair of
entities and finds a directed link between them, as
shown in Figure 1. Previous efforts (Park et al.,
2021; Zhang et al., 2022) optimize model train-
ing on each entity pair individually. However, the
stances of inter-connected entity pairs may be cor-
related. As we can find in Figure 1, if we know
“Richard Pilger” was against the “attorney general”
(Negative), while the attorney general supported
the “new policy” (Positive), we may infer that
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“Richard Pilger” was also against the new policy
with these two known stances. We hypothesize
that this type of transitive correlation is common in
political news and can be used effectively to train
better models (Sobhani et al., 2017).

In this paper, we consider the correlation be-
tween inter-connected entity pairs as transitive con-
sistency constraints during training and use these
constraints to help learn entity-to-entity stance de-
tection models. Specifically, we first sample a pair
of sentences that share a common entity. Based on
the intra-sentence entity-to-entity stances, we may
infer the stance of the entity pair across the two sen-
tences with transitivity. The inferred stance is ex-
pected to be softly aligned with the stance detection
prediction on the entity pair directly. Therefore,
given the two intra-sentence stance predictions and
the cross-sentence stance prediction, we can add
additional soft consistency loss between the triple
terms to enforce the similarity. In this work, we
develop two typical methods for entity-to-entity
stance detection and try to combine the transitive
consistency constraints with them. One is based on
relation classification from entity pair representa-
tions (Eberts and Ulges, 2020; Wang and Lu, 2020;
Wang et al., 2020). The other method is based on
recent trends in language model instruction tun-
ing (Wei et al., 2022; Sanh et al., 2022; Chung
et al., 2022; Muennighoff et al., 2023), where we
generate the stance autoregressively.

We conduct our experiments on DSE (Park et al.,
2021) and SEESAW (Zhang et al., 2022), both of
which analyze stances in political news. DSE re-
quires models to identify the neutral label, and the
label direction. SEESAW is originally designed to
jointly generate an entity pair and the correspond-
ing polarity, so it does not provide the mention-
level entity annotation and the neutral label. Our
experiment results show that the transitive consis-
tency constraints help in learning better classifica-
tion and generation models, which also implies the
prevalence of stance transitivity on political news.
We further show that the performance is sensitive
to the degree of applying constraints, and there is
a performance degradation if we overstrictly en-
force the constraints. In addition, we find that large
language models with in-context learning (Muen-
nighoff et al., 2023; Touvron et al., 2023) cannot
obtain reliable performance on DSE. Our further
analysis shows that it is non-trivial to directly use
large language models with in-context learning on
the neutral label or directed label predictions.

2 Entity-to-Entity Stance Detection
Frameworks

Entity-to-entity stance detection identifies the
stance between a pair of entities, as well as the
source and target through a directed link. In this
section, we introduce two basic frameworks for this
challenge. One is based on relation classification
using entity pair representations, while the other is
to generate the stance autoregressively.

2.1 Classification-Based Framework
Classification-based framework obtains entity-pair
representation from the sentence input and per-
forms classification using the obtained pair-wise
representation. This paradigm has shown effec-
tiveness in various relation extraction tasks (Eberts
and Ulges, 2020; Wang and Lu, 2020; Wang et al.,
2020; Wen and Ji, 2021).

Specifically, the model takes a sequence of to-
kens x with length n as input, representing the
input sentence. The input also includes the posi-
tions of two entity mentions (e1, e2) in the text. We
denote the groundtruth stance as s(e1, e2). In this
task, we only consider the position of the first token
from the corresponding entity, and we denote the
positions of the entity pair (e1, e2) as (p1, p2).

The entity-to-entity stance detection model pre-
dicts the stance between the given two entity men-
tions. It first uses a pretrained language model (De-
vlin et al., 2019; Liu et al., 2019, PLM) to obtain
the contextualized representation of the input se-
quence,

H = PLM(x),

where H represents the contextualized representa-
tion of the sequence, and hi is the representation
for the token at position i.

We obtain the entity-pair representation by con-
catenating the representation of the given position
pair

c = [hp1 ;hp2 ] .

Then entity-pair representation is used for classifi-
cation with a two-layer feed-forward neural net-
work (FFN) and a softmax layer to predict the
entity-to-entity stance label s

p (s | e1, e2) = softmax (a) ,

a = FFN2(tanh(FFN1(c))),

where FFNi(h) = W ih+ bi.
For stance detection task that requires models to

detect both the polarity and direction (Park et al.,
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Figure 2: The overall framework of soft consistency constrained learning objective. We first sample an entity as the
shared entity and use this entity to sample two sentences that can be used for stance inference. We then concatenate
the two sentences, with combinations of entity pairs from the sampled three entities for entity-to-entity stance
detection, and the objective is the penalty for inconsistent predictions.

2021), each classification label is the combina-
tion of the direction and polarity. Therefore, the
stance label is related to the input order of the entity
pair representation. For example, the label can be
“Entity 1 to Entity 2 positive” or “Entity 2
to Entity 1 negative”. “Entity 1” represents
the first entity of the concatenated entity pair repre-
sentation while “Entity 2” represents the second
entity. Therefore, “Entity 1 to Entity 2” indi-
cates that the first entity is the source entity while
the second entity is the target entity. The only ex-
ception is the neutral label, which is undirected in
nature, representing that there is no explicit stance
polarity between the two entities.

The model is trained by minimizing the cross-
entropy loss

Ls = −
∑

Is(e1,e2)=si log p(s = si | e1, e2).

2.2 Generation-Based Framework

Generation-based methods have also shown strong
performance on various tasks, especially for tasks
that are not traditionally modeled with generative
methods (Lewis and Fan, 2019; Yan et al., 2021; Li
et al., 2021; Raffel et al., 2022; Wen et al., 2023).
Recently, a line of research utilizes conditional
language models to perform relation extraction
and achieves promising performance (Paolini et al.,
2021; Huguet Cabot and Navigli, 2021; Lu et al.,
2022; Wadhwa et al., 2023). Therefore, we also use
the generation-based method on our entity-to-entity
stance detection experiments.

Specifically, our generation-based model is
trained on decoder-only language models (Radford
et al., 2019; Muennighoff et al., 2023), which takes
input tokens and generates new tokens autoregres-

sively using one Transformer (Vaswani et al., 2017)

p (o | x, e1, e2) =
|o|∏

i=1

p (oi | o<i;T(x, e1, e2)) ,

where x is the input sentence, and T(x, e1, e2)
produces a combination of short instruction, in-
put sentence, and entity pairs into a single se-
quence with a template. In our entity-to-entity
stance detection task, we define the template as:
“Analyze the entity-entity stance in the
following text:\nx\nEntity 1: e1\nEntity
2: e2\nStance:”.

The model takes T(x, e1, e2) and produces a se-
ries of tokens o as the output of the entity-to-entity
stance detection. Similar to the classification-based
method, we need to combine direction and polarity
into the output of the generation when perform-
ing a directed stance detection. We first output
the stance direction, and then output the stance po-
larity. We use text Entity 1 to Entity 2 and
Entity 2 to Entity 1 to represent two directions,
and positive, negative, and neutral as polarity
words. The output text of a neutral label does not
include a direction phrase as it is undirected.

The model is trained by minimizing the log-
likelihood over the generated output sequence:

Ls = − log p (o | x, e1, e2)

= −
|O|∑

i=1

log p (oi | o<i;T(x, e1, e2)) .

3 Transitive Consistency Constrained
Learning

Inter-connected stances may be correlated, espe-
cially in political news, as shown in Figure 1. We
hope to capture the correlation from optimizing the
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e2−→e3 e2←−e3
Positive Negative Positive Negative

e1−→e2
Positive e1

Positive−→ e3 e1
Negative−→ e3 - -

Negative e1
Negative−→ e3 e1

Positive−→ e3 - -

e1←−e2 Positive - - e1
Positive←− e3 e1

Negative←− e3

Negative - - e1
Negative←− e3 e1

Positive←− e3

Table 1: The transitive mapping of a pair of directed stances with a shared entity. “-” denotes no mapping between
the pair of stances. We also do not apply transitive mapping for neutral samples.

predicted stances that can be inferred from the tran-
sitivity of existing stances. In this section, we will
introduce the concept of transitive stance inference.

The transitive stance inference requires multi-
ple inter-correlated entity pairs in a context, while
most existing resources only annotate one entity-to-
entity stance at the sentence level. Therefore, we
propose a simple sentence pair sampling method
that helps obtain data for transitive inference. Then
we introduce the constrained learning method,
which can be added to both classification-based and
generation-based methods to capture the transitive
correlation. The overall framework is illustrated in
Figure 2.

3.1 Transitive Stance Inference

Suppose we have three entities (e1, e2, e3), and we
know the directed entity-to-entity stance s(e1, e2),
s(e2, e3), the stance inference is to infer the stance
from the two known stances

ŝ(e1, e3) = s(e1, e2)⊕ s(e2, e3).

The stance inference can be divided into two steps.
The first step is to check whether e1 can reach e3
(e1 → e2 → e3) or e3 can reach e1 (e1 ← e2 ←
e3) using the existing directed links, which is a
prerequisite for transitivity. If e1 can reach e3, we
will be able to infer the stance from e1 (as the
source) towards e3 (as the target), and vice versa.
For other cases (e1 → e2 ← e3, e1 ← e2 → e3),
we will not be able to apply the transitive inference.
We also do not use stances with neutral labels in
our stance inference as they are undirected.

The second step is to determine the stance po-
larity. We formulate the stance polarity mapping
similar to the logical non-equivalence (XOR) oper-
ator and we denote the mapping operator by ⊕. If
both polarities of the two known stances s(e1, e2),
s(e2, e3) are positive or negative, the inferred po-
larity of the stance ŝ(e1, e3) will be positive. If

among the two known stances, one is positive and
the other is negative, the inferred polarity of the
stance ŝ(e1, e3) will be negative.

Combining these two steps, we have a complete
stance inference from transitive mapping, which is
illustrated in Table 1.

3.2 Two-Step Sentence Pair Sampling

Existing resources (e.g., Park et al., 2021) mostly
focus on sentence-level annotation. For each sen-
tence, they pick one pair of entities and annotate
the directed stance between them. However, as
we introduced in Section 3.1, to infer stance with
transitivity, we will need a pair of stances of which
two entity pairs share one entity and there are in
total three entities. Therefore, we propose a simple
sentence pair sampling method in the training data
using a two-step sampling to obtain these samples.

Specifically, we first uniformly sample an entity
as the shared entity. Uniform sampling over entities
is to ensure that a few frequently occurring enti-
ties will not have a substantially high probability
of being sampled. Then, we can find all sentences
with entity-to-entity stance annotations involving
the given entity, and we uniformly sample a pair
of sentences among them. The sentence pair will
also provide us with a pair of entity-to-entity stance
annotations that share a common entity. We will
disregard the sampled sentence pair if the entity
pairs from the sentence pair are the same, or if the
sampled entity-to-entity stance pair does not consti-
tute the case we can apply the transitive mapping.
We keep performing the two-step sampling until
we find a valid sentence pair.

3.3 Soft Consistency Constrained Learning

The overall idea of constrained learning is to add
an additional penalty if the predicted label does not
match the inferred label (Wang et al., 2020). We
use the classification-based method to explain our
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proposed method first, and naturally extend it to
the generation-based method.

For a given sampled sentence pair (x1,x2)
with entity pair (e1,1, e1,2) and (e2,1, e2,2) cor-
respondingly, we perform normalization on the
sentence pair annotation first to ensure e1,2 =
e2,1 as the shared entity. This normaliza-
tion involves flipping the stance direction with
the entity order within the input entity pair.
For example, if there is a stance s(e1, e2) in-
terpreted as Entity 1 to Entity 2 positive,
after flipping the input order of the en-
tity pair from (e1, e2) to (e2, e1), the cor-
responding flipped stance s(e2, e1) will be
Entity 2 to Entity 1 positive. Therefore,
we flip the label of the first sentence if the shared
entity is e1,1 in the original annotation, and flip the
label of the second sentence if the shared entity is
e2,2. For simplicity, we assume that the input of
the following discussion is already normalized.

We use concatenated input from the sentence
pair [x1;x2] with three entity pairs (e1,1, e1,2),
(e2,1, e2,2) and (e1,1, e2,2), which represents two
intra-sentence entity pairs with groundtruth stance
annotation, and one inter-sentence entity pair with
inferred stance. These inputs will be fed into the
classification-based method and obtain three dis-
tributions, p(s | e1,1, e1,2), p(s | e2,1, e2,2) and
p(s | e1,1, e2,2). The objective is to promote sim-
ilarity between p(s | e1,1, e1,2) × p(s | e2,1, e2,2)
and p(s | e1,1, e2,2), where the former term can be
considered as the probability of applying stance
inference, while the latter term is the probability of
direct stance detection. We use the groundtruth and
inferred labels with L1 distance as this objective

Lc = | log p (s = s (e1,1, e1,2) | e1,1, e1,2)
+ log p (s = s (e2,1, e2,2) | e2,1, e2,2)
− log p (s = ŝ (e1,1, e2,2) | e1,1, e2,2)| .

We jointly train the consistency constrained ob-
jective with the regular single-sentence learning
objective Ls (cross-entropy for classification and
sequence log-likelihood for generation)

L = Ls + λLc,

where the factor λ is to control the degree of en-
forcing the consistency objective.

Extending to generation-based method. When
extending the consistency constrained learning to

generation-based method, we need to find a legit-
imate estimate from the generation framework to
represent the log probability of the stance label.
For simplicity, we directly choose the sum of the
log probability of the predicted polarity word and
two entity numbers to represent the log probabil-
ity, as they are the most important factors of an
entity-to-entity stance label.

Category DSE SEESAW

# Label Types 5 2
Stance Direction In Labels Part of Input
Neutral Label Yes No
Entity Position Yes No
Data Statistics

# Train 13,144 6,263
# Valid 1,461 2,436
# Test 1,623 1,920

Table 2: Comparison of DSE and SEESAW datasets.

4 Experiments

4.1 Data

We conduct experiments on two datasets,
DSE (Park et al., 2021) and SEESAW (Zhang
et al., 2022). DSE requires the model to predict
both the stance direction and the polarity with
entity mentions and their positions in the context.
The annotation is always from the first mentioned
entity to the second entity in the context.

SEESAW was originally designed to jointly gen-
erate pairs of entities with their stances, and they
do not provide mention-level entities and neutral
labels. Instead, all the entities are in canonical
form without positions in the context. We slightly
change the original experiment setup to make it
more consistent with the DSE setting, providing
the entity pair with the stance direction as part of
the input. In this setting, the models are only asked
to detect the non-neutral polarity, given an entity
pair and the stance direction.

As a result, for experiments on DSE, we can nat-
urally use both methods introduced in this paper.
While on SEESAW, the pair-wised classification
method is replaced with sentence-level classifica-
tion, which uses the name and the direction of the
entity pair and context in a question-answering-
based pair input. The detailed statistics and com-
parison of the two datasets are provided in Table 2.
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Methods Development Set Test Set
Micro F1 Macro F1 Micro F1 Macro F1

LNZ (Combined) 69.40 65.16 70.55 53.58
LNZ (Context) 63.31 45.18 63.71 46.65
LNZ (EntityPrior) 59.14 44.27 58.53 40.63
DSE2QA (Complete) 78.92 67.51 77.26 66.17
DSE2QA (Pseudo) 80.72 68.27 79.73 67.66
POLITICS 85.45 71.94 84.19 71.12
Generation 83.92 70.14 83.25 70.12

+ Consistency Training 84.86 71.75 83.51 70.25
Classification 85.82 74.07 83.82 70.59

+ Consistency Training 86.67 74.41 85.19 72.50
BLOOMZ-176b + 25 samples 20.60 18.04 21.07 18.56

Table 3: Results on DSE dataset. The performances of our methods are averaged performance (%) over 5 runs.

Methods Mirco F1

DSE2QA 83.35
POLITICS 84.02
Generation 80.35

+ Consistency Training 81.05
Classification 83.72

+ Consistency Training 84.11
BLOOMZ-176b + 10 samples 77.29

Table 4: Results on SEESAW dataset. Different from
the original setting of SEESAW, we provide entity pair
and direction as the input and ask models to predict
non-neutral stance. The performances we reported are
averaged performance (%) over 5 runs.

4.2 Experimental Setup

For the classification-based method, we use
RoBERTa (Liu et al., 2019) as the pretrained
language model to obtain the entity pair repre-
sentations and we choose roberta-base2 as the
base checkpoint to initialize the model. For the
generation-based method, we finetune an openly
available instruction-tuned large language model
series, BLOOMZ (Muennighoff et al., 2023). We
use bloomz-560m3 as the initial checkpoint as the
model size is close to RoBERTa. More details of
experimental setup and computational infrastruc-
tures can be found in Appendix A.

Comparing with previous work. We compare
our work with some previous work, including

2https://huggingface.co/roberta-base
3https://huggingface.co/bigscience/bloomz-560

m

LNZ (Liang et al., 2019), DSE2QA (Park et al.,
2021) and POLITICS (Liu et al., 2022) on DSE.
LNZ is a pairwise classification model combining
the entity prior representation and entity represen-
tation in the context. DSE2QA converts the stance
detection problem into a series of template-based
question answering. POLITICS is a pretrained
model with ideological information.

As we alter the original experimental setting of
SEESAW, we provide our own implementation of
DSE2QA and POLITICS in this data and com-
pare it against our method. Especially, on these
two datasets, we apply POLITICS with the same
classification framework as our model, the only dif-
ference is their ideology-aware pretrained model.

In addition, we also compare our method with
large language model from the same series as our
generation model, BLOOMZ-176b (Muennighoff
et al., 2023)4 with few-shot in-context learning sam-
ples on both datasets, to understand the capability
of existing large language models in performing
this entity-to-entity stance detection task. We take
5-shot samples of each label (in total 25 samples in
DSE and 10 samples in SEESAW) to perform the
language model inference. Additional results with
Llama2-70b-chat (Touvron et al., 2023) on DSE
are provided in Appendix B.

4.3 Results

Table 3 shows the experimental results on the
DSE dataset, where we can find steady improve-
ment from adding the transitive consistency con-
strained learning to the classification-based (Gen-

4https://huggingface.co/bigscience/bloomz
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Figure 3: The Micro F1 performances of generation and
classification models on DSE development set with dif-
ferent balance factor λ. In general, we can observe that
with the increase of λ, the performance first improves
and then degrades.

eration + Consistency Training) and generation-
based method (Generation + Consistency Train-
ing). We also observe that the improvement for
generation-based method method is smaller than
classification-based method, indicating that there is
still room to further investigate better methods to in-
corporate constrained learning into generative mod-
eling. The results of a large language model with in-
context learning is illustrated with BLOOMZ-176b.
This result indicates that BLOOMZ-176b has a
deficient performance on DSE, the entity-to-entity
stance detection task, and few-shot in-context learn-
ing cannot substantially help with learning well on
this task.

On SEESAW dataset, we also find that the
consistency constrained learning provides consis-
tent improvement to two base methods. The per-
formance of classification-based consistency con-
strained method outperforms or is on par with previ-
ous work, specifically compared to POLITICS, the
model pretrained with ideology information. We
can also observe that the absolute improvement is
slightly less than what we observe in DSE, which
indicates that the constrained learning objective
works better when stance directions are part of the
prediction output. BLOOMZ-176b, contrary to the
DSE results, also provides fair performance on this
dataset. We will further discuss the large language
model performance discrepancy between DSE and
SEESAW in Section 4.6.

Training Micro F1 Macro F1

Data Augmentation 84.55 71.91
Consistency Learning 85.19 72.50

Table 5: Comparison between vanilla data augmentation
and soft consistency constrained learning. Both methods
use the same two-step sampling method to obtain the
inferred stance of the cross-sentence entity pair.

Sampling Micro F1 Macro F1

Random Sampling 84.44 71.99
Two-Step Sampling 85.19 72.50

Table 6: Effects of two-step sampling method compared
to the vanilla uniform random sampling over all valid
sentence pairs for stance inference on DSE test set.

4.4 Effects of Soft Consistency Constrained
Learning

We further analyze the effects of the soft consis-
tency constrained learning and illustrate the results
in Figure 3 on the DSE dataset. We can observe
that after involving the soft consistency constrained
objective, the performances compared to the one
without constrained objective (λ = 0) improve.
However, enforcing this objective with large λ, sim-
ilar to vanilla data augmentation, does not further
contribute to the performance, but instead results
in performance degradation. This phenomenon
suggests that transitivity does not always hold and
there is still a chance that the inference is not cor-
rect. Therefore, consistency constrained learning
requires a carefully chosen soft setup.

In addition, we conduct another experiment, to
analyze the performance of soft consistency con-
strained learning compared to vanilla data augmen-
tation on classification-based method. The vanilla
data augmentation uses the sample two-step sam-
pling to obtain the inferred label for the cross-
sentence entity pair. The results are shown in Ta-
ble 5. We can find that both data augmentation and
consistency learning can contribute to the model
performance, while consistency constraints provide
additional performance improvement from learning
to make consistent predictions in a context.

4.5 Effects of Two-Step Sampling

We also analyze the effects of two-step sampling.
The results are shown in Table 6. We compare the
two-step sampling to uniform random sampling

1473



Test Data Type Micro F1 Macro F1

Full Label 21.07 18.56
- w/o Direction 26.74 26.19
- w/o Neutral 66.96 35.80
- w/o Both 77.62 71.73

Table 7: Analysis of BLOOMZ-176b performances on
different test data on DSE, including test labels that do
not require predicting direction, data excluding neutral
samples, and test labels without both of them. The re-
sults show that the performance suffers from predicting
the neutral labels and directional information.

over all valid sentence pairs for stance inference.
The results show that two-step sampling outper-
forms uniform sampling, indicating that it is impor-
tant to consider the entity distributions when select-
ing the sentence pair. Vanilla uniform random sam-
pling over all valid sentence pairs results in a long-
tail distribution of the shared entity. While con-
strained learning performs better when the shared
entity follows a uniform distribution.

4.6 Challenge of Large Language Models for
Entity-to-Entity Stance Detection

From Table 3, we find surprisingly low perfor-
mances from the large language model, while the
performance on Table 4 is more promising. As we
explained in Table 2, the main difference between
the two datasets is the requirement of label direc-
tion and neutral sample detection. Therefore, we
conduct further analysis to understand the perfor-
mance discrepancy. Besides the original test label,
we use test data without label direction (only requir-
ing polarity prediction), test data without neutral
label samples, and test data without both factors, to
analyze the impact of these factors. We conduct a
similar in-context learning scheme as introduced
in Section 4.2. The results show that the large
language model achieves better performance by re-
moving the requirement of neutral label prediction
or predicting directed information. Similar results
on Llama2-70b-chat can be found in Appendix B.

This phenomenon reveals that the semantic in-
formation of directed stances and neutral stances
is not well pretrained in the current large language
models. In addition, it is also non-trivial to use the
in-context learning method to help large language
models obtain the ability to conduct directed stance
and neutral stance detection. These results also
partly align with Zhang et al. (2023) which shows

that large language models lag behind in complex
or structured sentiment analysis tasks.

5 Related Work

Earlier efforts on stance detection primarily focus
on some specific targets with rich training and test-
ing data (Somasundaran and Wiebe, 2010; Augen-
stein et al., 2016; Mohammad et al., 2016). A typi-
cal model in this setting is built for each target sep-
arately (Mohammad et al., 2016; Mohtarami et al.,
2018; Siddiqua et al., 2018; Aldayel and Magdy,
2019; Graells-Garrido et al., 2020), or cross-target
stance detection, where we have pre-defined leave-
out targets to test the model generalization to tar-
gets that do not have training data (Xu et al., 2018;
Liang et al., 2021; Allaway et al., 2021; Jiang et al.,
2022). More recent efforts also study zero-shot
or few-shot stance detection on a large number of
targets (Allaway and McKeown, 2020; Lin et al.,
2021; Liu et al., 2021; He et al., 2022; Liang et al.,
2022a,b; Wen and Hauptmann, 2023). This setting
requires model to generalize to a large number of
unseen targets. Recently, another line of research
studies a more objective form of stance detection,
entity-to-entity stance detection (Park et al., 2021;
Zhang et al., 2022), where we analyze the stance
from one entity to another entity in the text. Our
work follows this direction and studies the consis-
tency between related entity-to-entity stances and
uses this consistency to help model training, com-
pared to previous work (Park et al., 2021; Zhang
et al., 2022) that tackles the stances individually.

On the other hand, stance detection can be con-
sidered as a simplified task of structured sentiment
analysis (Barnes et al., 2022), which identifies opin-
ion holders, targets, expressions, and polarities into
dependency structures. Typical stance detection se-
tups assume that the opinions are from the author,
and models only need to consider the target. While
entity-to-entity stance detection combines holders,
targets, and polarities with more streamlined, di-
rected link labels.

The consistency assumption between related
stances is also related to multi-target stance de-
tection (Sobhani et al., 2017). Multi-target stance
detection is to detect a stance pair for a multi-target
(e.g., a pair of targets), assuming that when express-
ing the stance to one target, it also implies stances
to a related target. Similar consistency constraints
have also been discussed on polarity link prediction
in social networks (Leskovec et al., 2010) and event
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relation extraction (Wang et al., 2020). The fo-
cus of Leskovec et al. (2010) is the network-based
link prediction, which is quite different from the
text-based analysis. Wang et al. (2020) performs
event-event relation extraction (temporal and hier-
archical). The document-level annotation provides
consistent labels and therefore they do not have
steps that we have to create data for consistency
training.

6 Conclusion

In this paper, we present a method that models the
transitive consistency constraints during training to
help train entity-to-entity stance detection models.
Our proposed methods first sample sentence pair to
conduct stance transitivity inference, and model the
constraints as the similarity between the inferred
and directly predicted stance. Experiments show
that this constrained learning helps improve both
classification- and generation-based models. Fur-
ther analysis indicates that the constrained learning
is sensitive to the balance factor which controls
the enforcement of constraints during training. We
also find large language models may not perform
reliable complex structured predictions, especially
on neutral and directed samples.

Limitations

In this work, our experimental setup assumes that
the entities involved in a context are pre-extracted
and we use gold standard entities for stance de-
tection. However, to conduct end-to-end entity-to-
entity stance detection, we need an additional pre-
requisite component for entity extraction, which is
not used and covered in this paper. Therefore, it is
difficult to compare this work with other work that
conducts end-to-end entity-to-entity stance detec-
tion or structured sentiment analysis, such as gen-
erative entity-to-entity stance detection that jointly
finds entities with their stances (Zhang et al., 2022).

Additionally, the consistency constraints in this
paper are used during training. However, for large
language models discussed in this paper, it is in-
feasible to conduct full fine-tuning with limited
computational resources. It is still under explo-
ration how to use frozen large language models to
obtain reliable performances for this challenge, and
whether those consistency constraints can also be
effectively used in this setup.

In this paper, our experiments are conducted in
a specialized domain, political news, in which we

generally see more frequent polarized opinions. It
is still under exploration whether the stance tran-
sitivity constraints widely exist in other domains.
If not, we need to find scenarios where transitivity
constraints hold and conduct constrained learning
on these scenarios specifically. Besides, in general
domain, the negation of a positive stance may not
be exactly the opposite one, which should also be
considered when extending this work to a more
general domain. It is also an interesting direction
to study the similar transitivity in other settings (e.g.
relations in knowledge graphs, semantic concept
inheritance).
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A Detailed Experimental Setup

On DSE, we train the classification-based method
using a learning rate of 2e-5. The batch size is 32,
and λ is 0.1. We train the model with 30 epochs and
evaluate it on the validation set to select the check-
point with the best validation set performance. For
the generation-based method, we use a learning rate
of 2e-5. The batch size is 32 for the cross-entropy
learning objective and 16 for soft consistency con-
strained learning. λ is 0.1. We train the generation-
based method with 10 epochs, and use the final
checkpoint for validation and test set evaluation.

On SEESAW, the generation-based method is
trained with a learning rate of 1e-5, batch size of

32 for sequence log-likelihood objective, 16 for
soft consistency constrained learning, and λ of
0.3. We train the generation-based method on with
10 epochs, and use the final checkpoint for vali-
dation and test set evaluation. The classification-
based model, as we mention in Section 4.1, is a se-
quence classification given the entity pair with the
direction, and the context in a question-answering-
based sentence pair input. The template for input
sentence pair is “Source Entity: e1, Target
Entity: e2 </s> X”. We train this classification
method using a learning rate of 2e-5. The batch
size is 32, and λ is 1.0. We train the model with
30 epochs and evaluate it on the validation set to
select the checkpoint with the best validation set
performance.

We train all models with a linear scheduler with
a warmup rate 0.1. We use FP16 mixed precision
training for the generation-based method. We use
full fine-tuning on both classification-based and
generation-based methods. For sentence pair sam-
pling to conduct stance inference on the SEESAW
dataset, we drop all sentences that include special
entities such as <author> and <someone>. We also
do not need to consider normalization step because
the direction is given as part of the input. For large
language model inference, we use 4-bit quantiza-
tion (Dettmers et al., 2023) to reduce memory con-
sumption.

Details of computational infrastructures. We
use PyTorch (Paszke et al., 2019), Huggingface
Transformers (Wolf et al., 2019) and Acceler-
ate (Gugger et al., 2022) to perform model training
and inference. All model training is conducted
with 1x or 2x Nvidia RTX 3090, or 1x Nvidia RTX
A6000. BLOOMZ-176b inference is conducted
with 4x Nvidia A100 SMX 40G. The Llama2-70b-
chat inference is conducted with 2x Nvidia RTX
3090 or Nvidia A40.

B Experiments on Llama2-70b-chat

Experiment results on Llama2-70b-chat are demon-
strated in Table 8. The overall results are similar to
the results of BLOOMZ-176b. When requiring di-
rected stance analysis with neutral labels, Llama2-
70b-chat with in-context learning provides deficient
performance. If we simplify the problem so that
output does not require a directed stance, or sam-
ples do not include neutral labels, Llama2-70b-chat
shows more legitimate performance.
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Test Data Type Micro F1 Macro F1

Full Label 18.48 19.86
- w/o Direction 56.56 50.82
- w/o Neutral 30.37 30.63
- w/o Both 84.55 54.92

Table 8: Analysis of Llama2-70b-chat performances on
different test data types on DSE. The results show that
large language models suffer from predicting the neutral
labels and directional information.

BLOOMZ-176b
The task is to detect the stance from source entity to target
entity given a context. The input consist a pair of entities
and a context. Your output can only be "Neutral", "Entity
1 to Entity 2 Positive", "Entity 1 to Entity 2 Negative",
"Entity 2 to Entity 1 Positive", "Entity 2 to Entity 1 Nega-
tive" without explanation. Below are a few examples:

Context: . . .
Entity 1: . . .
Entity 2: . . .
Stance: . . .

Context: . . .
. . .
Llama2-70b-chat
<s>[INST] <<SYS>>
The task is to detect the stance from source entity to target
entity given a context. The input consist a pair of entities
and a context. Your output can only be "Neutral", "Entity
1 to Entity 2 Positive", "Entity 1 to Entity 2 Negative",
"Entity 2 to Entity 1 Positive", "Entity 2 to Entity 1 Nega-
tive" without explanation. Below are a few examples:

Context: . . .
Entity 1: . . .
Entity 2: . . .
Stance: . . .

Context: . . .
. . .
<</SYS>>
Context: . . .
Entity 1: . . .
Entity 2: . . .
[/INST] Stance:

Figure 4: Prompt templates for BLOOMZ-176b and
Llama2-70b-chat.

C Large Language Model Prompts

We demonstrate the prompt templates for large lan-
guage models in Figure 4. The prompts consist
of a short description of the task, with a series of
examples. We list the sample to solve at the end of
all demonstration examples.

Asked about quarterback (e1, Colin Kaepernick) favorit-
ing negative comments on Twitter as a form of personal
motivation, (e2, Harbaugh) gave it a thumbs up.
Classification Prediction: Neutral
Classification + Consistency Training: e2

Positive−→ e1
In the primaries, (e1, Morell) said, Putin played upon Mr.
(e2, Trump)’s vulnerabilities by complimenting him.
Classification Prediction: Neutral
Classification + Consistency Training: e1

Positive−→ e2

Table 9: Case study to compare the differences between
vanilla classification model and classification model
with consistency transitive constrained learning.

D Case Study

We also include two cases from the classification-
based method on the DSA dataset to demonstrate
the effects of consistency constrained learning, as
shown in Table 9. In this two examples, we can
find that the consistency learning can help with
finding the stance label and direction in the con-
text while the baseline classification model only
predicts neutral.
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