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Abstract

This study addresses the challenge of extend-
ing Large Language Models (LLMs) to non-
English languages that use non-Roman scripts.
We propose an approach that utilizes the ro-
manized form of text as an interface for LLMs,
hypothesizing that its frequent informal use
and shared tokens with English enhance cross-
lingual alignment. Our approach involves the
continual pretraining of an English LLM like
Llama 2 (Touvron et al., 2023) on romanized
text of non-English, non-Roman script lan-
guages, followed by instruction tuning on ro-
manized data. The results indicate that ro-
manized text not only reduces token fertility
by 2x-4x but also matches or outperforms na-
tive script representation across various NLU,
NLG, and MT tasks. Moreover, the embed-
dings computed on romanized text exhibit
closer alignment with their English transla-
tions than those from the native script. Our
approach presents a promising direction for
leveraging the power of English LLMs in lan-
guages traditionally underrepresented in NLP.
Our code is available on https://github.
com/AI4Bharat/romansetu.

1 Introduction

Large Language Models (LLMs) demonstrate re-
markable proficiency across a broad spectrum of
natural language processing (NLP) tasks, as evi-
denced by various studies (Liu et al., 2023; Chung
et al., 2022; Chowdhery et al., 2023; Wei et al.,
2024; Goyal et al., 2022b). They excel not only
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in tasks for which they were explicitly trained but
also in those for which they were not trained. This
achievement is mainly due to the availability of
corpora (Wenzek et al., 2020; Abadji et al., 2021;
Suárez et al., 2019) as well as the advancements
in LLMs that leverage these datasets for pretrain-
ing (Touvron et al., 2023; Workshop et al., 2022;
Chowdhery et al., 2023). Despite their proficiency
in English, these models typically demonstrate re-
duced effectiveness when applied to non-English
languages, highlighting a significant challenge in
extending their benefits to non-English languages.

The English-heavy LLMs (Touvron et al., 2023;
Jiang et al., 2023; Zhang et al., 2022) still have
some representation coverage from other languages
due to data leakage while creating the pre-training
dataset, particularly for languages that use the same
script as English i.e., the Roman script. This script
sharing enables cross-lingual transfer and bestows
some of these LLM capabilities to these languages.
For languages using non-Latin scripts, the data
representation is very limited to non-existent. To-
kenization of text in the languages exhibits high
fertility (Ács, 2020) and byte-level representation
(Artetxe et al., 2020) due to inadequate representa-
tion of these languages in the tokenizer vocabulary.
Hence, these LLMs perform poorly on most of
these languages, and inefficient tokenization also
leads to high inference latency as well as the in-
ability to process long sequences. This disparity in
performance raises a critical question: how can we
extend the capabilities of LLMs to the languages
written in non-Latin scripts?

A widely explored solution is the extension of
the tokenizer vocabulary to incorporate new lan-
guages and continual pre-training on native lan-
guage data (Cui et al., 2023; Nguyen et al., 2023;
Minixhofer et al., 2022). This approach is com-
putationally demanding since the models need to
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Figure 1: Performance of the BaseLLM (Llama 2 Base), our continually pretrained model (CPT), and our instruction
finetuned model (IFT), in both native (N) and romanized (R) script settings. The average scores for different tasks
(left) and languages (right) are compared in each radar chart. For CPT, we show 3-shot results where available, or
else 1-shot results. For IFT, we use zero-shot results.

be continually pre-trained long enough to effec-
tively learn the new embeddings and align the rep-
resentations of English and the new language. Fur-
thermore, this approach requires the availability of
large volumes of text corpora.

In this work, we explore an alternative approach
for more efficient knowledge transfer. Instead of
utilizing the native script, we use the romanized
form of text as the interface to the LLMs in our
approach RomanSetu.1 The adoption of roman-
ized representation is justified for several reasons.
In many languages, romanized text has been fre-
quently used in informal settings and on social
media in recent history. This usage creates the po-
tential for the inclusion of some romanized data
representation in the pre-training corpus. Addi-
tionally, code-mixing with English is a common
occurrence and the romanized form shares tokens
with English. This leads us to hypothesize that
the romanized form is better aligned with English
than the native script, thereby facilitating a more
effective transfer from English.

In our approach, we first continually pre-train an
English LLM like Llama 2 (Touvron et al., 2023)
on romanized text for a language generated via
transliteration. Subsequently, we perform instruc-
tion tuning on this continually pretrained model.
We experiment with 5 languages from two lan-
guage families and evaluate our approach on sev-
eral NLU, NLG and MT benchmarks. Our experi-

1The word setu in Sanskrit means bridge, referring to the
Roman script serving as a bridge between English and other
languages.

ments and analysis indicate that:

• The fertility of romanized text is 2x-4x smaller
than native text, making the romanized form
far more efficient than the native script.

• The embeddings of the romanized text are
closer to the embeddings of their English
translations, compared to the embeddings of
their native script equivalents, suggesting the
former’s suitability for cross-lingual transfer.

• Results across several NLU, NLG, and MT
tasks show that multilingual instruction fine-
tuning on romanized data produces compet-
itive or superior results than instruction fine-
tuning on native script data, highlighting effi-
ciency and better cross-lingual transfer. Fig-
ure 1 summarizes these results of various mod-
els on romanized and native inputs.

• Specifically, for generation tasks we see sig-
nificant improvement due to utilization of ro-
manization. To the best of our knowledge,
ours is the first work that shows that roman-
ization can help natural language generation
tasks.

• Romanized representation can enable cross-
lingual transfer in decoder-only English-heavy
LLMs. Previous work has primarily focused
on the use of romanization in multilingual,
encoder-only models.

15594



2 Related Work

Transliteration refers to the conversion of text writ-
ten in one script to another. Romanization is a
specific instance of transliteration, where the target
script is the Roman/Latin script. Romanization has
special significance since Roman script is by far the
most widely adopted script in the world and many
language models are primarily trained for English,
which is written in the Roman script. Transliter-
ation is typically used to represent different lan-
guages in the same script to enable cross-lingual
transfer.

In NMT, Amrhein and Sennrich (2020) show
that transliteration shows improvements for low-
resource languages with different scripts by trans-
ferring from related high-resource languages that
use different scripts. Goyal et al. (2020) show that
transliteration helps even when only a contact re-
lationship exists between the languages involved.
Song et al. (2020) show that transliteration during
the pretraining stage for NMT also helps cross-
lingual transfer.

Transliteration has also been used for cross-
lingual transfer in the context of pretrained lan-
guage models. Some works (Khemchandani et al.,
2021; Dhamecha et al., 2021; Moosa et al., 2023;
Purkayastha et al., 2023) employ transliteration to
a common script during the pretraining phase to
enable cross-lingual transfer. Other studies (Dabre
et al., 2022; Muller et al., 2021; Chau and Smith,
2021) adopt transliteration during the fine-tuning.
Transliteration could be done to a common non-
Latin script (Khemchandani et al., 2021; Dhamecha
et al., 2021; Dabre et al., 2022; Doddapaneni et al.,
2023) or to the Latin script (Muller et al., 2021;
Moosa et al., 2023; Purkayastha et al., 2023).

While transliteration has been explored for lan-
guage modeling as described above, our work dif-
fers from previous work in some important aspects:

• Previous work explored cross-lingual trans-
fer using transliteration with multilingual lan-
guage models. We focus our attention on En-
glish LLMs and try to achieve cross-lingual
transfer via romanization using English LLMs.
This is a challenging scenario since the lan-
guage can be unrelated to English, and very lit-
tle (if any) native or romanized data in the lan-
guage under study might be seen during pre-
training of the English LLM. At the same time,
this is a very practical need since most best
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 Continual 
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Fine-tuned model
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Figure 2: Overview of our proposed approach.

performing LLMs are English-heavy (Tou-
vron et al., 2023; Jiang et al., 2023) and hence
cross-lingual transfer via romanization is an
important direction to explore.

• We investigate the utility of transliteration in
decoder-only language models, which is cur-
rently the standard architecture for LLMs. In
contrast, all previous work explored cross-
lingual transfer with transliteration in the con-
text of encoder-only models (the exception is
Dabre et al. (2022) which use encoder-decoder
models).

• While previous work has explored the use of
romanization for cross-lingual transfer in lan-
guage understanding tasks, we show that ro-
manization can be beneficial for generation
tasks as well.

To the best of our knowledge, no prior research
has investigated leveraging of romanization for
mostly English LLMs in the context of cross-
lingual transfer to non-English languages.

3 Utilizing Romanized Data to make
LLMs Multilingual

Our proposed approach aims to enhance the capa-
bilities of mostly English LLMs for non-English
languages by leveraging romanized data. We first
continually pretrain the LLM with both roman-
ized and English data to create a base LM that
is romanization-aware. Subsequently, we extend
the process by instruction tuning the continually
pretrained model. The framework of our approach
is illustrated in Figure 2, encompassing the stages
of data romanization, pretraining, and instruction
tuning.
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3.1 Romanization Scheme

A variety of romanization schemes are available,
each driven by multiple considerations. One key
factor is the resemblance of the romanized rep-
resentation to the way people typically write ro-
manized text. This is particularly advantageous if
the pretraining data includes romanized text, as it
might aid in aligning with English. Another im-
portant aspect is the fertility achieved by the ro-
manization scheme when considering the original
LLM’s tokenizer. A third consideration is whether
the transliteration scheme is lossy or lossless. A
lossless scheme is preferable when the objective
is to convert the output back to the native script.
Typically, deterministic transliteration schemes are
lossless, whereas natural transliteration schemes
tend to be lossy.

In this work, we have focused on Indic languages.
Hence, we evaluated two romanization schemes for
Indic languages: (a) the extended ITRANS scheme
from the IndicNLP library (Kunchukuttan, 2020),
which defines a fixed, reversible mapping between
Indic scripts and Roman characters, and (b) the In-
dicXlit scheme (Madhani et al., 2023), which gen-
erates romanizations as commonly used by Hindi
speakers in informal contexts and is learned from
parallel transliteration corpora. These mappings
are inherently lossy. The IndicXlit romanization
demonstrates lower fertility compared to ITRANS
romanization (See Table 1). Preliminary prompting
experiments with the Llama 2 model also indicated
that IndicXlit outperforms ITRANS in romanized
Hindi to English translation. Consequently, we se-
lected IndicXlit as our romanization scheme for this
project. However, it is important to note that the
transliterations are not reversible. With continued
pretraining, ITRANS transliterations might eventu-
ally achieve similar task performance to IndicXlit
while ensuring script reversibility. This direction
might also be relevant for other languages which
do not have a transliteration model available, while
romanization mappings are available for almost all
scripts. We leave this exploration for future work.

3.2 Continual Pretraining

While the base model is trained on roman script,
most of the data it has been exposed to is in En-
glish. Hence, the base model cannot be used as-is
for processing romanized inputs, particularly for
generation into non-English languages. Hence, the
base model needs to be updated. To make the base

model romanization-aware, we continue to pretrain
the base LLM with romanized document-level data.
To prevent any catastrophic forgetting of English
capabilities, we also incorporate an equal amount
of English data into the pretraining mix. We per-
form full-finetuning of the models. We do not ex-
pand or change the model vocabulary, hence the
romanized inputs can take advantage of the token
embeddings from the base model while adapting to
the new languages.

3.3 Instruction Finetuning (IFT)
Non-English languages possess very limited fine-
tuning data. A common method to overcome this
limitation is to translate English IFT datasets into
the languages. We could choose to translate both
input and outputs (Wei et al., 2023), or translate
only the inputs and ask a powerful, proprietary
LLM like ChatGPT to generate translations in
the native language (Li et al., 2023). We chose
the former approach since the quality of LLM re-
sponses (even for the best commercial models)
might not be of good quality (Ahuja et al., 2023),
while high-quality open-source translation models
(Costa-jussà et al., 2024; Gala et al., 2023) are avail-
able making translation of both inputs and outputs
feasible at scale for many languages. The translated
IFT datasets are then romanized using IndicXlit.

4 Experimental Settings

We conducted comprehensive experiments span-
ning multiple languages, benchmarks and models.
This section elaborates on the experimental settings.
In all our experiments, we experiment with Llama
2 7B (Touvron et al., 2023) as the base model under
various settings.

4.1 Languages
We experimented with the following Indic lan-
guages: Hindi, Marathi, Gujarati, Tamil and Malay-
alam. These languages span 2 language families
and 4 different scripts and are mid to low-resource
languages. The languages considered in this study
belong to the Indo-Aryan branch of Indo-European
(Hindi, Marathi, Gujarati) and Dravidian (Tamil,
Malayalam) families. In these languages, the typ-
ical word order is SOV. These languages have an
inflectional morphology, with the Indo-Aryan lean-
ing somewhat towards fusional, while Dravidian
languages tend to have an agglutinative morphol-
ogy. It is important to note that the script systems
used for these languages are abugida, effectively

15596



faithfully capturing vowels and consonants. We see
the choice of Indian languages as a strength since it
spans multiple language families, multiple scripts,
and diverse linguistic characteristics and resource
levels. Past work has also used Indic languages as
a case study for romanized representation (Moosa
et al., 2023; Dhamecha et al., 2021).

4.2 Datasets
Continual Pretraining: For continual pretrain-
ing, we sourced approximately 500 million words
of document-level data from web-crawled corpora
(Doddapaneni et al., 2023) for each language un-
der consideration along with English. To generate
the romanized dataset, we transliterated the native
script dataset using the IndicXlit model (Madhani
et al., 2023), a state-of-the-art open-source translit-
eration model for Indian languages. Both the native
script dataset and its romanized counterpart were
then used for continual pretraining in various con-
figurations explained later.
Instruction Fine-tuning: These languages have
very little native instruction tuning data for diverse
tasks. Following Wei et al. (2023), we rely on trans-
lating high-quality English-supervised instruction-
tuning datasets into the languages under consider-
ation. We use IndicTrans2 (Gala et al., 2023), the
state-of-the-art open-source MT model for Indian
languages compared to commercial offerings for
translation. We sampled examples from various En-
glish instruction tuning datasets to ensure a diverse
mix of tasks from the Flan collection (Longpre
et al., 2023) (65k) and Dolly (Conover et al., 2023)
(15k). These are translated into all the languages.
The instruction tuning dataset includes a transla-
tion subset as well to learn the translation task as
well as to drive alignment between English and
other languages. We sample 20k high-quality man-
ually translated examples in each direction from
the BPCC-Human subset (Gala et al., 2023). Thus,
the final IFT dataset has 120k examples per lan-
guage. The instruction tuning datasets are further
romanized using IndicXlit.
Evaluation Data: We evaluate our models on a
variety of NLU and NLG tasks. These include
native language test sets from the IndicXTREME
(Doddapaneni et al., 2023) and Indic NLG Suite
(Kumar et al., 2022) benchmarks. For the transla-
tion task, we use the FLORES-200 devtest (Goyal
et al., 2022a; Costa-jussà et al., 2024) for evalu-
ation. Following recent work (Lai et al., 2023;
Üstün et al., 2024; OpenAI et al., 2023), we eval-

uate the knowledge and reasoning capabilities of
the model on the machine-translated versions of
the benchmarks such as MMLU (Hendrycks et al.,
2021a), ARC (Clark et al., 2018a), BoolQ (Clark
et al., 2019a) and CommonSenseQA (Talmor et al.,
2019). Note that as the CommonSenseQA bench-
mark comprises of a blind test set, we report the
evaluations on the dev set. The translations were
obtained using IndicTrans2 and the romanized in-
puts were created using IndicXlit.

4.3 Training and Finetuning Details

The models are fully finetuned during continual pre-
training as well as supervised fine-tuning. Both the
continued pretraining and instruction fine-tuning
are multilingual i.e. a single model is trained jointly
with data for all languages (including English to
preserve English performance). Note that no vocab-
ulary expansion is done. For pre-training, the loss is
computed for all the tokens in the sequence. During
instruction fine-tuning, the loss was computed only
for the output tokens. Detailed information about
the hyperparameters used for both continual pre-
training and instruction fine-tuning can be found in
Appendix A. We adapt open-instruct2 (Wang et al.,
2023) for our continual pretraining and fine-tuning
experiments.

4.4 Trained Models

We begin with Llama 2 as the base model. Then, we
create two variants that have undergone continual
pre-training: one with native script data (CPT-N)
and the other with romanized data (CPT-R). For
each of these continually pre-trained models, we
further perform instruction fine-tuning (IFT). We
fine-tune CPT-N using native script IFT data to ob-
tain IFT-N, and CPT-R is fine-tuned with romanized
script IFT data to produce IFT-R.

4.5 Evaluation Metrics

The evaluation metric for machine translation in
our experiments is chrF (Papineni et al., 2002) com-
puted using the SacreBLEU toolkit (Post, 2018).3

For other NLG tasks, we report Rouge-L (Lin,
2004) scores. We primarily report evaluations on
the native script outputs. In the case of romanized
outputs, we transliterate them back to native script

2https://github.com/allenai/open-instruct/
tree/main

3nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|
version:2.3.1
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using IndicXlit combined with a unigram word-
level language model (Madhani et al., 2023). Com-
bining word-level results with a unigram language
model is efficient and preserves most gains of incor-
porating a complete n-gram language model (Kirov
et al., 2024). In this native script evaluation, the
roman script model outputs can also have translit-
eration errors, which put them at a disadvantage
compared to the native script model. To purely
compare task performance, we also report results
on romanized outputs. For this, we romanize the
native script outputs using IndicXlit. Since the fi-
nal output is an artifact of the same romanization
model, this evaluation compares only the task per-
formance.

4.6 Models

We use the 7B-parameter Llama 2 base model as
our starting point for all experiments. We evalu-
ate the following models: First, the base Llama 2
model (base) is assessed using both native script
and romanized inputs. We then evaluate the con-
tinually pre-trained models with their respective
script data; thus, CPT-N is evaluated with native
script data, and CPT-R is evaluated with romanized
data. Additionally, the instruction-tuned models are
evaluated with their respective script data; there-
fore, IFT-N is assessed with native script data, and
IFT-R is assessed with romanized data.

4.7 Prompting and Decoding

For the base and CPT models, we do 1-shot and
3-shot prompting. For IFT models, we experiment
with 0-shot prompting. The prompt templates for
various tasks are shown in Appendix B. For gener-
ation tasks, we use greedy decoding. For classifica-
tion tasks, we completed the prompts with various
possible options as per class labels and computed
the output probabilities. We choose the class that
maximizes the probability (Liu et al., 2021).

5 Results

In this section, we present the results of various
experiments comparing romanized and native rep-
resentations and discuss the results. We aim to
address the following research questions:

• Is there an efficiency gain through romaniza-
tion, and if so, which approach to romaniza-
tion is the most efficient?

• Do romanized inputs lead to embeddings that

Language N R R-IndicNLP

Gujarati 18.44 3.39 4.16
Hindi 7.36 2.98 3.98
Malayalam 12.85 5.04 5.56
Marathi 8.91 3.64 4.84
Tamil 12.11 4.89 5.35

Table 1: Fertility scores on the FLORES-200 dev set
(Goyal et al., 2022a; Costa-jussà et al., 2024) for native
(N), romanized with IndicXLIT (R) and romanized with
IndicNLP library (R-IndicNLP). Bold indicates lowest
fertility.

are better aligned to English representations
compared to native inputs?

• Does romanization improve downstream task
performance across multiple NLP tasks?

Efficiency Gains with Romanization: To ad-
dress this question, we compute fertility scores
on the FLORES-200 dev set (Goyal et al., 2022a;
Costa-jussà et al., 2024). Fertility refers to the
number of tokens per word generated by the Llama
2 tokenizer (Touvron et al., 2023). We compare
the native script against two forms of romanized
text: transliteration using IndicXlit (Madhani et al.,
2023) and rule-based extended ITRANS transliter-
ation scheme implemented in the IndicNLP library
(Kunchukuttan, 2020). Table 1 presents the fertility
scores on the Llama 2 model for the languages we
experimented with. We observed that the fertility
(and hence sequence length) in the native script
is at least twice that of the IndicXlit romanized
text. In languages like Gujarati, the native script
fertility is very large (greater than 4 times the ro-
manized fertility). Hence, we can expect significant
efficiency gains when processing romanized text
over native text in terms of reduced memory con-
sumption, reduced generation time and increased
maximum sequence length limit.

Furthermore, romanization using IndicNLP
(Kunchukuttan, 2020) has slightly higher fertil-
ity compared to IndicXlit. While we have used
IndicXlit-based transliterations in this work for rea-
sons explained earlier, it would be interesting to
explore deterministic and reversible romanizations
like IndicNLP at the cost of slightly increased in-
efficiency. The advantage of reversible mapping
would be avoiding transliteration errors when map-
ping the outputs back to the native script.

Cross-lingual Representation Similarity: We
compare the sentence embeddings generated by the
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Language E - N E - R N - R

Gujarati 0.39 0.47 0.51
Hindi 0.40 0.50 0.34
Malayalam 0.40 0.46 0.52
Marathi 0.44 0.48 0.58
Tamil 0.44 0.43 0.53

Table 2: Cosine similarities are computed using the last
token representations of the last layer from Llama 2.
In this context, E - N represents the cosine similarity
between English and the native script, E - R represents
the similarity between English and the romanized script
and N - R represents the similarity between the native
and the romanized script.

native and romanized inputs as well as English on
the base model. Specifically, we compare cosine
similarities between sentence embeddings gener-
ated by these inputs. Sentence embeddings are
computed using the last token representation of
the final hidden layer. In Table 2, we see that the
Roman script representations are closer to English
representations compared to the native script rep-
resentations, making them a better candidate for
cross-lingual transfer from English.

Machine Translation: We discuss the results
of machine translation, a canonical multilingual
language generation task. Table 3 (Rows XX-En
translation and En-XX translation) shows results
on machine translation both in and out of English.

For translation into English, the base model
translation quality is roughly equivalent for both
native and roman scripts. We see that continual
pretraining helps improve translation quality signif-
icantly for both representations. Romanized scripts
show significantly more improvement on the CPT
models compared to native scripts. We hypothe-
size that romanization is better able to align cross-
lingual representations between English and other
languages to improve translation performance. Ro-
manized IFT models also perform better than their
native counterparts, albeit the gap is now narrower
compared to CPT models.

For translation out of English, the base model
performs very poorly which is understandable since
the model might have seen only negligible non-
English data. CPT significantly improves transla-
tion quality on both representations, with roman-
ized representation showing better performance.
The IFT-R models are able to take good advantage
of the romanized representations, and they show
an average improvement of 8 chrF points over the

Script BaseLLM CPT IFT

1-shot 3-shot 1-shot 3-shot 0-shot

XX-En translation N 22.46 23.42 38.54 37.07 49.78
R 22.52 23.52 42.53 41.64 50.75

En-XX translation N 13.95 14.25 25.55 26.19 37.40
R 14.20 12.02 29.55 30.77 46.87

XLSum N 6.88 - 7.59 - 7.77
R 10.16 - 12.44 - 12.56

IndicHeadline N 13.66 - 18.04 - 12.61
R 15.56 - 18.92 - 16.03

Table 3: Results on NLG Benchmarks - averaged across
languages (RougeL score for XLSum and IndicHead-
line; chrF for MT. En-XX refers to out-of-English and
XX-En refers to into-English directions. N and R in-
dicate whether the model was trained and decoded on
native or romanized script. Evaluation is always in the
native script.

Language Native-Script Eval Roman-Script Eval

N R N R

Gujarati 23.9 26.0 45.4 53.5
Hindi 44.1 49.1 45.9 56.2
Malayalam 39.4 42.8 49.0 53.8
Marathi 40.3 44.8 44.0 50.7
Tamil 39.3 41.5 50.1 53.7

Table 4: Native and Roman script evaluation results
via chrF scores for En-XX translation on IFT model in
0-shot setting. N and R indicate whether the model was
trained and decoded on native or romanized script.

corresponding native script IFT-N models. Thus,
we show that even generation into romanized script
can take advantage of the English capabilities of
the LLM.

Table 4 shows the effect of the the choice of
script when evaluating translation out of English
to each language. We also report evaluation on
Roman script outputs for both models and see that
the romanized IFT models report even larger gains
in this evaluation setting. This suggests that the true
gains from romanization might be larger and it is
not reflected in native script evaluation on account
of errors in Roman to native transliteration that is
performed for the evaluation.

Language Generation Tasks: Table 3 shows the
results on other generation tasks viz. summariza-
tion and headline generation. Similar to MT, we
observe that models utilizing romanized script con-
sistently outperform those using native script by
~4 RougeL points across both continually pretrain-
ing and instruction fine-tuning setups with different
shots. On summarization using the XLSum dataset
(Hasan et al., 2021), we find that CPT and IFT
models demonstrate competitive performance in
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Script BaseLLM CPT IFT

1-shot 3-shot 1-shot 3-shot 0-shot

IndicSentiment N 45 44.32 70.58 87.32 88.88
R 48.16 43.7 88.46 92.82 82.44

IndicCOPA N 21.08 25.43 20.47 35 37.3
R 17.53 8.12 18.23 18.78 45.45

IndicXNLI N 16.98 21.1 18.68 35.76 42.3
R 27.24 31.16 36.8 37.28 38.38

IndicQA
(with context)

N 9.77 - 23.83 - 16.79 †

R 19.74 - 27.25 - 20.33 †

Table 5: Results on IndicXTREME NLU Testsets
(average F1 score across languages). † indicates 1-
shot as scores for 0-shot were close to zero and non-
interpretable so we made an exception for this task.
N and R indicate whether the model was trained and
decoded on native or romanized script. Evaluation is
always in the native script.

Script BaseLLM CPT IFT

1-shot 3-shot 1-shot 3-shot 0-shot

MMLU N 26.87 27.43 28.70 28.98 24.59
R 26.94 27.48 30.59 31.14 26.28

BoolQ N 57.90 44.45 59.09 47.48 60.04
R 60.75 61.03 61.85 57.10 46.95

Arc Easy N 25.82 26.35 28.77 28.25 26.01
R 26.38 26.44 26.69 27.10 25.34

Arc Challenge N 26.54 25.70 27.56 27.20 24.20
R 24.61 25.56 26.40 26.66 22.80

CommonSenseQA N 21.01 20.45 26.55 27.42 24.16
R 20.07 20.18 25.55 28.18 25.95

IndicQA
(without context)

N 1.48 - 5.56 - 1.13 †

R 12.96 - 17.62 - 16.87 †

Table 6: Results on Translated NLU Testsets (average
Accuracy score across languages with the exception of
IndicQA where use F1 score). † indicates scores re-
ported for 1-shot as scores for 0-shot were close to zero
and non-interpretable so we made an exception for this
task. N and R indicate whether the model was trained
and decoded on native or romanized script. Evaluation
is always in the native script.

both native and romanized scripts. A bit surpris-
ingly, we find that IFT models underperform by
3-5 RougeL points compared to CPT models on In-
dicHeadline. We hypothesize that the format of the
example was not seen in the IFT dataset, resulting
in poorer zero-shot performance compared to the
one-shot performance of the CPT model. Overall,
we find romanization to benefit not only in terms
of efficiency but also in terms of downstream per-
formance.

Language Understanding Tasks: Table 5 shows
the results on different NLU tasks part of IndicX-
TREME benchmark (Doddapaneni et al., 2023),
including IndicSentiment, IndicCOPA, and In-
dicXNLI. We find that romanized script models
are competitive to those that utilize native script.

Specifically, in tasks such as IndicSentiment and
IndicXNLI, romanized models consistently outper-
form their native counterparts across various shots.
However, native models generally perform supe-
rior compared to romanized variants for the Indic-
COPA task, except for the IFT model. Furthermore,
we observe notable performance improvements for
IndicQA without context (a reading comprehen-
sion task) across all models with romanized script
when we provide the relevant passage in the con-
text. This indicates that models with the romanized
script tend to benefit from knowledge transfer from
English and are also efficient in terms of sequence
length.

Knowledge and Reasoning tasks: Table 6
shows the results on translated versions of vari-
ous knowledge and reasoning benchmarks such as
MMLU (Hendrycks et al., 2021b), BoolQ (Clark
et al., 2019b), ARC (Clark et al., 2018b) and Com-
monsenseQA (Talmor et al., 2019). For most of the
tasks, the results of the romanized script are com-
petitive with the native script. At the same time,
they are efficient to process, as discussed earlier.
For IndicQA without context (open domain ques-
tion answering task), we observe that the roman-
ized model shows ~10 F1 point gain over the native
script model. This demonstrates the overall effec-
tiveness of utilizing romanization for non-Latin
script languages.

Discussion: From the analysis and results pre-
sented earlier, we can summarize the following.
Romanized representations are significantly more
efficient compared to native script representations.
They are better aligned to English representations
compared to native script representations, hence
they are better for cross-lingual transfer. Across a
range of tasks and languages, romanized represen-
tations provide competitive or better performance
over their native script counterparts (detailed re-
sults per language and task are presented in Ap-
pendix D. Specifically, for a generation task like
machine translation, we see significant gains while
translating out of English with romanized represen-
tations. In Appendix C, we show some examples
of romanized and native script translations, illus-
trating the gains from romanization. These results
indicate that romanization is a promising alterna-
tive to extending the capabilities of English LLMs
to other languages using non-Roman scripts.

We primarily base our study on English-only
models due to their state-of-the-art performance
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across a diverse array of tasks and consistent im-
provements in capabilities. In contrast, multilin-
gual models like BLOOM significantly lag behind
English-only models, even on English tasks, and
their progress has been slower. This disparity is
due to the limited amount of English data and the
lack of fine-tuning data for non-English languages
used in training multilingual models. Therefore,
improving English-only models is a practical way
to enhance multilingual LLMs. We fine-tuned the
BLOOM 7B model with the instruction dataset in
both native and roman script. We observe that the
roman script model outperforms the native script
model, consistent with the findings on the Llama
2 base model. We provide the evaluation results
for BLOOM 7B model across different tasks in
Appendix E.

6 Conclusion

In this study, we proposed the use of romaniza-
tion to extend the performance of LLMs primar-
ily trained in English to other languages. Our ap-
proach successfully unlocks LLM capabilities for
non-English languages by using romanization to
bridge English and non-English language repre-
sentations. We have empirically demonstrated the
effectiveness of this strategy through experiments
involving few-shot prompting, continual pretrain-
ing, and instruction fine-tuning on a variety of tasks.
Additionally, using romanized data increases infer-
ence speed and maximum processable sequence
length, while reducing memory requirements by 2x
to 4x depending on the language.

7 Future Work

Looking forward, we also plan to explore re-
versible, deterministic transliteration so that
transliteration errors in output post-processing are
eliminated. In addition, it would be interesting to
explore if romanized representation can act as a
bridge to efficiently improve native script perfor-
mance also when English LLMs are extended to
incorporate non-Roman tokens.

8 Limitations

In this work, we chose to use natural romaniza-
tions since they tended to have lower fertility and
might have been seen in the base LM pretraining.
Transliterating the outputs back to the native script
can be lossy. We use a high-quality transliteration

model to minimize the transliteration errors. How-
ever, such high-quality transliterations might not be
available for all languages. Using a deterministic
and reversible transliteration scheme can alleviate
this problem.

The experiments in this work have been con-
ducted on Indian languages. Indian languages are
representative of the scenarios we study and we
cover multiple language families and scripts with
varying resource status. Previous studies have also
used Indic languages as a case study for multilin-
guality and multi-script scenarios (Moosa et al.,
2023; Khemchandani et al., 2021). Hence, we be-
lieve the findings should generalize to other lan-
guage families - but further experimentation can
confirm this hypothesis.

We have done only a limited amount of pretrain-
ing data in our experiments due to compute con-
straints. Resource constraints led us to limit our
experiments to a 7B model, but experiments with
larger models can yield more insights. Larger mod-
els and pre-training on larger datasets might ben-
efit the multilingual models (Kaplan et al., 2020;
Fernandes et al., 2023). We expect the broad con-
clusions to be the same - that romanized models
are more efficient and better/comparable in task
performance to native-script models.

Some of the evaluations have been done on trans-
lated benchmarks. While this is not ideal, most
low-resource languages lack testsets across diverse
tasks. Hence, multiple works have relied on trans-
lated benchmarks to measure multilingual perfor-
mance - these can give indicative trends on perfor-
mance across languages. More efforts are needed to
create multilingual benchmarks for diverse tasks.

9 Ethics Statement

We use romanization as a way to align English with
other languages using non-Latin scripts. Given the
current state of LLMs, this seems like a practical di-
rection to extend the capabilities of the best LLMs
to other languages. The intention is not to sup-
plant the use of a native script (which is widely
adopted and has a rich literary tradition) with ro-
manized script but to use romanization as a way
to efficiently bring the benefits of LLM technol-
ogy to low-resource languages written in non-Latin
scripts. Further advancements are needed to ex-
tend this line of research to improve native script
performance efficiently.

This work does not involve any new data collec-
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tion and does not employ any annotators for data
collection. We utilize publicly available datasets
for the experiments reported in this work. Some
of these datasets originate from web crawls, and
we do not explicitly attempt to identify any biases
within these datasets, using them in their original
form.

Acknowledgments
We would like to thank EkStep Foundation and
Nilekani Philanthropies for their generous grant
towards research and building datasets, models,
tools and other resources for Indian languages.

References
Julien Abadji, Pedro Javier Ortiz Suárez, Laurent Ro-

mary, and Benoît Sagot. 2021. Ungoliant: An op-
timized pipeline for the generation of a very large-
scale multilingual web corpus. In CMLC 2021-9th
Workshop on Challenges in the Management of Large
Corpora.

Kabir Ahuja, Harshita Diddee, Rishav Hada, Milli-
cent Ochieng, Krithika Ramesh, Prachi Jain, Ak-
shay Nambi, Tanuja Ganu, Sameer Segal, Mohamed
Ahmed, Kalika Bali, and Sunayana Sitaram. 2023.
MEGA: Multilingual evaluation of generative AI.
In Proceedings of the 2023 Conference on Empir-
ical Methods in Natural Language Processing, pages
4232–4267, Singapore. Association for Computa-
tional Linguistics.

Chantal Amrhein and Rico Sennrich. 2020. On Roman-
ization for model transfer between scripts in neural
machine translation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2461–2469, Online. Association for Computational
Linguistics.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4623–4637, Online. Association
for Computational Linguistics.

Ethan C. Chau and Noah A. Smith. 2021. Specializing
multilingual language models: An empirical study.
In Proceedings of the 1st Workshop on Multilingual
Representation Learning, pages 51–61, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben

Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24(240):1–113.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019b. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018a. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv: 1803.05457.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018b. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Marta R. Costa-jussà, James Cross, Onur Çelebi,
Maha Elbayad, Kenneth Heafield, Kevin Heffer-
nan, Elahe Kalbassi, Janice Lam, Daniel Licht,

15602

https://doi.org/10.18653/v1/2023.emnlp-main.258
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2021.mrl-1.5
https://doi.org/10.18653/v1/2021.mrl-1.5
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm


Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, Jeff Wang, and
NLLB Team. 2024. Scaling neural machine transla-
tion to 200 languages. Nature.

Yiming Cui, Ziqing Yang, and Xin Yao. 2023. Efficient
and effective text encoding for chinese llama and
alpaca. arXiv preprint arXiv:2304.08177.

Raj Dabre, Himani Shrotriya, Anoop Kunchukuttan,
Ratish Puduppully, Mitesh Khapra, and Pratyush Ku-
mar. 2022. IndicBART: A pre-trained model for indic
natural language generation. In Findings of the As-
sociation for Computational Linguistics: ACL 2022,
pages 1849–1863, Dublin, Ireland. Association for
Computational Linguistics.

Tejas Dhamecha, Rudra Murthy, Samarth Bharad-
waj, Karthik Sankaranarayanan, and Pushpak Bhat-
tacharyya. 2021. Role of Language Relatedness in
Multilingual Fine-tuning of Language Models: A
Case Study in Indo-Aryan Languages. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 8584–8595,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Sumanth Doddapaneni, Rahul Aralikatte, Gowtham
Ramesh, Shreya Goyal, Mitesh M. Khapra, Anoop
Kunchukuttan, and Pratyush Kumar. 2023. Towards
leaving no Indic language behind: Building monolin-
gual corpora, benchmark and models for Indic lan-
guages. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 12402–12426, Toronto,
Canada. Association for Computational Linguistics.

Patrick Fernandes, Behrooz Ghorbani, Xavier Garcia,
Markus Freitag, and Orhan Firat. 2023. Scaling laws
for multilingual neural machine translation. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 10053–10071.
PMLR.

Jay Gala, Pranjal A Chitale, A K Raghavan, Varun
Gumma, Sumanth Doddapaneni, Aswanth Kumar M,
Janki Atul Nawale, Anupama Sujatha, Ratish Pudup-
pully, Vivek Raghavan, Pratyush Kumar, Mitesh M
Khapra, Raj Dabre, and Anoop Kunchukuttan. 2023.
Indictrans2: Towards high-quality and accessible ma-
chine translation models for all 22 scheduled indian
languages. Transactions on Machine Learning Re-
search.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,

and Angela Fan. 2022a. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022b.
News summarization and evaluation in the era of
gpt-3. arXiv preprint arXiv:2209.12356.

Vikrant Goyal, Anoop Kunchukuttan, Rahul Kejriwal,
Siddharth Jain, and Amit Bhagwat. 2020. Contact
relatedness can help improve multilingual NMT: Mi-
crosoft STCI-MT @ WMT20. In Proceedings of
the Fifth Conference on Machine Translation, pages
202–206, Online. Association for Computational Lin-
guistics.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Is-
lam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin Kang,
M. Sohel Rahman, and Rifat Shahriyar. 2021. XL-
sum: Large-scale multilingual abstractive summariza-
tion for 44 languages. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4693–4703, Online. Association for Computa-
tional Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021b. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Yash Khemchandani, Sarvesh Mehtani, Vaidehi Patil,
Abhijeet Awasthi, Partha Talukdar, and Sunita
Sarawagi. 2021. Exploiting language relatedness
for low web-resource language model adaptation: An
Indic languages study. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1312–1323, Online. Association
for Computational Linguistics.

Christo Kirov, Cibu Johny, Anna Katanova, Alexan-
der Gutkin, and Brian Roark. 2024. Context-
aware Transliteration of Romanized South Asian Lan-
guages. Computational Linguistics, pages 1–61.

15603

https://doi.org/10.1038/s41586-024-07335-x
https://doi.org/10.1038/s41586-024-07335-x
https://doi.org/10.18653/v1/2022.findings-acl.145
https://doi.org/10.18653/v1/2022.findings-acl.145
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://doi.org/10.18653/v1/2023.acl-long.693
https://proceedings.mlr.press/v202/fernandes23a.html
https://proceedings.mlr.press/v202/fernandes23a.html
https://openreview.net/forum?id=vfT4YuzAYA
https://openreview.net/forum?id=vfT4YuzAYA
https://openreview.net/forum?id=vfT4YuzAYA
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://doi.org/10.1162/tacl_a_00474
https://aclanthology.org/2020.wmt-1.19
https://aclanthology.org/2020.wmt-1.19
https://aclanthology.org/2020.wmt-1.19
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://doi.org/10.18653/v1/2021.findings-acl.413
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
http://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/2021.acl-long.105
https://doi.org/10.18653/v1/2021.acl-long.105
https://doi.org/10.18653/v1/2021.acl-long.105
https://doi.org/10.1162/coli_a_00510
https://doi.org/10.1162/coli_a_00510
https://doi.org/10.1162/coli_a_00510


Aman Kumar, Himani Shrotriya, Prachi Sahu, Amogh
Mishra, Raj Dabre, Ratish Puduppully, Anoop
Kunchukuttan, Mitesh M. Khapra, and Pratyush Ku-
mar. 2022. IndicNLG benchmark: Multilingual
datasets for diverse NLG tasks in Indic languages.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5363–5394, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Anoop Kunchukuttan. 2020. The IndicNLP Library.
https://github.com/anoopkunchukuttan/
indic_nlp_library/blob/master/docs/
indicnlp.pdf.

Viet Lai, Chien Nguyen, Nghia Ngo, Thuat Nguyen,
Franck Dernoncourt, Ryan Rossi, and Thien Nguyen.
2023. Okapi: Instruction-tuned large language mod-
els in multiple languages with reinforcement learning
from human feedback. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
318–327, Singapore. Association for Computational
Linguistics.

Haonan Li, Fajri Koto, Minghao Wu, Alham Fikri Aji,
and Timothy Baldwin. 2023. Bactrian-x: Multilin-
gual replicable instruction-following models with
low-rank adaptation.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1–35.

S. Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won
Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret
Zoph, Jason Wei, and Adam Roberts. 2023. The flan
collection: Designing data and methods for effec-
tive instruction tuning. International Conference on
Machine Learning.

Yash Madhani, Sushane Parthan, Priyanka Bedekar,
Gokul Nc, Ruchi Khapra, Anoop Kunchukuttan,
Pratyush Kumar, and Mitesh Khapra. 2023. Aksha-
rantar: Open Indic-language transliteration datasets
and models for the next billion users. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, pages 40–57, Singapore. Association
for Computational Linguistics.

Benjamin Minixhofer, Fabian Paischer, and Navid Rek-
absaz. 2022. WECHSEL: Effective initialization of
subword embeddings for cross-lingual transfer of
monolingual language models. In Proceedings of

the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3992–4006,
Seattle, United States. Association for Computational
Linguistics.

Ibraheem Muhammad Moosa, Mahmud Elahi Akhter,
and Ashfia Binte Habib. 2023. Does transliteration
help multilingual language modeling? In Findings
of the Association for Computational Linguistics:
EACL 2023, pages 670–685, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Benjamin Muller, Antonios Anastasopoulos, Benoît
Sagot, and Djamé Seddah. 2021. When being un-
seen from mBERT is just the beginning: Handling
new languages with multilingual language models.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 448–462, Online. Association for Computa-
tional Linguistics.

Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani
Aljunied, Qingyu Tan, Liying Cheng, Guanzheng
Chen, Yue Deng, Sen Yang, Chaoqun Liu, et al. 2023.
Seallms–large language models for southeast asia.
arXiv preprint arXiv:2312.00738.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, et al. 2023. Gpt-4
technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Sukannya Purkayastha, Sebastian Ruder, Jonas Pfeif-
fer, Iryna Gurevych, and Ivan Vulić. 2023.
Romanization-based large-scale adaptation of mul-
tilingual language models. In Findings of the As-
sociation for Computational Linguistics: EMNLP
2023, pages 7996–8005, Singapore. Association for
Computational Linguistics.

Haiyue Song, Raj Dabre, Zhuoyuan Mao, Fei Cheng,
Sadao Kurohashi, and Eiichiro Sumita. 2020. Pre-
training via leveraging assisting languages for neural
machine translation. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 279–
285, Online. Association for Computational Linguis-
tics.

Pedro Javier Ortiz Suárez, Benoît Sagot, and Laurent
Romary. 2019. Asynchronous pipeline for process-
ing huge corpora on medium to low resource infras-
tructures. In 7th Workshop on the Challenges in the

15604

https://doi.org/10.18653/v1/2022.emnlp-main.360
https://doi.org/10.18653/v1/2022.emnlp-main.360
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://github.com/anoopkunchukuttan/indic_nlp_library/blob/master/docs/indicnlp.pdf
https://doi.org/10.18653/v1/2023.emnlp-demo.28
https://doi.org/10.18653/v1/2023.emnlp-demo.28
https://doi.org/10.18653/v1/2023.emnlp-demo.28
http://arxiv.org/abs/2305.15011
http://arxiv.org/abs/2305.15011
http://arxiv.org/abs/2305.15011
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2023.findings-emnlp.4
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2023.findings-eacl.50
https://doi.org/10.18653/v1/2023.findings-eacl.50
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
https://doi.org/10.18653/v1/2021.naacl-main.38
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2023.findings-emnlp.538
https://doi.org/10.18653/v1/2023.findings-emnlp.538
https://doi.org/10.18653/v1/2020.acl-srw.37
https://doi.org/10.18653/v1/2020.acl-srw.37
https://doi.org/10.18653/v1/2020.acl-srw.37


Management of Large Corpora (CMLC-7). Leibniz-
Institut für Deutsche Sprache.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149–4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How
far can camels go? exploring the state of instruction
tuning on open resources.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2024. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Xiangpeng Wei, Haoran Wei, Huan Lin, Tianhao Li,
Pei Zhang, Xingzhang Ren, Mei Li, Yu Wan, Zhiwei
Cao, Binbin Xie, Tianxiang Hu, Shangjie Li, Binyuan
Hui, Bowen Yu, Dayiheng Liu, Baosong Yang, Fei
Huang, and Jun Xie. 2023. Polylm: An open source
polyglot large language model. arXiv preprint arXiv:
2307.06018.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzmán, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the Twelfth Lan-
guage Resources and Evaluation Conference, pages
4003–4012, Marseille, France. European Language
Resources Association.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
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A Model Training Details

Tables 7 and 8 show the hyperparameters used for training the CPT and IFT models.

Hyperparameter Value

Batch Size (tokens) 1M
Learning Rate 5e-5
Number of Epochs 1
Maximum Sequence Length 2,048

Table 7: The range of hyperparameters used for continual pretraining.

Hyperparameter Value

Batch Size (examples) 128
Learning Rate 5e-5
Number of Epochs 1
Maximum Sequence Length 2,0484

Table 8: The range of hyperparameters used for supervised fine-tuning.

B Prompt Templates

We list the various prompt templates for evaluations across different test sets (see Figures 3 to 12).

C Translation Examples

This section shows some examples of translations using the romanized and native-script IFT models (See
Figures 13 to 16). We can see in these selected examples that romanized representation performs better.

D Language Specific Results

We report the language-wise evaluation results for 5 Indic languages considered for this study across a
diverse array of tasks ranging from text generation, text understanding, and text reasoning in Tables 9
to 22.

E Results on BLOOM 7B

We report evaluation results for 5 Indic languages for the tasks such as machine translation, headline
generation and summarization on instruction fine-tuned BLOOM 7B in Tables 23 to 25.

4Although this is the maximum permissible length, most examples fall far below this length during fine-tuning.
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Predict the sentiment of the review. The possible choices for the sentiment are: ’positive’ and
’negative’.

Review: {{ text }}
Sentiment: {{ label }}

· · ·
· · ·

Review: {{ text }}
Sentiment:

Figure 3: Prompt template for IndicSentiment

I am hesitating between two options. Help me choose the more likely cause or effect.

{{ premise }} {{ connector }}
A. {{ choice1 }}
B. {{ choice2 }}
Answer: {{ label }}

· · ·
· · ·

{{ premise }} {{ connector }}
A. {{ choice1 }}
B. {{ choice2 }}
Answer:

Figure 4: Prompt template for IndicCOPA

Answer whether the hypothesis is more likely to be true (entailment), false (contradiction), or
unknown (neutral) based on the given premise.

Premise: {{ premise }}
Hypothesis: {{ hypothesis }}
Answer: {{ label }}

· · ·
· · ·

Premise: {{ premise }}
Hypothesis: {{ hypothesis }}
Answer:

Figure 5: Prompt template for IndicXNLI
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Answer the following question based on the information in the given passage.

Passage: {{ passage }}
Question: {{ question }}
Answer: {{ answer }}

· · ·
· · ·

Passage: {{ passage }}
Question: {{ question }}
Answer:

Figure 6: Prompt template for IndicQA.

Summarize the following {{ language }} article(s) as accurately as possible in few sentences.

{{ language }} article: {{ article }}
{{ language }} summary: {{ summary }}

· · ·
· · ·

{{ language }} article: {{ article }}
{{ language }} summary:

Figure 7: Prompt template for XLSum.

Generate a headline for the following article(s) as accurately as possible.

{{ language }} article: {{ article }}
{{ language }} headline: {{ headline }}

· · ·
· · ·

{{ language }} article: {{ article }}
{{ language }} headline:

Figure 8: Prompt template for IndicHeadline.
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The following are multiple choice questions (with answers) about {{ subject }}.

{{ question }}
A. {{ choice1 }}
B. {{ choice2 }}
C. {{ choice3 }}
D. {{ choice4 }}
Answer: {{ label }}

· · ·
· · ·

{ subject }}

{{ question }}
A. {{ choice1 }}
B. {{ choice2 }}
C. {{ choice3 }}
D. {{ choice4 }}
Answer:

Figure 9: Prompt template for MMLU.

The following are binary yes/no choice questions (with answers).

Passage: {{ passage }}
Question: {{ question }}
Answer: {{ label }}

· · ·
· · ·

Passage: {{ passage }}
Question: {{ question }}
Answer:

Figure 10: Prompt template for BoolQ.

The following are multiple choice questions (with answers) about science.

{{ question }}
A. {{ choice1 }}
B. {{ choice2 }}
C. {{ choice3 }}
D. {{ choice4 }}
E. {{ choice5 }}
Answer: {{ label }}

· · ·
· · ·

{{ question }}
A. {{ choice1 }}
B. {{ choice2 }}
C. {{ choice3 }}
D. {{ choice4 }}
E. {{ choice5 }}
Answer: {{ label }}

Figure 11: Prompt template for ARC.
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The following are multiple choice questions (with answers) requiring common sense.

{{ question }}
A. {{ choice1 }}
B. {{ choice2 }}
C. {{ choice3 }}
D. {{ choice4 }}
E. {{ choice5 }}
Answer: {{ label }}

· · ·
· · ·

{{ question }}
A. {{ choice1 }}
B. {{ choice2 }}
C. {{ choice3 }}
D. {{ choice4 }}
E. {{ choice5 }}
Answer: {{ label }}

Figure 12: Prompt template for CommonsenseQA.

English: The movie, featuring Ryan Gosling and Emma Stone, received nominations in all major categories

Generated Native Output: िफ�, िजसम� रायन गोसिलंग और एमा �ोन के साथ है, सभी मह�पूण� �कार के �ित �ितिनिध� �ा� �ए ह�.

Figure 13: Example of zero-shot translation for English to Hindi machine translation task to generate text in native
script using a model fine-tuned on native script data.

English: The movie, featuring Ryan Gosling and Emma Stone, received nominations in all major categories
Generated Romanized Output: ryan gosling our emma stone abhineet film quo sabhi pramukh shreniyon main namankan
praapt hue.
Transliterated Native Output: रयान गोसिलंग और ए�ा �ोन अिभनीत िफ� को सभी �मुख �ेिणयो ंम� नामांकन �ा� �ए।

Figure 14: Example of zero-shot translation for English to Hindi machine translation task to generate text in
romanized script using a model fine-tuned on romanized data. The romanized output is then transliterated to native
script.

Hindi: िजस िफ� म� रायन गोज़िलंग और ए�ा �ोन ने मु� भूिमकाएँ िनभाई ह�, उसे सभी �मुख �ेिणयो ंम� नॉिमनेशन िकया गया है.

Generated Output: The film was nominated for the Academy Award for Best Picture, Best Director, Best Original Screenplay,
Best Original Score, Best Sound, Best Film Editing, Best Cinematography, Best Art Direction, Best Costume Design, Best
Makeup, Best Visual Effects, Best Sound Mixing, Best Sound Editing, Best Original Song, Best Original Song Score and Best
Original Song.

Figure 15: Example of zero-shot translation for the Hindi to English machine translation task using native script
input for a model fine-tuned on native script data.

Hindi: jis film main rayan gozzling our amma stone nay mukhya bhoomikaaen nibhai hain, use sabhi pramukh shreniyon main
nomination kiya gaya hai.

Generated Output: The film stars Rayan Gosling and Amma Stone in the lead roles, with nominations in all major categories.

Figure 16: Example of zero-shot translation for the Hindi to English machine translation task using romanized script
input for a model fine-tuned on romanized data.
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Model Shots Input text Hindi Gujarati Tamil Marathi Malayalam

N R N R N R N R N R

Llama 2 1 Native 22.95 29.21 8.15 11.9 12.12 14.62 15.32 20.22 11.2 14.98
Llama 2 3 Native 23.73 29.91 7.38 11.48 12.4 15.49 16.19 21.4 11.55 15.31
Llama 2 1 Romanized 17.25 18.86 14.63 16.16 12.8 14.87 13.42 15.85 12.88 15.48
Llama 2 3 Romanized 15.01 18.25 10.8 14.79 9.3 11.39 12.09 16.61 12.88 15.53

CPT - N 1 Native 32.07 37.89 15.94 18.79 25.81 28.87 29.47 34.24 24.48 28.36
CPT - N 3 Native 32.9 38.51 16.3 19.29 26.2 29.12 29.9 34.75 25.64 29.45
CPT - R 1 Romanized 30.93 33.66 29.73 35.35 30.11 32.71 28.27 33.71 28.72 32.47
CPT - R 3 Romanized 31.51 34.99 30.55 36.8 31.5 35.04 29.42 35.08 30.85 34.86

IFT (Llama 2) - N 0 Native 43.28 48.43 23.54 25.82 38.99 41.13 40.13 44.72 38.85 42.12
IFT (CPT - N) - N 0 Native 44.08 49.12 23.86 25.97 39.3 41.51 40.31 44.8 39.44 42.78
IFT (Llama 2) - R 0 Romanized 45.15 55.23 44.8 52.98 49.13 52.79 42.78 49.6 47.71 52.63
IFT (CPT - R) - R 0 Romanized 45.94 56.19 45.37 53.5 50.06 53.71 44 50.73 48.96 53.76

Table 9: chrF scores for En-XX translation task on FLORES-200 devtest (Goyal et al., 2022a) across 5 Indic
languages in both native (N) and romanized (R) script with different shots.

Model Shots Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 40.49 13.63 16.06 24.18 17.93
Llama 2 3 Native 40.38 17.58 17.22 24.15 17.78
Llama 2 1 Romanized 29.24 22.62 17.06 22.56 21.1
Llama 2 3 Romanized 28.91 23.28 19.86 23.6 21.96

CPT - N 1 Native 51.37 24.77 33.2 47.04 36.34
CPT - N 3 Native 50.31 25.73 28.56 43.37 37.4
CPT - R 1 Romanized 45.43 45.08 38.34 44.28 39.52
CPT - R 3 Romanized 45.4 44.82 33.72 43.56 40.71

IFT (Llama 2) - N 0 Native 51.7 47.26 42.27 48.8 47.83
IFT (CPT - N) - N 0 Native 53.67 49.51 44.44 51.29 50
IFT (Llama 2) - R 0 Romanized 51.84 50.17 41.67 48.51 47.14
IFT (CPT - R) - R 0 Romanized 53.89 53.3 45.09 51.06 50.43

Table 10: chrF scores for XX-En translation task on FLORES-200 devtest (Goyal et al., 2022a) across 5 Indic
languages in both native (N) and romanized (R) script with different shots.

Model Shots Input text Hindi Gujarati Tamil Marathi

N R N R N R N R

Llama 2 1 Native 13.32 9.59 3.2 2.79 4.13 3.47 6.85 6.11
Llama 2 1 Romanized 13.43 15.96 8.95 7.65 9.05 6.69 9.22 7.45

CPT - N 1 Native 16.32 12.18 5.18 4.58 4.3 3.91 4.55 4.61
CPT - R 1 Romanized 13.05 14.77 13.8 12.98 10.86 9.68 12.06 11.34

IFT (Llama 2) - N 0 Native 11.71 8.66 4.38 3.18 6.62 5.62 7.41 6.61
IFT (CPT - N) - N 0 Native 12.56 9.21 4.3 3.52 6.51 5.66 7.71 6.64
IFT (Llama 2) - R 0 Romanized 14.73 16.87 11.84 10.56 10.83 8.59 11 9.53
IFT (CPT - R) - R 0 Romanized 15.05 17.92 12.36 11.16 11.28 9.32 11.56 9.87

Table 11: RougeL scores on XLSum (Hasan et al., 2021) across 5 Indic languages in both native (N) and romanized
(R) script with different shots.
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Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

N R N R N R N R N R

Llama 2 1 Native 20.91 15.01 6.17 5.55 19.14 17.8 9.26 8.45 12.84 11.45
Llama 2 1 Romanized 17.58 20.55 12.18 13.72 23.5 26.16 10.55 11.32 13.97 18.83

CPT - N 1 Native 22.74 16.52 9.07 7.97 23.59 22.79 19.21 18.72 15.57 14.74
CPT - R 1 Romanized 20.19 24.44 12.83 14.34 29.13 32.03 15.14 17.39 17.29 22.38

IFT (Llama 2) - N 0 Native 18.38 13.43 6.36 5.64 15.88 15.35 9.96 9.84 10.51 9.85
IFT (CPT - N) - N 0 Native 19.47 14.24 6.65 5.98 15.14 14.75 10.77 10.7 11.04 10.68
IFT (Llama 2) - R 0 Romanized 17.76 21.46 12.88 15.43 20.89 22.27 11.51 12.62 13.45 17.45
IFT (CPT - R) - R 0 Romanized 18.74 21.91 13.04 15.64 21.61 23.82 12.2 13.59 14.56 19.27

Table 12: RougeL scores on IndicHeadline (Kumar et al., 2022) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 28.67 25.59 26.06 27.58 26.44
Llama 2 3 Native 29.11 26.57 26.75 27.85 26.86
Llama 2 1 Romanized 27.52 26.57 26.34 27.14 27.11
Llama 2 3 Romanized 28.38 27.62 26.65 27.24 27.52

CPT - N 1 Native 29.61 27.34 28.63 29.58 28.35
CPT - N 3 Native 30.08 27.62 28.66 29.91 28.61
CPT - R 1 Romanized 30.8 30.72 30.38 31.33 29.7
CPT - R 3 Romanized 31.55 31.05 30.18 32.15 30.76

IFT (Llama 2) - N 0 Native 24.47 24.08 24.09 23.3 24.36
IFT (CPT - N) - N 0 Native 24.72 24.05 24.78 24.62 24.81
IFT (Llama 2) - R 0 Romanized 24.75 25.96 26.03 25.54 26.48
IFT (CPT - R) - R 0 Romanized 25.58 26.4 26.73 26.1 26.57

Table 13: Accuracy on translated MMLU (Hendrycks et al., 2021a) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 57.58 58.78 56.88 61.07 55.2
Llama 2 3 Native 45.08 57.58 39.3 40.92 39.39
Llama 2 1 Romanized 62.23 60.03 58.72 60.61 62.14
Llama 2 3 Romanized 61.93 61.77 60.09 58.9 62.48

CPT - N 1 Native 60.7 56.21 57.71 61.41 59.45
CPT - N 3 Native 50.67 60.64 45.78 39.36 40.95
CPT - R 1 Romanized 62.17 61.5 61.44 61.93 62.23
CPT - R 3 Romanized 64.77 60.92 55.41 47.86 56.54

IFT (Llama 2) - N 0 Native 60.12 61.65 60.06 61.01 60.18
IFT (CPT - N) - N 0 Native 60.34 61.5 58.32 60.43 59.6
IFT (Llama 2) - R 0 Romanized 61.62 56.91 58.01 58.69 47.68
IFT (CPT - R) - R 0 Romanized 60.7 45.02 38.01 53.24 37.77

Table 14: Accuracy on translated BoolQ (Clark et al., 2019a) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.
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Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 27.27 25.67 25.63 25.13 25.42
Llama 2 3 Native 27.36 26.09 26.18 26.6 25.51
Llama 2 1 Romanized 27.23 25.29 26.05 26.98 26.35
Llama 2 3 Romanized 27.27 26.64 25.29 26.85 26.14

CPT - N 1 Native 30.98 26.22 28.87 30.56 27.23
CPT - N 3 Native 30.68 26.43 27.4 29.12 27.61
CPT - R 1 Romanized 27.23 25.88 26.26 26.89 27.19
CPT - R 3 Romanized 27.61 26.56 26.39 27.74 27.23

IFT (Llama 2) - N 0 Native 25.42 25.88 25.25 25.42 26.09
IFT (CPT - N) - N 0 Native 26.35 25.84 25.67 25.93 26.26
IFT (Llama 2) - R 0 Romanized 25.08 25.72 25.04 25.34 25.76
IFT (CPT - R) - R 0 Romanized 25.97 25.34 24.24 25.42 25.72

Table 15: Accuracy on translated ARC-Easy (Clark et al., 2018b) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 26.45 27.05 26.71 26.71 25.77
Llama 2 3 Native 27.22 26.19 25.17 25.6 24.32
Llama 2 1 Romanized 24.4 25.68 24.32 24.32 24.32
Llama 2 3 Romanized 24.83 27.47 25.09 25.09 25.34

CPT - N 1 Native 27.65 26.62 27.3 27.3 28.92
CPT - N 3 Native 29.69 25.85 26.96 26.96 26.54
CPT - R 1 Romanized 25.34 26.79 24.57 28.07 27.22
CPT - R 3 Romanized 24.49 27.56 25.94 27.99 27.3

IFT (Llama 2) - N 0 Native 22.27 22.78 23.46 21.93 23.29
IFT (CPT - N) - N 0 Native 25.85 23.21 24.57 24.06 23.29
IFT (Llama 2) - R 0 Romanized 21.67 22.87 23.04 22.87 21.67
IFT (CPT - R) - R 0 Romanized 22.78 22.95 22.7 22.35 23.21

Table 16: Accuracy on translated ARC-Challenge (Clark et al., 2018b) across 5 Indic languages in both native (N)
and romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 23.99 19 20.55 21.45 20.06
Llama 2 3 Native 23.75 18.75 20.22 20.22 19.32
Llama 2 1 Romanized 21.54 20.48 19.49 19.74 19.08
Llama 2 3 Romanized 21.54 19.57 19.98 19.82 19.98

CPT - N 1 Native 28.09 23.75 28.5 26.94 25.47
CPT - N 3 Native 31.12 22.44 28.99 28.09 26.45
CPT - R 1 Romanized 23.75 27.19 25.3 25.22 26.28
CPT - R 3 Romanized 25.71 30.22 28 27.1 29.89

IFT (Llama 2) - N 0 Native 20.64 19.25 20.07 20.97 20.31
IFT (CPT - N) - N 0 Native 23.34 23.18 23.59 25.14 25.55
IFT (Llama 2) - R 0 Romanized 20.23 21.54 21.29 22.93 22.44
IFT (CPT - R) - R 0 Romanized 23.91 26.7 25.55 26.04 27.52

Table 17: Accuracy on translated CommonsenseQA (Talmor et al., 2019) across 5 Indic languages in both native
(N) and romanized (R) script with different shots.
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Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 53.2 35.1 46 50.3 40.4
Llama 2 3 Native 77.8 28.4 34.5 49.2 31.7
Llama 2 1 Romanized 59.1 44.9 42.4 53.5 40.9
Llama 2 3 Romanized 67.5 38.9 33.8 44.3 34

CPT - N 1 Native 64.9 68 77.8 75.1 67.1
CPT - N 3 Native 89.7 86.6 87.8 89.6 82.9
CPT - R 1 Romanized 91.2 86.6 88.4 90 86.1
CPT - R 3 Romanized 91.9 93.3 93.3 93.1 92.5

IFT (Llama 2) - N 0 Native 90.4 88.1 87.6 89.5 89
IFT (CPT - N) - N 0 Native 87.2 88.7 89.6 90 88.9
IFT (Llama 2) - R 0 Romanized 75.3 68.8 71.2 77.6 77.3
IFT (CPT - R) - R 0 Romanized 83.7 73.5 87.7 81.9 85.4

Table 18: F1 score on IndicSentiment (Doddapaneni et al., 2023) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 41.1 41.1 1.6 41.1 1.6
Llama 2 3 Native 52.1 56.7 7.5 34.7 1.6
Llama 2 1 Romanized 39.2 36.2 1.6 26.6 1.6
Llama 2 3 Romanized 23.6 16.1 3.1 5.9 0

CPT - N 1 Native 40.5 40.7 1.6 38.4 1.6
CPT - N 3 Native 61 65.7 11.6 60 11.7
CPT - R 1 Romanized 38.6 37.4 0 31.8 1.6
CPT - R 3 Romanized 30.3 42.7 6.6 32.3 0.8

IFT (Llama 2) - N 0 Native 5.2 1.7 44.1 1.8 7.4
IFT (CPT - N) - N 0 Native 51.3 33.2 47.6 35.4 56.3
IFT (Llama 2) - R 0 Romanized 18.9 58.4 18.8 35.9 63.6
IFT (CPT - R) - R 0 Romanized 33.2 62.3 63.4 47.1 66.7

Table 19: F1 score on IndicCOPA (Doddapaneni et al., 2023) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

Llama 2 1 Native 17.6 16.7 16.8 17.1 16.7
Llama 2 3 Native 27.4 25.1 17.4 18.7 16.9
Llama 2 1 Romanized 27.5 28.5 26.5 26.4 27.3
Llama 2 3 Romanized 31.4 31.6 30.5 31.2 31.1

CPT - N 1 Native 19.9 19.3 19.4 17.7 17.1
CPT - N 3 Native 44.6 30.1 32.8 45.2 26.1
CPT - R 1 Romanized 34.1 37 36.6 37.3 39
CPT - R 3 Romanized 38.6 37.3 37.5 37.3 35.7

IFT (Llama 2) - N 0 Native 36.3 37.9 43.1 42.9 38.7
IFT (CPT - N) - N 0 Native 42.2 41.2 43.1 42.5 42.5
IFT (Llama 2) - R 0 Romanized 24 22.5 23 22.1 28.6
IFT (CPT - R) - R 0 Romanized 38.5 38.9 37.2 38.1 39.2

Table 20: F1 score on IndicXNLI (Doddapaneni et al., 2023) across 5 Indic languages in both native (N) and
romanized (R) script with different shots.
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Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

N R N R N R N R N R

Llama 2 1 Native 21.02 24.63 3.26 3.39 8.75 8.91 10.08 12.22 5.73 5.73
Llama 2 1 Romanized 29.11 32.8 19.95 21.97 11.34 13.32 21.11 21.6 17.18 20.42

CPT - N 1 Native 28.98 30.36 17.01 17.76 21.01 21.04 28.76 28.96 23.37 23.43
CPT - R 1 Romanized 29.58 32.8 27.01 28.85 24.69 27.11 30.01 30.53 24.95 27.51

IFT (Llama 2) - N 0 Native 19.75 22.79 11.66 14.3 17.56 17.81 18.39 21.96 11.15 11.4
IFT (CPT - N) - N 0 Native 21.85 25.68 13.54 16.21 18.49 18.68 18.02 21.43 12.07 12.49
IFT (Llama 2) - R 0 Romanized 23.54 33.79 19.15 24.3 16.44 25.54 21.26 25.79 13.2 20.31
IFT (CPT - R) - R 0 Romanized 24.44 33.81 21.41 26.9 17.65 25.27 23.64 28.41 14.53 22.01

Table 21: F1 score on IndicQA (with context) (Doddapaneni et al., 2023) across 5 Indic languages in both native
(N) and romanized (R) script with different shots.

Model n-shot Input text Hindi Gujarati Tamil Marathi Malayalam

N R N R N R N R N R

Llama 2 1 Native 4.97 6.69 0.2 0.22 1.02 1.09 0.9 1.16 0.31 0.36
Llama 2 1 Romanized 6.96 7.33 16.77 16.82 12.26 12.26 16.45 16.38 12.34 12.77

CPT - N 1 Native 7.44 8.67 2.73 3.15 4.66 4.64 7.41 7.82 5.55 5.67
CPT - R 1 Romanized 13.85 15.19 13.46 13.41 16.66 17.13 26.75 26.82 17.38 17.93

IFT (Llama 2) - N 0 Native 2.36 2.64 0.66 0.72 1.48 1.53 1.18 1.28 0.89 0.9
IFT (CPT - N) - N 0 Native 2.73 3.03 0.85 0.95 1.15 1.16 1.27 1.47 0.82 0.9
IFT (Llama 2) - R 0 Romanized 2.21 2.93 0.65 0.76 1.37 1.42 1.75 1.75 1.01 1.33
IFT (CPT - R) - R 0 Romanized 3.32 3.69 1.03 0.96 1.4 1.67 1.81 1.9 1.05 1.21

Table 22: F1 score on IndicQA (without context) (Doddapaneni et al., 2023) across 5 Indic languages in both native
(N) and romanized (R) script with different shots.

Model Shots Input text Hindi Gujarati Tamil Marathi Malayalam

IFT (BLOOM) - N 0 Native 51.03 48.39 52.1 45.63 49.94
IFT (BLOOM) - R 0 Romanized 53.74 50.95 50.09 48.06 48.93

Table 23: chrF scores for En-XX translation task on FLORES-200 devtest (Goyal et al., 2022a) across 5 Indic
languages in both native and romanized script.

Model Shots Input text Hindi Gujarati Tamil Marathi Malayalam

IFT (BLOOM) - N 0-shot Native 7.44 4.36 7.66 0.8 3.7
IFT (BLOOM) - R 0-shot Romanized 20.96 15.87 25.4 13.46 19.42

Table 24: RougeL scores on IndicHeadline (Kumar et al., 2022) across 5 Indic languages in both native and
romanized script.

Model Shots Input text Hindi Gujarati Tamil Marathi

IFT (BLOOM) - N 0-shot Native 1.73 2.84 2.56 2.73
IFT (BLOOM) - R 0-shot Romanized 17.16 10.74 8.63 9.36

Table 25: RougeL scores on XLSum (Hasan et al., 2021) across 5 Indic languages in both native and romanized
script.
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