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Abstract
Large Language Models (LLMs) have demon-
strated remarkable abilities in general scenar-
ios. Instruction finetuning empowers them to
align with humans in various tasks. Neverthe-
less, the Diversity and Quality of the instruction
data remain two main challenges for instruction
finetuning. With regard to this, in this paper,
we propose a novel gradient-based method to
automatically select high-quality and diverse
instruction finetuning data for machine trans-
lation. Our key innovation centers around ana-
lyzing how individual training examples influ-
ence the model during training. Specifically,
we select training examples that exert benefi-
cial influences on the model as high-quality
ones by means of Influence Function plus a
small high-quality seed dataset. Moreover, to
enhance the diversity of the training data we
maximize the variety of influences they have on
the model by clustering on their gradients and
resampling. Extensive experiments on WMT22
and FLORES translation tasks demonstrate the
superiority of our methods, and in-depth anal-
ysis further validates their effectiveness and
generalization.1

1 Introduction

Large Language Models (LLM) have revolution-
ized the field of Natural Language Processing with
their strong abilities in general language under-
standing and generation (OpenAI, 2023; Achiam
et al., 2023). To enable this strong ability, instruc-
tion finetuning has been proposed to better align
language models (Wei et al., 2021; Chung et al.,
2022; Ouyang et al., 2022). Significant progress
has been made on collecting extensive instruction
finetuning data for better aligning LLMs to produce
helpful responses (Chung et al., 2022).

†The work was done when the author was an intern at
ByteDance.

‡Corresponding author.
1Code is available at https://github.com/xypan0/

G-DIG

We argue that Diversity and Quality of the in-
struction data present a pair of challenges for in-
struction finetuning. Zhou et al. (2023) have demon-
strated that a model trained with a limited, care-
fully curated dataset composed of high-quality and
diverse examples outperforms models trained on
larger, more extensive datasets during instruction
finetuning. Subsequently, various methods have
been proposed to automatically select high-quality
and diverse training data from the large pool of
instruction finetuning datasets (Chen et al., 2023a;
Cao et al., 2023). Yet, these methods often rely
on another model to decide quality or diversity, ne-
glecting the inherent model behavior and strong
ability of the LLM itself.

To this end, we propose G-DIG, a novel
Gradient-based method to automatically select
Diverse and hiGh-quality instruction finetuning
data for machine translation. We use influence
function (Koh and Liang, 2017), a gradient-based
method that quantifies the impact made by individ-
ual training samples. Concretely, we (1) measure
the response quality of each training sample with
the influence score of the training sample on test
instances and (2) enhance the diversity of the train-
ing data by maximizing the variety of influences
they have on the model.

Specifically, we hypothesize that high-quality
data should have positive influences on high-quality
test samples. Hence, we first manually create a
small set of high-quality seed data and then auto-
matically select high-quality data that have positive
influences on seed data. Moreover, we utilize K-
means clustering algorithms to cluster training data
with similar influences, using gradients represent-
ing their influences on the model. Unlike existing
methods that introduce an external model to de-
cide quality and diversity, our methods directly use
model gradients, which capture the model behav-
ior through learning algorithms and back to the
training data.
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We conduct experiments on Zh ⇒ En and De
⇒ En translation tasks. Specially, We collect large
candidate pools and manually construct two small
sets of seed data. We then finetune different LLM
backbones on various sizes of selected subsets and
compare their performances with different selec-
tive methods and existing SOTA LLMs. Under a
thorough comparison in a range from 1k to 64k
selected samples, our proposed method not only
surpasses the baseline selective methods but also
achieves competitive performance against SOTA
models. Extensive experiments and in-depth anal-
ysis emphasize the need for data selection and
demonstrate the effectiveness and generalization of
our proposed methods.

2 Related Work

LLM for Machine Translation. Due to
their strong in-context learning and instruction-
following abilities, powerful LLMs like GPT-4
have achieved remarkable progress in machine
translation, with comparable performance to the
top systems on the WMT translation task (Zhu
et al., 2023; He et al., 2023; Raunak et al., 2023).
To fully leverage LLMs’ translation ability, various
methods have been proposed, including in-context
translation exemplar selection (Garcia et al., 2023;
Lin et al., 2022; Zhang et al., 2023a; Agrawal et al.,
2022), prompt optimization (Jiao et al., 2023) and
decoding strategies (Zeng et al., 2023a).

The aforementioned studies all focus on the in-
ference stage optimization, while another line of
work focuses on instruction tuning the LLMs for
better translation performance. Xu et al. (2023) pro-
poses to first finetune the model on monolingual
data and then on high-quality parallel data. Li et al.
(2024b) trains the model to elicit translation ability
by multilingual instruction tuning. Li et al. (2024a)
proposes to create high-quality instruction-tuning
data from larger models by a patching mechanism.
Chen et al. (2023b) improves the model instruction
understanding by adding a global instruction repre-
sentation and improves model faithfulness by com-
paring over-translation and misstranslation results
with the correct translation. Zeng et al. (2023b) pro-
poses a novel framework using examples in com-
parison to teach LLMs to learn translation. How-
ever, all these methods neglect the importance of
instruction finetuning data quality and diversity in
machine translation. And in this paper, we pro-
pose a novel approach to enhance the quality and

diversity of translation data.

Traning Data Quality and Diversity. Various
studies evident that the quality and diversity of
instruction finetuning data predominate the per-
formance of LLMs (Zhou et al., 2023; Touvron
et al., 2023; Li et al., 2023). For example, Zhou
et al. (2023) manually curated a small, high-quality
instruction set to elevate the model’s instruction
following power. Although the methods in (Zhou
et al., 2023) rely heavily on human effort, they mo-
tivate research aiming to automatically obtain high
quality instructions. Cao et al. (2023) propose to
score the quality of each instruction by combining
several language indicators using a linear model.
However, all these indicators rely on external mod-
els. Besides, Du et al. (2023) present a comprehen-
sive approach for selecting high quality and diverse
instruction based on reward model score and se-
mantic diversity. Still, their methods rely heavily
on external models and overlook the direct impact
that finetuning data has on the model. Remarkably,
Li et al. (2023) propose a self-guided approach
to select difficult instructions with the guidance
of the LLM itself. Admittedly, their methods are
free of any external models. However, they select
training examples more associated with necessity
and complexity than quality, and they overlook the
importance of finetuning data diversity. Despite
the efforts these methods have made to automate
instruction selection, they either overlook the im-
portance of the quality and diversity of training
data or rely on external models for judging. Sig-
nificantly different from them, our methods take
both quality and diversity into consideration and
are free of external models.

Gradient-based Data Selection. Data selection
with influence function has been widely studied in
NLP. Lam et al. (2022) propose to identify erro-
neous training data by using synthetic noisy data,
showing that vanilla influence functions are not
sufficient for good retrieval performance. On the
contrary, we select high-quality and diverse fine-
tuning data with the aid of gradient information.
Also, we show that our use of influence function
is capable of selecting high-quality data. Akyurek
et al. (2022) demonstrate the potential of using
gradient information to trace factual knowledge in
language models back to the training data. Never-
theless, their practical applications remain under-
studied. Methods for scaling up influence func-
tion (Schioppa et al., 2022) and explaining black
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Figure 1: Overview of our proposed method. Our overall method consists of two components: (1) high-quality
data selection and (2) enhancing their diversity. In high-quality data selection, we calculate the pair-wise influence
(dashed arrows) of the candidates on seed data. Then we select those with all positive influences (as marked green).
Afterwards, we cluster on the selected high-quality data to distinguish dissimilar influences (as marked in dots with
different colors) and resample to further obtain high-quality and diverse finetuning data.

box predictions of NLP models have been pro-
posed (Han et al., 2020). Remarkably, the con-
current work (Xia et al., 2024) proposes a similar
method to select task-specific LLM finetuning data
by estimating influences for training data. Differ-
ent from them, we select high-quality finetuning
data for machine translation. And we show that
our method is capable of capturing a higher-level
concept (i.e., the quality of training data).

3 Methods

In this section, we describe our gradient-based
method to select high-quality and diverse train-
ing data for instruction finetuning, as displayed
in Figure 1. Our methods consist of two parts:
1) high-quality data selection with the influence
function (§ 3.1) and 2) diverse data selection with
gradient-based clustering (§ 3.2). For high-quality
data selection, importantly, we utilize the influence
function to quantify the impact of individual train-
ing on the test sample. For diverse data selection,
we use gradient distance to assess the overall diver-
sity of the instruction training data.

3.1 High-quality Data Selection

In this section, we detail our approach for selecting
high-quality training data for machine translation.
Intuitively, if a training example significantly bene-
fits the model to generate high-quality outputs, it
is likely to be of high quality itself. Consequently,
we first manually curate a small set of high-quality
translation data that we refer to as the seed data to
form a criteria for evaluating training data quality.
Then we select training data that aids the model in
generating high-quality seed data.

Concretely, we employ Influence Function (IF)
(Koh and Liang, 2017) to quantify how a training
example zm influences the model’s behavior on a
test example zt. In our influence function setting,
we start with the following finetuning objective:

θ∗ := argmin
θ

1

n

n∑

i=1

L(zi|θ), (1)

where θ is the model parameter, zi = (xi, yi) is the
i-th prompt-response pair and the loss L is simply
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the language modeling loss of the response solely:

L(x, y) = − logP (y|x)

= − log

T∏

j=1

p(yj |x, y<j), (2)

where xj denotes the j-th token of x. Then influ-
ence function calculates the influence of zm on zt
by:

I(zm, zt) = −∇θ|θ∗L(zt)
⊤H−1

θ∗ ∇θ|θ∗L(zm),
(3)

where θ∗ is the optimal model parameter of fine-
tuning in (1) and Hθ∗ = ∇2

θ
1
n

∑n
i=1 L(zi|θ∗)

is the Hessian of the training objective at θ =
θ∗. Though the calculation of the influence func-
tion is complex, the most significant aspect for
readers is that if the scalar I(zm, zt) is negative,
training the model on zm reduces the model’s
loss on zt. In this case, zm is considered to
be helpful for the model to generate zt. In our
implementation of IF, we use the gradients of
model’s Multilayer Perceptron (MLP) parameters
in {3, 6, 9, 12, 15, 18, 21, 24, 27, 30}-th layers to
speed up calculation. And we average the gra-
dients of each token to form a vector. Also, we
use Kronecker-Factored Approximate Curvature
(KFAC) (Martens and Grosse, 2015) to approxi-
mate Hessian for reducing memory consumption.
We detail the derivation of IF and our modification
for fitting it into LLM fining tuning in Appendix A.

Correspondingly, as depicted in Figure 1, our
proposed high-quality data selection method con-
sists of two steps: (1) calculating influences and (2)
selection. We select training examples in our can-
didate pool Draw that exert beneficial impact on all
samples in the seed data, i.e., example zm ∈ Draw

meets:

∀zt ∈ Dseed, I(zm, zt) < 0. (4)

Thus, we select training data that contributes to the
model’s high-quality generation.

In practice, we find that the seed instruction
dataset Dseed of size 256 suffices for selecting
high quality instructions. Hence, we set the size
of Dseed to 256 in our implementation. As the
focus of this paper is to select high-quality fine-
tuning data for translation task, we randomly se-
lect 256 parallel texts from the validation set and
have them revised by human translators. We se-
lect high-quality data from our candidate pool, for

which we collect publicly available WMT22’s par-
allel texts. Throughout our implementations, we
use the prompt template: Translate the following
text into {trg_lang}.\n\nText:\n“{src_text}”, where
{trg_lang} are target languages such as "English"
and {src_text} are the source text. And the response
is simply the target text. We detail our data prepa-
ration in Section 4.

3.2 Diverse Data Selection

After obtaining high-quality translation pairs, we
further ensure the diversity of the training data. To
ensure coverage of different translation patterns,
we propose to use gradient similarity to assess the
diversity. Specifically, we consider the gradient of
the response loss in equation (2) with respect to the
final MLP layer and average them out on all the
tokens. We utilize the Euclidean distance as the
similarity measure.

To maximize the diversity of training data in-
fluences, we cluster on the gradients of training
examples to obtain different patterns. Then we
sample uniformly from the clustering result to en-
sure the diversity of training data. Moreover, we
employ K-means as the clustering algorithm due
to its ability to process large-scale datasets. Fur-
thermore, to speed up and reduce memory, we use
Random Projection as the dimensionality reduction
method to reduce the dimension of the gradients to
400 (Bingham and Mannila, 2001). In practice, we
cluster the training data into 512 clusters.

4 Experiment Setup

Datasets. We conduct experiments on Zh ⇒ En
and De ⇒ En tasks. We collect separate candidate
pools for different translation directions. Specifi-
cally, our Zh ⇒ En pool is composed of 1.9 mil-
lion examples sampled from WMT22’s ParaCrawl
v9, News Commentary v16, UN Parallel Corpus
V1.0, WikiMatrix and Back-translated news and
our De ⇒ En pool contains 256k examples sam-
pled from WMT22’s Europarl v10, ParaCrawl v9,
News Commentary v16 and WikiMatrix. We split
512 examples to validation sets for evaluation. We
test our methods on the latest WMT22 test sets
from the news translation track of WMT22 compe-
tition2 and Flores-101 dev-test split (Goyal et al.,
2022). The WMT22 Zh ⇒ En and De ⇒ En test
sets contain 1875 and 1984 samples, respectively.

2https://github.com/wmt-conference/wmt22-news-
systems
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Figure 2: The comparison results of model trained on various amounts of data selected by our G-DIG, G-DIG w/o
Diversity and Random selection on Zh ⇒ En and De ⇒ En translations. We plot the results on Zh ⇒ En and De ⇒
En translations in the left and right two columns respectively.

And the Flores-101 dev-test split contains 1012
samples for each Zh ⇒ En and De ⇒ En.

Implementation Details. We use Baichuan2-7B
(Baichuan, 2023) for Zh ⇒ En and Llama2-7B
for De ⇒ En. For all finetuning experiments, we
adopt the same setting. The finetuning process
lasts for 3 epochs with an initial learning rate of
1e− 5 and a global batch size of 64. The instruc-
tion template we use is Translate the following
text into {trg_lang}.\n\nText:\n“{src_text}”, where
{trg_lang} are target languages such as "English"
and {src_text} are the source text. The models are
evaluated every 10 steps. We use the checkpoint
with the smallest loss on the valid set for the final
test. During the inference, we use beam search as
the decoding strategy with a beam size of 4. The
training and inference of 7B size models are con-
ducted on 16 NVIDIA A100 80GB GPUs with
DeepSpeed ZeRO-3 Offload.

Evaluation. For automatic evaluation, we use the
widely used metrics BLEU (Papineni et al., 2002),
BLEURT (Sellam et al., 2020), and COMET (Rei
et al., 2020). We use ScareBLEU3, BLEURT-20
(Pu et al., 2021) and Unbabel/wmt22-comet-da4 in
the evaluation implementations.

3https://github.com/mjpost/sacrebleu
4https://huggingface.co/Unbabel/wmt22-comet-da

Baselines and Comparisons. In order to demon-
strate the superiority and effectiveness of our meth-
ods, we compare our G-DIG to validate the perfor-
mance of our overall approach. Also, we assess
its variant G-DIG w/o Diversity (G-DIG without
enhancing the data diversity) to solely investigate
our high-quality data selection module. For com-
parisons, we consider the following baselines:

• Bayling-13B (Zhang et al., 2023b), an English
/ Chinese LLM based on Llama with superior
translation capabilities.

• BigTranslate-13B (Yang et al., 2023), a multi-
lingual LLM based on Llama with the capabil-
ity of translating over 100 natural languages.

• TIM (Zeng et al., 2023b). We present the
results of BLOOMZ-7b-mt and Llama2-7b
trained with TIM-Full-LM-based Bad Output
for WMT22 test sets and FLORES respec-
tively.

• Model trained on the random subset. To em-
phasize the need for instruction selection, we
choose k random instructions to form a fine-
tuning subset. We finetune the LLM on the se-
lected subsets and report their performances.

• Model trained on the reward subset. We
also compare our method with the existing
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Model
Zh ⇒ En De ⇒ En

WMT22 FLORES WMT22 FLORES

COMET BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT

SOTA Models
Bayling-13B 77.72 20.12 - - - - 83.02 27.34 - - - -
BigTranslate-13B 74.26 14.16 - - - - 80.68 23.35 - - - -
TIM-7B 79.33 23.81 - 85.81 26.25 78.19 25.43 - 88.82 41.96 -
NLLB-54B 70.70 16.56 - - - - 78.94 26.89 - - - -

Baseline Models
Random 75.55 14.31 61.35 85.63 24.25 73.84 82.58 27.60 70.57 87.80 36.89 77.52
Reward 77.90 16.29 64.64 86.16 24.48 74.73 83.28 27.52 71.51 88.37 38.69 78.62
Ours
G-DIG 78.29 20.63 64.86 86.18 25.04 74.75 83.28 28.99 71.25 88.59 39.97 78.79
G-DIG w/o Diversity 78.43 20.35 65.08 86.45 25.81 75.19 82.93 28.71 70.96 88.68 39.97 78.83

Table 1: In this table, we present the comparison results of our methods with various baselines in accordance with
Section 4. We directly adopt the results from the original paper and omit the missing metrics. We report the results
of our G-DIG and G-DIG w/o Diversity. The Best result in each group is in bold. The Best result in each column is
in red .

selection method. We use the commonly
used reward model-based method for select-
ing high-quality training data (Du et al., 2023;
Cao et al., 2023). Specifically, we follow
(Du et al., 2023) to use the reward-model-
debertav3-large-v25 to score each instruction
and select the top k instructions with the high-
est score to form the finetuning subset.

5 Experimental Results

5.1 Main Results
In this section, we present our main experimental
findings. We start with comparing our methods
with baselines on various amounts of training data
in Figure 2. Then we compare our best results with
SOTA models and baselines in Table 1. Further-
more, we conduct human evaluation and present
the results in Table 2. We show that our approach
is superior in terms of effectiveness and robustness.

Our Methods Improve the Translation Perfor-
mance Across Various Amount of Training Data.
In order to demonstrate the scalability of our
method in terms of the amount of selected training
data, we present the results as a function of the
amount of training data from 1000 to 64,000 in
Figure 2 for Zh ⇒ En and De ⇒ En translation.
Notably, our G-DIG model consistently surpasses
the random model across all metrics and dataset
sizes for Zh ⇒ En translation. Also, for De ⇒
En translation, our G-DIG outperforms the random

5https://huggingface.co/OpenAssistant/reward-model-
deberta-v3-large-v2

Model Score Win ↑ Tie Lose ↓

Zh ⇒ En

w/ Random 3.59 — — —
w/ Ours 3.92 35.0% 53.0% 12.0%

De ⇒ En

w/ Random 3.92 — — —
w/ Ours 4.21 34.0% 53.0% 13.0%

Table 2: Human evaluation results on randomly sam-
pled sets. “Win”/“Tie”/“Lose” stands for the percentage
of translations where ours is better than, tied with, or
worse than the random subset.

baseline in almost all cases. Statistical analysis
results in Appendix C further suggest our methods
excel the random baseline. These results demon-
strate the efficacy and robustness of our methods in
terms of the amount of selected data. Meanwhile,
we also observe that the quality and diversity of
finetuning data dominate the performance of LLM.
Specifically, for both Zh ⇒ En and De ⇒ En trans-
lations we can see that models trained on 1000
examples selected by our G-DIG outperform the
models trained with 64k randomly selected exam-
ples.

Our Methods Surpass Baselines and Achieve
Comparable Results with SOTA Models. To
see how our method performs compared with base-
lines and SOTA models, in Table 1 we present the
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Figure 3: The comparison results of model trained on various amounts of data selected by our G-DIG w/o Diversity,
Reward model selection and Random selection on Zh ⇒ En and De ⇒ En translations. We plot the results on Zh ⇒
En and De ⇒ En translations in the left and right two columns respectively.

results of SOTA models, our best and correspond-
ing baselines. Specifically, our G-DIG achieves its
best results at 4000 training examples for Zh ⇒ En
translation and 64k for De ⇒ En translation. For
baselines comparisons, we observe that our meth-
ods surpass baselines in almost all cases, demon-
strating the effectiveness of our approach. For
SOTA models comparisons, our 7B models achieve
comparable results with TIM-7B and even better
results compared with Bayling-13B, BigTranslate-
13B and NLLB-54B.

Our Methods Align the Model Better Compared
with Random Baseline. We further conduct hu-
man evaluation to analyze the translation quality.
We respectively randomly pick 100 sentences from
Zh ⇒ En and De ⇒ En test sets, and recruit three
human judges for evaluation. For each sentence,
the judges read the source sentence and two candi-
date translations, which are from the random subset
model and G-DIG subset model. The judges are
required to rate each candidate on a scale of 1 to 5
and pick the better one.

From Table 2, we can see our methods enable
the model to translate better with a higher average
score in both Zh ⇒ En and De ⇒ En translations.
Also, our G-DIG subset model is more frequently
rated as better translation than the random subset
model on both Zh ⇒ En and De ⇒ En translations,

indicating our methods better align the model than
the random selection method.

The Fewer the Instructions, the Greater the Sig-
nificance of Diversity. To see the role that di-
versity plays during finetuning, we compare the
results of G-DIG and G-DIG w/o Diversity on Zh
⇒ En and De ⇒ En translation in Figure 2. Re-
markably, our diversity enhancement makes sig-
nificant advancements in enhancing the translation
performance when there are only few training data
provided (k ≤ 2000). For Zh ⇒ En translation
with 1000 training examples, our G-DIG further
improves G-DIG w/o Diversity by 1.7 in terms of
COMET on WMT and by 2.17 in terms of BLEU
on FLORES. In addition, for De ⇒ En translation
with 1000 training examples, our G-DIG improves
the BLEU by 2.11 and 1.24 on WMT and FLORES
respectively compared with G-DIG w/o Diversity.
However, as the amount of instructions increases,
this effect fades away, since large instruction sets
are already coupled with high diversity. As shown
in Figure 2, the G-DIG curves almost coincide with
the G-DIG w/o Diversity curves in all metrics when
the amount of instructions goes beyond 4000 and
8000 for WMT and FLORES, respectively.

15401



Zh ⇒ En De ⇒ En

Source Text Target Text Source Text Target Text
Ours
例如，如果在大部分时间里
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X850 Infrared Induction Wire-
less Doorbell w/ Blue Indicator
- White (3 x AAA + 3 x AA)

Random
在对她的行为进行调查之
前，西拉德福德议员被剥夺
了议会的鞭打并被禁止参加
政党活动。

The West Bradford MP was
stripped of the parliamentary
whip and barred from party ac-
tivity pending an investigation
of her behaviour - which David
Cameron branded racist.

Ebenso wichtig ist das
Engagement in interdiszi-
plinären und internationalen
Forschungszweigen wie der
Critical Psychology, den Cul-
tural und Postcolonial Studies,
den Gender wie auch den
Religious Studies.

In this regard, sociology, an-
thropology, history, education,
and philosophy are considered
as important as work in research
fields like critical psychology,
cultural and postcolonial stud-
ies, gender studies, and religious
studies.

我们提供2134个酒店在西安 Hotels in Xi’an (Shaanxi) Hin- und Rückflüge von Lagos
nach Madrid

Return flights from Lagos to
Madrid

Table 3: Examples of ours and randomly selected training data in the form of parallel texts.

5.2 Analysis

In this section, we conduct ablation studies on our
high-quality data selection module and our diver-
sity enhancement module. Specifically, to see the
superiority of our high-quality data selection mod-
ule, we compare G-DIG w/o Diversity with the
reward model-based baseline in Figure 3. In order
to demonstrate the advantage of our gradient-based
diverse data selection module, we compare our
G-DIG with its embedding-based counterparts in
Figure 4.

Our High-quality Data Selection Module Sur-
passes the Reward Model-based Method In
Figure 3, we show that our high-quality data se-
lection module G-DIG w/o Diversity achieves su-
perior results compared with the existing reward
model-based method in Figure 3. Specifically, for
Zh ⇒ En translation our G-DIG achieves over-
all better results compared with the reward model-
based method, falling behind in only few cases.
For De ⇒ En translation, it is hard to distinguish
between ours and reward models-based baselines
in COMET and BLEURT. However, our G-DIG
w/o Diversity significantly outperforms the reward
model in terms of BLEU on both WMT22 and
FLORES.

Our Diversity Enhancement Module Improves
the Training Data Diversity. In this part, we sub-
stantiate the superiority of our gradient-based diver-
sity enhancement module. We compare our G-DIG
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Figure 4: The comparisons between our G-DIG,G-DIG
w/o Diversity and embedding-based methods on various
amounts of training data on Zh ⇒ En translation.

with its embedding-based counterpart. Specifically,
embedding-based methods measure the similarity
of training examples based on embeddings. Their
objective is to maximize the semantic richness of
the training data. We follow the model used in
(Du et al., 2023) for diversifying the training data.
We use BERT (Devlin et al., 2018) to extract em-
beddings. Then we run Kmeans to cluster these
embeddings and use our sampling procedure to
enhance the training data diversity. As illustrated

15402



in Figure 4, our proposed method outperforms its
embedding-based counterpart in almost all cases,
which validates the advantage of our gradient-based
method. For instance, with 1000 instructions pro-
vided, our methods surpass the embedding-based
method by 2.11 of BLEURT and 1.91 of BLEU
on WMT and FLORES respectively. Moreover,
in almost all scenarios, the curves of embedding-
based method coincide with G-DIG w/o Diversity
curves with trivial improvements, indicating that
the existing methods that enhance semantic cover-
age contribute little to the finetuning data diversity.

Our Methods Select Highly Parallel Texts. In
this part, we showcase our selected high-quality
data and randomly selected data in the form of
parallel texts in Table 3. Remarkably, not only is
our selected data accurate and coherent in the target
text space, but it is also natural and of the correct
format and grammar in terms of the source text.

5.3 Discussion on Hyperparameters

There are two primary hyperparameters in our
methods: the number of seed data |Dseed| in high-
quality data selection and the number of clusters for
K-means in diverse data selection. Intuitively, the
more seed data we use, the more strict the criteria
in (4) would be. Therefore, increasing the num-
ber of seed data improves the quality of selected
data. And using less seed data can be regarded as
a relaxation to the criteria in (4). We experiment
with seed dataset sizes of 128, 256, and 512 and
note that further enlarging the seed dataset con-
tributes little to improving the quality of selected
seed data. Considering the high cost of obtaining
human-annotated high-quality data, we ultimately
use 256 seed data after balancing annotation costs
and model performance benefits.

The reasonable choice of the number of clusters
in diverse data selection is crucial for our methods.
Since our candidate pool is quite large, we cluster
the data into 512 clusters to ensure the variety of
training data.

6 Conclusion

In this paper, we propose G-DIG, a novel gradient-
based method for selecting high-quality and di-
verse LLM finetuning data for machine translation.
Specifically, using Influence Function and a seed
dataset we select high-quality training data that
have beneficial influence on the model. Further-
more, we enhance the training data diversity by

clustering on their gradients and resampling. Exten-
sive experiments prove that our methods improve
the LLM in terms of translation ability. Also, hu-
man evaluation results demonstrate that our meth-
ods better align the LLM compared with the base-
line model. We hope this work facilitates the re-
search on LLM finetuning data selection.

Limitations

Computational Cost for Influence Function. In
this paper, we utilize Influence Function to mea-
sure the influence of a training sample on a test
sample’s prediction. However, the computational
cost for calculating this influence can be large for
LLMs. The asymptotic computational complexity
for calculating Hessian is O(P 2) where P is the
number of model parameters. And the computa-
tional complexity for calculating pair-wise influ-
ence between the seed data and candidate pool is
O(MNP ) where M and N denote the number of
seed data and candidates, respectively. How to re-
duce the computational cost of influence function
still remains a challenge. We leave this for future
work.

Ethical Considerations

All the data sources are publicly available and do
not involve privacy issues. For all human evalu-
ations mentioned in the paper, we hire full-time
professional translators and pay them with market
wage. All of our translators are graduates.
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A Influence Function.

Influence Function (IF) was introduced to deep
learning by (Koh and Liang, 2017). In the classical
influence function setting, we are given the training
dataset D = {(xi, yi)}ni=1, where xi and yi are
the input and label of the i-th training example.
And the model parameter θ∗ is obtained through
empirical risk minimization:

θ∗ : = argmin
θ

L(D|θ) (5)

= argmin
θ

1

n

n∑

i=1

L(zi|θ), (6)

where zi = (xi, yi) denotes the i-th input-label
pair and L is the loss function, e.g., cross entropy
loss. Influence function measures the impact of a
training example zm to the response function by
up-weighting zm by ε in the training objective:

θ∗(ε) = argmin
θ

1

n

n∑

i=1

L(zi|θ) + εL(zm). (7)

The influence of the training example zm on the
response function θ∗ is the derivative of θ∗ with
respect to ε at ε = 0:

Iθ∗(zm) =
dθ∗(ε)
dε

∣∣∣∣
ε=0

. (8)

15405



Metric
Zh ⇒ En De ⇒ En

WMT22 FLORES WMT22 FLORES

COMET BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT COMET BLEU BLEURT

p value 1.6e-7 1.6e-8 2.0e-6 7.1e-5 3.4e-3 1.6e-5 3.5e-2 1.6e-6 2.1e-1 1.7e-4 1.7e-3 1.8e-3

Table 4: In this table, we present the statical analysis outcome of our experimental results in Figure 2. We conduct
t-test on our G-DIG compared with random baseline and present the p-value.

Using the Implicit Function Theorem (Krantz and
Parks, 2002) and first-order Taylor approximation,
we define the influence

Iθ∗(zm) := −H−1
θ∗ ∇θ|θ∗L(zm), (9)

where Hθ∗ = ∇2
θL(D|θ∗) is the Hessian of the

training objective at θ = θ∗. In this paper, we
are interested in the influence of the training exam-
ple zm on the model behavior at the test example
zt, i.e., L(zt|θ∗). Using chain rule, we define the
influence of zm on the model loss at zt:

I(zm, zt) : =
dL(zt|θ∗(ε))

dε

∣∣∣∣
ε=0

(10)

= −∇θ|θ∗L(zt)
⊤H−1

θ∗ ∇θ|θ∗L(zm).

(11)

Since in fine tuning the model is trained with small
learning rate and few steps, the model parameter at
the end of training is not the minimizer of the ob-
jective in (5) and the Hessian might not be positive
definite thus is not invertible. The following equiv-
alence between non-converged model parameter
and regularized empirical risk minimizer provides
a method for modifying IF:

Lemma 1 (Goodfellow et al., 2016) Assuming that
the model is trained via T steps of Stochastic Gradi-
ent Descent (SGD) and the learning rate η is fixed
during training. Then the model parameter at the
end of training θT is equal to the model parameter
obtained through regularized empirical risk mini-
mization θ̂ = argminθ L(D|θ)+ λ

2∥θ∥22 when the
following two conditions are satisfied:

|I − ηΛ| ⪯ I, (12)

(I − ηΛ)T = (Λ+ λI)−1λ, (13)

where Λ is the diagonal matrix in the eigendecom-
position of Hθ∗ = QΛQ⊤.

Hence we approximate of the Hessian of fine tuning
as HθT + λI . For fine tuning, we have:

I(zm, zt) = −∇θL(zt)
⊤(HθT+λI)−1∇θL(zm).

(14)

Note that calculating the Hessian HθT accurately
is time-consuming. Therefore, we follow (Teso
et al., 2021) to approximate the Hessian using em-
pirical Fisher Information Matrix (eFIM). Also, we
further use the Kronecker-Factored Approximate
Curvature (KFAC) (Martens and Grosse, 2015) to
reduce the memory usage. We implement the IF
calculation based on nngeometry6.

B Annotation Guidelines

We hire full-time translators who are fluent in both
Chinese and English and translators who are fluent
in both German and English. They are recruited
to conduct human evaluations. The translators are
shown the source sentence and two candidate trans-
lations, which are from the random subset model
and G-DIG subset model. Then the translators are
required to rate on the translation quality from 1 to
5 with 1 the worst and 5 the best and pick the better
one. All our translators are Chinese.

C Statistical Analysis of Experimental
Results

We conduct statistical analysis on our experimental
results as shown in Table 4. Specifically, we use
t-test to analyze the results of our G-DIG across
various dataset sizes from Figure 2 compared with
random baseline. Our experimental results have
demonstrated statistical significance, as evidenced
by the p-values less than 0.05 in almost all cases.

6https://github.com/tfjgeorge/nngeometry
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