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Abstract
Understanding memorisation in language mod-
els has practical and societal implications, e.g.,
studying models’ training dynamics or prevent-
ing copyright infringements. Prior work de-
fines memorisation as the causal effect of train-
ing with an instance on the model’s ability to
predict that instance. This definition relies on
a counterfactual: the ability to observe what
would have happened had the model not seen
that instance. Existing methods struggle to pro-
vide computationally efficient and accurate es-
timates of this counterfactual. Further, they
often estimate memorisation for a model archi-
tecture rather than for a specific model instance.
This paper fills an important gap in the litera-
ture, proposing a new, principled, and efficient
method to estimate memorisation based on the
difference-in-differences design from econo-
metrics. Using this method, we characterise
a model’s memorisation profile—its memori-
sation trends across training—by only observ-
ing its behaviour on a small set of instances
throughout training. In experiments with the
Pythia model suite, we find that memorisation
(i) is stronger and more persistent in larger mod-
els, (ii) is determined by data order and learn-
ing rate, and (iii) has stable trends across model
sizes, thus making memorisation in larger mod-
els predictable from smaller ones.

pietrolesci/memorisation-profiles

1 Introduction

Large language models (LMs) are often pretrained
with a single pass on web-scale datasets (Raffel
et al., 2020; Gao et al., 2020; Penedo et al., 2023,
inter alia). Given the colossal size of these training
sets, one may expect each individual instance to
have little impact on the final model. Yet, LMs can
still reproduce entire sequences from their training
set verbatim (Carlini et al., 2021), suggesting that
models can store, or memorise, precise knowledge
about individual training instances. In the era of

Figure 1: Memorisation profile (top) and path (bottom)
of Pythia 6.9B. Each entry represents the expected
counterfactual memorisation of instances trained on at
a specific timestep (“Treatment Step”) across model
checkpoints (“Checkpoint Step”). The dashed vertical
line indicates the end of the first epoch.

large LMs, measuring memorisation is crucial for
NLP practitioners; it has implications for copyright
and data protection (Hu et al., 2022; Vyas et al.,
2023; Lee et al., 2023), for how models encode fac-
tual information (Cao et al., 2022; Tirumala et al.,
2022), and for understanding their training dynam-
ics (Arpit et al., 2017; Chang and Bergen, 2024).

One line of prior work has adopted a causal def-
inition of memorisation: it is the causal effect of
observing an instance during training on a model’s
ability to correctly predict that instance (Feldman,
2020). Despite being an intuitive concept, quantifi-
cation of this definition is not straightforward as it
requires knowledge of a counterfactual:1 we must
know how our model would have performed on a
training instance had the model not been trained on
it. To overcome this challenge, prior work has pro-
posed a variety of methods to estimate memorisa-

1Counterfactuals are thought experiments about what
would have happened if a present condition were changed
while keeping everything else unchanged (McCloskey, 2016).
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tion. Some estimate it by training a model multiple
times on different subsets of the data (e.g., Feldman
and Zhang, 2020; Zheng and Jiang, 2022), while
others implicitly assume this counterfactual’s value
to be negligible (Carlini et al., 2021). Both these
approaches, however, have drawbacks: the first
computes memorisation for an architecture rather
than a specific model, while the second relies on a
strong assumption (we discuss this in detail in §5).

In this paper, we first formalise counterfactual
memorisation as the difference between two po-
tential outcomes; notably, our formalisation gener-
alises prior definitions of memorisation, allowing
us to compare them within a unified framework.
We then draw from the econometrics literature
(Callaway and Sant’Anna, 2021) and propose a
new method which estimates memorisation using
only observational data; our method simply needs
a model’s performance measurements (e.g., log-
likelihood) on a subset of the training data through-
out training. The output of our method is what we
term a memorisation profile: a model’s memorisa-
tion of training batches over the course of training.

Empirically, we use this method to analyse mem-
orisation for models in the Pythia suite (Biderman
et al., 2023b) and characterise their memorisation
profiles; e.g., Fig. 1 reports the memorisation pro-
file of Pythia 6.9B. By studying these memorisa-
tion profiles we find that memorisation is stronger
and more persistent in larger models. Furthermore,
both the learning rate and the position of an in-
stance in the training set considerably impact how
strongly that instance is memorised. Finally, memo-
risation profiles are stable across model sizes; thus,
we can predict memorisation in larger models from
the memorisation observed in smaller ones.

2 Background

In this section, we introduce some background on
language modelling and on causal analysis which
will be required throughout our paper.

2.1 Language Modelling
We start by providing some background on lan-
guage modelling.2 Let pθ(x) be a language model
with parameters θ ∈ Rd. This model defines a
probability distribution over x ∈ V∗, the set of
all finite sequences that can be constructed from
elements in the alphabet V . To train this model,

2We frame our exposition in terms of language models, but
our framework can be trivially applied to any neural model
and input modality (e.g., images).

we start with a set of randomly selected initial pa-
rameters, θ0. We then learn parameters θ using a
dataset D and an optimisation procedure defined
with respect to a loss function L.

Specifically, let D = {xn}Nn=1 be a dataset
whose instances x are sequences drawn from
a target (unknown) distribution p(x). These in-
stances are typically assumed to be sampled i.i.d.,
and are shuffled using a permutation function
σ : {1, ..., N}→{1, ..., N}. For a given batch size
B, we then split this dataset into T ≤⌊N/B⌋ batches
Bt. We iterate through these batches performing
gradient updates on the model parameters:

θt = θt−1 − η∇θL(θt−1,Bt) (1)

where η ∈ R is a learning rate.3 Notably, this
procedure consists of a single pass on the training
set and is standard for recent LMs (e.g., Touvron
et al., 2023; Jiang et al., 2023; Dey et al., 2023).

At each iteration, we use a batch Bt to obtain a
new model checkpoint, θt. We introduce a notation
which distinguishes the indexing of checkpoints
and batches. We use c ∈ {0, 1, ..., T} to denote a
checkpoint step (e.g., θc). Further, we use g ∈
{1, ..., T}∪ {∞} to denote the timestep at which a
batch is used for training (e.g., Bg); we term this a
treatment step, borrowing this terminology from
the econometrics literature. We denote as g=∞ a
batch composed of instances that are not used for
training and which form a validation set.

2.2 Causal Analysis
Causal estimation is typically split into three steps.
First, we define a causal estimand, the target quan-
tity we want to estimate. Second, we state the
assumptions needed to rewrite this causal estimand
in terms of observable data, thus defining a statisti-
cal estimand; this process is called identification.
Finally, we define an estimator, a statistical proce-
dure to approximate the statistical estimand.

To formally define memorisation as a causal es-
timand, we will use the potential outcomes frame-
work of Rubin (1974, 2005).4 This framework
allows us to formally describe the causal effect of
an intervention, or treatment, on some target quan-
tity, or outcome. In §1, we defined memorisation
as the causal effect of training on an instance on a

3The learning rate can be a function of other quantities
(e.g., Duchi et al., 2011; Kingma and Ba, 2015, inter alia).

4For a comparison of causal frameworks, see Ibeling and
Icard (2023). For an introduction to causal inference, see Pearl
(2009) and Imbens and Rubin (2015).
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model’s ability to predict it. Thus, the act of train-
ing on x defines the treatment, while the model’s
ability to predict an instance defines the outcome.

Since training is performed iteratively over
batches, instances are treated at different timesteps.
Thus, we use a treatment assignment variable
G(x) to denote the step g an instance is trained
on. Further, to quantify the ability of a model with
parameters θc to predict x, we use a performance
function γ. We then define the outcome variable
as Yc(x)

def
= γ(θc,x), and, unless noted otherwise,

we set this performance function to be the log-
likelihood of x under pθc: γ(θc,x) = log pθc(x).5

To define memorisation we need to represent
both observed—i.e., Yc(x)—and counterfactual
outcomes—i.e., the performance of the model on
x had we not trained on it. The potential outcomes
notation (Splawa-Neyman, 1923) enables us to rep-
resent both types of outcomes consistently.

Definition 1. The potential outcome of an instance
x at timestep c under treatment assignment g, de-
noted as Yc(x; g), is the value that the outcome
would have taken if G(x) was equal to g.

Since we only observe a single permutation of
the data, we only see one specific treatment step for
each instance, i.e., G(x). Thus, the potential out-
come of an instance is observed only for the actual
treatment assignment g=G(x). In this case, we
can equate potential and observed outcomes, that
is Yc(x; g) = Yc(x), a property called consistency
(Cole and Frangakis, 2009). For any other treat-
ment step g ̸=G(x), the potential outcome is coun-
terfactual and, thus, unobservable from the data.

3 Counterfactual Memorisation

Intuitively, counterfactual memorisation can be un-
derstood as the answer to the question: how would
the model’s performance on instance x at timestep
c be different if we had not trained on it at timestep
g? Using the potential outcomes notation, we for-
malise this definition as follows.

Definition 2. Counterfactual memorisation is the
causal effect of using instance x for training at
the observed timestep G(x)= g on the model’s
performance on this same instance at timestep c:

τx,c
def
= Yc(x; g)︸ ︷︷ ︸

performance on x
when trained with x

− Yc(x;∞)︸ ︷︷ ︸
performance on x

when not trained with x

(2)

5We experiment with other functions in the appendix.

In econometrics, eq. (2) is called an individual
treatment effect (ITE). Notably, the first potential
outcome in this equation, Yc(x; g), can be observed
from the data since, by definition, we trained on x
at timestep G(x)= g. However, the second term,
Yc(x;∞), is counterfactual. To compute the ITE,
we would need to estimate this counterfactual out-
come for a specific instance, which is challenging
due to unobserved factors and heterogeneity6 (Lu
et al., 2018). While we would ideally estimate
memorisation at the instance level, we focus on
average effects instead, as is common in the econo-
metrics literature (Angrist and Pischke, 2015).

Definition 3. Expected counterfactual memorisa-
tion is the average causal effect of using instances
for training at timestep g on the model’s perfor-
mance on these same instances at timestep c:7

τg,c
def
= E
x

[
Yc(x; g)− Yc(x;∞) | G(x)= g

]
(3)

Together, the τg,c form a matrix which we
term the model’s memorisation profile; each row
therein is the memorisation path of a batch. Mem-
orisation profiles and paths allow us to analyse
a model’s memorisation patterns across different
treatment and checkpoint steps. Notably, there can-
not be memorisation whenever c < g, as the in-
stances have not been seen by the model yet, so
τg,c = 0 in those cases. We term τg,c as instanta-
neous memorisation when c = g, as persistent
memorisation when c > g, and as residual mem-
orisation when c = T .

4 Estimating Memorisation

The practical implication of defining memorisation
at a treatment level g is that we can only make
causal claims for groups of instances treated at
the same timestep (i.e., a batch Bg), rather than
for individual instances. However, even though
this approach simplifies the problem, estimating
eq. (3) still poses major challenges as it contains
a counterfactual. A simple decomposition makes

6I.e., non-random variability across instances.
7In econometrics, eq. (3) is called an average treatment

effect on the treated (ATT), as it is defined in terms of an
expectation over x ∼ p(x |G(x)= g). In other words, this
expectation is taken with respect to the instance distribution
conditioned on it being selected for training at step g. Assum-
ing the training set is sampled i.i.d. and that its permutation is
random (as discussed in §2.1), then p(x |G(x)= g) = p(x).
Given these assumptions, eq. (3) would also be an average
treatment effect (ATE), which would allow us to make causal
claims about the entire population.
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this counterfactual explicit:

τg,c = (4)

E
x

[
Yc(x; g) |G(x)= g

]

︸ ︷︷ ︸
1

−E
x

[
Yc(x;∞) |G(x)= g

]

︸ ︷︷ ︸
2

Expectation 1 can be directly estimated from the
data because batch Bg contains a set of examples
x for which G(x)= g and, thus, we can invoke the
consistency assumption to equate Yc(x; g) with the
observed outcome Yc(x). Let us define the mean
across instances in a batch as:

Y c(g)
def
=

1

|Bg|
∑

x∈Bg

Yc(x) (5)

We can thus use eq. (5) as an estimator for ex-
pectation 1 . Expectation 2 , however, is counter-
factual: we cannot observe the potential outcome
Yc(x;∞) for instances treated at timestep g ̸=∞.
The presence of counterfactual potential outcomes
in causal estimands creates challenges for their es-
timation, being known as the fundamental problem
of causal inference (Holland, 1986). The goal of
causal methods is then to estimate these counterfac-
tual outcomes from observed ones, using compara-
ble groups of instances. Thus far, we have defined
our causal estimand. In this section, we perform
steps two and three of causal estimation (§2.2): we
derive two statistical estimands for our causal es-
timand (identifying it under specific assumptions),
and provide concrete estimators for them.

4.1 The Difference Estimator
Our first approach to estimate memorisation is
straightforward and only requires the observed out-
comes of a held-out validation set. However, it
relies on a strong identification assumption.

Assumption 1 (I.i.d. Dataset Sampling). Instances
x are independently and identically distributed,
following p(x), and are randomly assigned to
treatment groups g.

Under this assumption, we have that
p(x |G(x)= g)=p(x |G(x)=∞)=p(x). Thus,
the following statistical estimand identifies τg,c:

τdiffg,c = E
x

[
Yc(x; g) | G(x)= g

]
(6)

− E
x

[
Yc(x;∞) | G(x)=∞

]

(See Lemma 1 in App. A.1 for a proof.) Note that,
unlike eq. (3), the second term in this estimand is

not counterfactual: it is the expected observed out-
come of validation instances, B∞. This statistical
estimand can then be estimated as follows.
Estimator 1. The difference estimator, defined as:

τ̂diffg,c = Y c(g)− Y c(∞) (7)

is an unbiased estimator of τg,c under Assump. 1.

Proof. See Lemma 2 in App. A.1 for a proof.

Notably, Assump. 1 is satisfied by the training
procedure we described in §2.1, and is commonly
true in machine learning. However, it might not
hold in general, as the train and validation distri-
butions may not match exactly. For example, NLP
practitioners might deduplicate their training set
but not validation (Biderman et al., 2023b) or might
use challenge sets for validation (Kiela et al., 2021).
Moreover, even when Assump. 1 holds, eq. (7) is
low-variance only if we have large enough sam-
ples to compute Y c(g) and Y c(∞). Unfortunately,
given the size of state-of-the-art LMs and their
datasets, it can be expensive—both in terms of
computation and memory usage—to extract the
performance measures Yc(x) for all instances x
and checkpoints c. Even with unlimited compute,
Y c(g) can only be estimated using instances in Bg,
which lower bounds the variance of this estimator.

While the difference estimator is a first step
towards a principled estimator of counterfactual
memorisation, we can do better. In the next section,
we describe an estimator that has lower variance
and requires weaker assumptions.

4.2 The Difference-in-Differences Estimator
We now introduce another causal estimator based
on the difference-in-differences (DiD) design. The
intuition behind DiD is to use the time dimension to
help with identification; DiD identifies a causal es-
timand using the difference in the trends over time
of the outcome on treated vs. untreated instances.
In our specific setting, DiD relies on the assump-
tion that changes in model performance over time
would follow similar trends in different batches if
they had not been used for training. We formalise
this assumption as follows.
Assumption 2 (Parallel Trends). In the absence
of training, the expected change in model perfor-
mance across checkpoints would be the same re-
gardless of treatment. That is, for all c, c′ ≥ g− 1:

E
x

[
Yc(x;∞)− Yc′(x;∞) | G(x)= g

]
(8)

= E
x

[
Yc(x;∞)− Yc′(x;∞) | G(x)=∞

]
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We need a second assumption before we can
apply the DiD design to our setting.

Assumption 3 (No Anticipation). Training has no
effect before it happens. That is, for all c < g:

E
x

[
Yc(x; g) | G(x)= g

]
(9)

= E
x

[
Yc(x;∞) | G(x)= g

]

Given these two assumptions, we can now fol-
low Callaway and Sant’Anna (2021) in identify-
ing our target statistical estimand.8 Combined,
these assumptions allow us to rewrite expectation
2 in eq. (4) as a function of potential outcomes

that are observable: Yc(x;∞), Yg−1(x;∞) given
G(x)=∞ are observable on a held-out validation
set, while Yg−1(x; g) given G(x)= g is observ-
able on the training set. The following statistical
estimand thus identifies τg,c:

τdidg,c = E
x
[Yc(x; g)−Yg−1(x; g) | G(x)= g] (10)

− E
x
[Yc(x;∞)−Yg−1(x;∞) | G(x)=∞]

(See Lemma 3 in App. A.2 for a proof.) This leads
to the following DiD estimator.

Estimator 2. The difference-in-differences esti-
mator (DiD), defined as:

τ̂didg,c =
(
Yc(g)−Yg−1(g)

)

︸ ︷︷ ︸
diff in trained

−
(
Yc(∞)−Yg−1(∞)

)

︸ ︷︷ ︸
diff in untrained

(11)

is an unbiased estimator of τg,c under Assumps. 2
and 3.

Proof. See Lemma 4 in App. A.2 for a proof.

The DiD estimator depends on weaker assump-
tions and has a lower variance (under mild as-
sumptions, see App. A.3) than the difference esti-
mator in eq. (7). Specifically, the parallel trends
assumption (Assump. 2) is strictly weaker than
the i.i.d. one (Assump. 1): if p(x |G(x)= g) =
p(x |G(x)=∞), then it is trivial that perfor-
mances should present parallel trends. Moreover,
Assump. 2 only requires that the training and vali-
dation sets follow similar trends on average, which

8The DiD design was originally proposed for the case with
only two treatment and checkpoint steps (i.e., g ∈ {1,∞}
and c ∈ {0, 1}). Previous work has shown the challenges of
extending DiD to multiple timesteps, especially when allow-
ing for heterogeneous treatment effects (Roth et al., 2023).
Callaway and Sant’Anna (2021) propose an extension which
identifies eq. (3) while allowing for treatment effect hetero-
geneity across checkpoint and treatment steps.

might be true even in the case of, e.g., challenge
validation sets or deduplicated training data. There-
fore, the assumptions underpinning DiD are more
likely to hold in practice and we will use it to esti-
mate memorisation here.

In practice, the difference-in-differences estima-
tion procedure includes two steps. First, we com-
pute the model’s performance on a subset of anal-
ysed instances—i.e., samples from the training and
validation sets—using the available checkpoints;
thus forming a panel of observed outcomes, as it is
usually termed in econometrics. Then, we use this
panel to compute the estimates in eq. (11).

5 Prior Notions of Memorisation

Memorisation has recently received much atten-
tion (Arpit et al., 2017; Carlini et al., 2019, 2021;
Anagnostidis et al., 2023, inter alia).9 Prior work
has studied how model architecture and training
choices influence memorisation (Tirumala et al.,
2022; Kandpal et al., 2022; Lee et al., 2022; Bi-
derman et al., 2023a), and where memorised in-
stances are stored within a model (Maini et al.,
2023; Stoehr et al., 2024). In this section, we use
our framework to discuss three prior notions of
memorisation which we consider most relevant to
our paper: previous operationalisations of coun-
terfactual memorisation (e.g., Feldman, 2020), in-
fluence functions (Zheng and Jiang, 2022), and
extractable memorisation (Carlini et al., 2023).

5.1 Previous Operationalisations of
Counterfactual Memorisation

As mentioned before, estimating an instance’s
memorisation τx,c is non-trivial due to the coun-
terfactual component in its definition. We avoid
this issue by estimating expected memorisation τg,c
instead. Prior work (Feldman, 2020; Feldman and
Zhang, 2020; Zhang et al., 2023; Lukasik et al.,
2024) takes a different approach, comparing the
performance of models trained with and without
that instance. In doing so, they average perfor-
mance across training runs, measuring what we
term architectural counterfactual memorisation.

Formally, let ψ be a vector of variables respon-
sible for training variance. This includes, e.g., the
data permutation induced by σ and the initial model
parameters θ0. By defining a distribution p(ψ)
over these variables, architectural memorisation
can be defined as follows.

9See Hartmann et al. (2023) or Ishihara (2023) for surveys.
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Definition 4. Architectural counterfactual mem-
orisation is the counterfactual memorisation τx,T
when marginalising over training variables ψ:

τx,p(ψ)

def
= E
ψ
[τx,T |G(x) ̸=∞] (12)

= E
ψ
[YT (x;G(x))−YT (x;∞) |G(x) ̸=∞]

where G(x) in the first potential outcome depends
on which batch the shuffling function σ puts x in.

Prior work has proposed a number of methods
to estimate this value (Bachmann et al., 2022; Lin
et al., 2022; Ilyas et al., 2022; Park et al., 2023).
The simplest of these is to train several models
while including or not x in the training set; these
models are then used to approximate the expecta-
tion above. We describe a statistical estimand and
estimator for τx,p(ψ) in App. B.1, discussing the
assumptions needed by this approach.

Notably, this operationalisation has the advan-
tage of estimating memorisation at the instance
level. However, it also has drawbacks—beyond
just being computationally expensive to estimate.
These become apparent upon closer inspection of
the definition of τx,p(ψ). First, it does not provide
insights into the effect of the checkpoint step or
treatment step on memorisation; this is because T
is hard-coded into τx,p(ψ)’s definition and because it
marginalises over permutations of the data. While
it is trivial to generalise this definition to other
checkpoint steps c or to specific g, prior work has
mainly focused on these choices, overlooking the
impact of training dynamics on memorisation. Fur-
ther, and perhaps more importantly, marginalising
over p(ψ) means that this metric quantifies memo-
risation for a model architecture, rather than for a
specific model.

5.2 Influence Functions

Influence functions (Hampel, 1974; Cook and
Weisberg, 1980) estimate—without re-training a
model—how its parameters would change if an in-
stance x was removed from the training set. Specif-
ically, the new set of parameters can be approxi-
mated as follows (Koh and Liang, 2017):

θ−x,T ≈ θT + 1/N H−1
θ ∇θL(θT ,x) (13)

where Hθ is the hessian of L evaluated at θT . This
approximation is based on a first-order Taylor ex-
pansion of the training objective around θT , and
should lead to small errors under the following

assumptions: (i) the loss function is strictly con-
vex in θ, (ii) Hθ is a positive-definite matrix, and
(iii) the model has converged (i.e., the gradient is
zero). Given these assumptions, influence func-
tions can be used to efficiently estimate the coun-
terfactual term YT (x;∞) in the definition of τx,T .
Specifically, we can measure the model’s perfor-
mance using the updated parameters, Y−x,T (x)

def
=

γ(θ−x,T ;x), and equate YT (x;∞) = Y−x,T (x).
The influence function estimator of memorisation
can then be written as:

τ̂inflx,T = YT (x)− Y−x,T (x) (14)

We formalise this estimator and its statistical es-
timand in App. B.2. Notably, Zheng and Jiang
(2022) use a similar approach to estimate memori-
sation in a classification setting.

Influence functions thus provide a computation-
ally efficient method to estimate instance-level
counterfactual memorisation. However, none of
the required assumptions above is typically satis-
fied for LMs, which can lead to strong biases in
this estimator (Basu et al., 2020; Bae et al., 2022;
Schioppa et al., 2023). Moreover, assumptions (ii)
and (iii) require θT to be locally optimal, meaning
that this approach is not applicable for studying
c < T . We therefore cannot use it to study how
memorisation interacts with training dynamics.

5.3 Extractable Memorisation
Carlini et al. (2023) defines memorisation as (k,ℓ)-
extractability; a string is (k,ℓ)-extractable if the
model correctly predicts ℓ of its tokens given a pre-
fix of k tokens. This definition has recently gained
much interest because of its relevance to copyright
infringement and data protection. Despite being
seemingly different, we argue that extractable mem-
orisation is an estimator for counterfactual memori-
sation. Concretely, let performance γ be measured
as whether a string is (k,ℓ)-extractable. Now, as-
sume that a string is not (k,ℓ)-extractable in the
absence of training, i.e., Yc(x;∞)= 0. Given this
assumption, we can define an extractable memori-
sation estimator as:

τ̂extrx,c = Yc(x) (15)

We formalise this estimator and its statistical esti-
mand in App. B.3.

Extractable memorisation thus implicitly as-
sumes that Yc(x;∞)= 0. Counterfactual memo-
risation, on the other hand, controls for this coun-
terfactual. Notably, assuming Yc(x;∞)= 0 may
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be reasonable when a string is long and complex;
in this case, the chance that x would be in the
model’s top-1 beam (the output of greedy decod-
ing) approaches zero. However, this assumption
may not be reasonable for shorter or less complex
sequences. Rather, it may cause the resulting es-
timate to conflate memorisation with the intrinsic
difficulty of predicting a string.

6 Experiments

While our method applies to any model trained with
a single pass on its training data, we focus on quan-
tifying memorisation in pretrained LMs, which are
characterised by the use of architectures with a
large number of parameters and large datasets. Due
to the costs of training such models from scratch,
we take advantage of open-source pretrained mod-
els whose intermediate checkpoints and prepro-
cessed data are publicly available. In this section,
we detail the models and data used and describe
how we collect the observed outcomes Yc(x).

The Pythia Suite. We use the publicly available
Pythia model suite10 (Biderman et al., 2023b), com-
posed of 8 transformers of sizes ranging from 70M
to 12B parameters. These models were trained
on the Pile dataset (Gao et al., 2020; Biderman
et al., 2022), a 300B-token curated collection of
English documents. All models are trained using
the same data. Specifically, the dataset is shuffled
and “packed” into sequences of 2,049 tokens;11

each of these sequences corresponds to an instance
x. Training was performed using a cosine learning
rate schedule with warm-up, and using a batch size
of 1,024 sequences, resulting in exactly 143k opti-
misation steps. We use the model versions trained
on the deduplicated Pile dataset to reduce the risk
of finding spurious memorisation patterns due to
duplication. The deduplicated dataset has 207B
tokens, thus models using this version are trained
for circa 1.5 epochs to keep an equal token count
relative to the non-deduplicated versions. We con-
sider the checkpoints relative to the first epoch (i.e.,
up to step 95k).12 More details are in App. C.

Constructing the Panel. Ideally, we would col-
lect performance metrics for each instance x and

10Both preprocessed data and intermediate checkpoints are
publicly available at github.com/EleutherAI/pythia.

11Since target tokens are the right-shifted input tokens, to
compute the loss on 2,048 tokens the Pythia authors added a
token to the context.

12For completeness, we report the second half-epoch (steps
96k-143k) analysis in App. D.

for every checkpoint step c. However, given the
size of the Pile dataset, it is computationally in-
feasible to collect evaluations for all instances;
thus we resort to subsampling this data. Further-
more, the granularity of the available checkpoints
(i.e., every 1k timesteps) does not allow us to con-
sider each timestep; thus we consider timesteps
c ∈ {0, 1k..., 95k} and treatment timesteps g ∈
{1k, 2k..., 95k}. To match the checkpoint fre-
quency, we consider all instances between two
checkpoints (i.e., 1k batches) as if they were seen
by the model at the same timestep. We term these
groups of batches macro-batches13 and formally
define them as Gg =

⋃
g−1k<t≤g Bt. To obtain

enough evaluations for each macro-batch, we sam-
ple instances from the training set in two steps: we
randomly choose 10 batches for each macro-batch
and sample 10 instances from each. This process
results in 14.3k analysed training instances. Addi-
tionally, we sample 2k instances from the valida-
tion set to create G∞. This process returns a panel
of 16.3k instances evaluated at 96 timesteps.14 As
our performance metric we use the sequence-level
log-likelihood: γ(θ,x) = log pθ(x).15

Statistical Inference. To compute statistical sig-
nificance, we use the Simple Multiplier Boot-
strap procedure of Callaway and Sant’Anna (2021)
which returns simultaneous confidence intervals
for all memorisation estimates, accounting for de-
pendencies across macro-batches and checkpoint
steps and thus avoiding multiple-testing issues.

7 Results

We report the memorisation profiles of all Pythia
sizes in Fig. 2. Below, we use these memorisation
profiles to describe different types of memorisation.

Instantaneous Memorisation. Instantaneous
memorisation estimates (defined in §3 as τg,c
when g= c) are depicted as the diagonal entries in
the memorisation profiles in Fig. 2, and are also
presented in Fig. 3. From these estimates, we can
clearly observe the effect of the treatment step
on memorisation: instantaneous memorisation is
stronger earlier in training than later. Interestingly
(but perhaps unsurprisingly), instantaneous mem-
orisation correlates with the cosine learning rate

13In econometrics group of instances that undergo treatment
at the same time are typically termed cohorts.

14Our data and experimental artefacts are publicly available
at huggingface.co/collections/pietrolesci/memorisation-profiles.

15Results using different metrics are reported in App. D.
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Figure 2: Memorisation profiles (τg,c). We only show statistically significant entries.
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Figure 3: Instantaneous memorisation (τg,c for g = c).
We only show statistically significant estimates.

schedule: it is stronger after the warm-up period
(around timestep 1.5k) than before it. Furthermore,
and as expected, instantaneous memorisation
increases with model size.16

Persistent Memorisation. Persistent memorisa-
tion estimates (defined in §3 as τg,c when g > c)
are depicted as the off-diagonal entries in the mem-
orisation profiles in Fig. 2. Fig. 4 shows the aver-
age persistent memorisation at a specific number of
timesteps after treatment; in this figure, τg,c were
averaged across macro-batches for each c− g.17

This way of aggregating the memorisation profile
allows us to summarise the general memorisation
patterns of a model. Smaller models have lower per-

16Notably, we expect instantaneous memorisation to always
be present in normally-trained LMs (albeit with a potentially
small value). It could thus be used for power analysis (Cohen,
1992): choosing the number of instances to sample per macro-
batch which provides sufficient statistical power to correctly
detect memorisation.

17By averaging across macro-batches, variance is lower and
more estimates become statistically significant.
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Figure 4: Average persistent memorisation (τg,c aver-
aged per timestep after treatment, i.e., c− g). We only
show statistically significant estimates.

sistent memorisation, with 70M having no persis-
tent memorisation. Interestingly, persistent mem-
orisation plateaus after 25k timesteps. This result
has implications for data ordering during training.
For example, if there are particular instances that
we do not want the model to memorise, but which
we still want to use during training, they should be
included in earlier batches.18

Residual Memorisation. Residual memorisation
estimates (defined in §3 as τg,c when c = T ) are
depicted as the final-column entries in Fig. 2, and
are also presented in Fig. 5 (we consider T to be the
end of the first epoch here, i.e., timestep 95k). In-
terestingly, while all macro-batches undergo some
degree of instantaneous memorisation, it appears

18We note that our results differ from Biderman et al.’s
(2023b), who find no differences in memorisation due to an
instance’s treatment step. We hypothesise that this discrep-
ancy stems from the differences in metrics used to quantify
memorisation and the statistical approaches adopted.
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Figure 6: Pearson correlation between the memorisation
profile of different models.

that many are then forgotten by the end of the first
epoch, as shown by the statistically insignificant
residual memorisation estimates. Furthermore, in
line with our persistent memorisation results, resid-
ual memorisation shows a recency effect: the final
macro-batches are the most memorised. We hy-
pothesise that this recency effect can be explained
by the learning rate schedule. Specifically, when
the learning rate is high, the optimisation process
moves model parameters further in the locally op-
timal direction, thus “overwriting” previous infor-
mation with new information; this results in higher
instantaneous and lower residual memorisation. On
the contrary, towards the end of the training process,
when the learning rate is lower, previous informa-
tion is “forgotten” less as the updates are smaller
(in expectation), resulting in higher residual and
lower instantaneous memorisation.

Memorisation Across Scales. Due to the cost
of training large LMs, it is highly desirable to be
able to make predictions about a trained model’s

characteristics before undertaking training. One
strategy is to derive insights from smaller mod-
els to inform the design of larger ones (Rae et al.,
2021; Black et al., 2022; Le Scao et al., 2022).19

Predictability across scales is visually apparent in
Fig. 3 and 4 where there are similar trends across
model sizes. We formalise this intuition in Fig. 6,
where we report the Pearson correlation between
the memorisation profiles of different models. In-
terestingly, memorisation for larger models (e.g.,
12B) is predictable from smaller ones (e.g., 410M).
We note that 70M and 160M are less predictive of
the memorisation in 12B. However, prior work has
shown that both these models suffer from training
instability (Godey et al., 2024); the reduction in
predictability with these smaller models might thus
be specific to the Pythia suite.

8 Conclusions

The memorisation of training data by neural net-
works has critical implications for privacy, copy-
right, and security. Thus, well-founded quantifi-
cations of memorisation, and corresponding ac-
curate and efficient methods for their estimation
are of great importance. This work presents one
such quantification and builds on the econometrics
literature to derive an unbiased and efficient esti-
mator of memorisation based on the difference-in-
differences design. We use this estimator to study
the memorisation profiles of the Pythia model suite
and find that memorisation is stronger and more
persistent in larger models, determined by data or-
der and learning rate, and stable across model sizes.

19Scaling laws for other notions of memorisation (§5) have
been studied in Biderman et al. (2023a).

15624



Limitations

This work estimates counterfactual memorisation
in pretrained LMs. Unfortunately, due to the costs
associated with running large pretrained LMs—
even in inference mode—we experimented with
a limited number of models (the Pythia suite)
trained in a single language (English). Investigating
whether other model architectures, training proce-
dures, and natural languages result in similar mem-
orisation profiles would be important to strengthen
our conclusions. Furthermore, when collecting the
panel data needed to estimate memorisation, we
subsampled the number of evaluated instances; this
can significantly increase our estimators’ variance.
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A Proofs

A.1 Difference Estimand and Estimator

Lemma 1 (Identification of the Difference Estimand). The difference estimand, defined in eq. (6), identifies
expected counterfactual memorisation (i.e., the causal estimand in eq. (3)) under Assump. 1.

Proof. For this proof, we start with the definition of the difference estimand and, via algebraic manipula-
tion, show its equality to expected counterfactual memorisation:

τdiffg,c = E
x

[
Yc(x; g) | G(x) = g

]
− E
x

[
Yc(x;∞) | G(x) = ∞

]
(16a)

= E
x

[
Yc(x; g) | G(x) = g

]
− E
x

[
Yc(x;∞) | G(x) = g

]
By Assump. 1 (16b)

= E
x

[
Yc(x; g)− Yc(x;∞) | G(x) = g

]
By linearity of expectations (16c)

= τg,c (16d)

This completes the proof.

Lemma 2 (Unbiasedness of the Difference Estimator). The difference estimator, defined in Estimator 1, is
an unbiased estimator of expected counterfactual memorisation τg,c under Assump. 1.

Proof. To prove this estimator is unbiased, let us first define the probability of sampling a batch Bg:

p(Bg) =
∏

x∈Bg

p(x | G(x) = g) (17)

Taking the expectation of our estimator with respect to the batches used for its estimation we see that:

E
Bg ,B∞

[
τ̂diffg,c

]
= E

Bg ,B∞

[
Y c(g)− Y c(∞)

]
(18a)

= E
Bg ,B∞


 1

|Bg|
∑

x∈Bg

Yc(x)−
1

|B∞|
∑

x∈B∞

Yc(x)


 (18b)

= E
Bg


 1

|Bg|
∑

x∈Bg

Yc(x)


− E

B∞

[
1

|B∞|
∑

x∈B∞

Yc(x)

]
(18c)

= E
x

[
Yc(x; g) | G(x) = g

]
− E
x

[
Yc(x;∞) | G(x) = ∞

]
(18d)

= τdiffg,c (18e)

where eq. (18c) follows because the sampling of Bg and B∞ are independent; eq. (18d) holds due to
eq. (17) and the unbiasedness of Monte Carlo estimators. We can now invoke Lemma 1, which states that
τdiffg,c identifies τg,c under the i.i.d. assumption (Assump. 1). Thus, we have that the expected value of our
estimator is equal to τg,c, finishing the proof.

A.2 Difference-in-Differences Estimand and Estimator

Lemma 3 (Identification of the Difference-in-Differences Estimand). The DiD estimand, defined in
eq. (10), identifies expected counterfactual memorisation (i.e., the causal estimand in eq. (3)) under
Assumps. 2 and 3 for all c ≥ g.

Proof. To prove this lemma, we first note that by the no anticipations assumption (Assump. 3):

E
x
[Yg−1(x;∞) | G(x) = g] = E

x
[Yg−1(x; g) | G(x) = g] (19)
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Furthermore, by the parallel trends assumption (Assump. 2) and linearity of expectations:

E
x

[
Yc(x;∞)− Yc′(x;∞) | G(x) = g

]
= E
x

[
Yc(x;∞)− Yc′(x;∞) | G(x) = ∞

]
(20)

=⇒ E
x

[
Yc(x;∞) |G(x)= g

]
= E
x

[
Yc′(x;∞) |G(x)= g

]
− E
x

[
Yc(x;∞)− Yc′(x;∞) |G(x)=∞

]

As in Lemma 1, we now start with the definition of the DiD estimand and, via algebraic manipulation,
show its equivalence to expected counterfactual memorisation:

τdidg,c

= E
[
Yc(x; g)− Yg−1(x; g) | G(x) = g

]
− E

[
Yc(x;∞)− Yg−1(x;∞) | G(x) = ∞

]
(21a)

= E
[
Yc(x; g) |G(x)=g

]
− E

[
Yg−1(x; g) |G(x)=g

]
︸ ︷︷ ︸

no anticipation

−E
[
Yc(x;∞)− Yg−1(x;∞) |G(x)=∞

]

(21b)

= E
[
Yc(x; g) |G(x)=g

]
− E

[
Yg−1(x;∞) |G(x)=g

]
− E

[
Yc(x;∞)− Yg−1(x;∞) |G(x)=∞

]
︸ ︷︷ ︸

parallel trends

(21c)

= E
[
Yc(x; g) | G(x) = g

]
− E

[
Yc(x;∞) | G(x) = g

]
(21d)

= E
[
Yc(x; g)− Yc(x;∞) | G(x) = g

]
(21e)

= τg,c (21f)

where we replace the terms in eqs. (21b) and (21c) using their equivalences given in eq. (19) and eq. (20),
respectively. This completes the proof. We note that a similar proof is available in Lemma A.1 in Callaway
and Sant’Anna (2021).

Lemma 4 (Unbiasedness of the Difference-in-Differences Estimator). The difference-in-differences
estimator, defined in Estimator 2, is an unbiased estimator of expected counterfactual memorisation τg,c
under Assumps. 2 and 3.

Proof. We can follow the same logic as in Lemma 2 because the same properties hold (i.e., the sampling
of Bg and B∞ are independent, the joint probability of a set is the product of the probability of sampling
individual instances, and the unbiasedness of Monte Carlo estimators). We then arrive at the following
equivalence:

E
Bg ,B∞

[
τ̂didg,c

]
= E

Bg ,B∞

[
Y c(g)− Y g−1(g)− Y c(∞) + Y g−1(∞)

]
(22a)

= E
Bg ,B∞


 1

|Bg|
∑

x∈Bg

(
Yc(x)− Yg−1(x)

)
− 1

|B∞|
∑

x∈B∞

(
Yc(x)− Yg−1(x)

)

 (22b)

= E
Bg


 1

|Bg|
∑

x∈Bg

(
Yc(x)− Yg−1(x)

)

− E

B∞

[
1

|B∞|
∑

x∈B∞

(
Yc(x)− Yg−1(x)

)]
(22c)

= E
x

[
Yc(x; g)− Yg−1(x; g) |G(x)=g

]
− E
x

[
Yc(x;∞)− Yg−1(x;∞) |G(x)=∞

]
(22d)

= τdidg,c (22e)

Finally, we invoke Lemma 3 which proves that τdidg,c identifies τg,c under Assumps. 2 and 3.
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A.3 Variances of Estimators

We assume that all potential outcomes Yc(x; g) have the same variance σ2. We now first look at the
variance of the difference estimator. To this end, let’s consider the variance of Y c(g):

Var
(
Y c(g)

)
= Var


 1

|Bg|
∑

x∈Bg

Yc(x)


 =

1

|Bg|2
∑

x∈Bg

Var
(
Yc(x; g) | G(x) = g

)
=

|Bg|σ2

|Bg|2
=

σ2

|Bg|
(23)

This is simply the variance of estimating an expectation using the mean of |Bg| i.i.d. random variables,
each with variance σ2. We can similarly derive the variance of Y c(∞). The variance of τ̂diffg,c is then:

Var(τ̂diffg,c ) =
σ2

|Bg|
+

σ2

|B∞| − 2Cov(Y c(g), Y c(∞)) (24)

Assuming batches Bg and B∞ were drawn independently, then the estimators Y c(g) and Y c(∞) should
also be independent. Thus, Cov(Y c(g), Y c(∞)) = 0.

We now look at the variance of the difference-in-differences estimator. Let the correlation between
Yc(x; g) and Yg−1(x; g) be ρ. These are, respectively, the potential outcomes of our model on a specific
instance x before and after training on it. For shorthand, let ∆Y g = Y c(g) − Y g−1(g) and ∆Y ∞ =
Y c(∞)− Y g−1(∞). We can show that:

Var(∆Y g) = Var
(
Y c(g)− Y g−1(g)

)
(25a)

= Var


 1

|Bg|
∑

x∈Bg

(
Yc(x; g)− Yg−1(x; g)

)

 (25b)

=
1

|Bg|2
∑

x∈Bg

(
σ2 + σ2 − 2Cov

(
Yc(x; g), Yg−1(x; g)

))
(25c)

=
1

|Bg|2
∑

x∈Bg

(2σ2 − 2ρσ2) =
2σ2

|Bg|
(1− ρ) (25d)

We can derive the variance for ∆Y ∞ in the exact same manner. We thus have that:

Var(τ̂didg,c ) = Var(∆Y g) + Var(∆Y ∞)− 2Cov(∆Y g,∆Y ∞) (26)

Note that ∆Y g and ∆Y ∞ are estimated with independent samples, and thus, Cov(∆Y g,∆Y ∞) = 0. We
can thus rewrite this estimator’s variance as:

Var(τ̂didg,c ) =
2σ2

|Bg|
(1− ρg) +

2σ2

|Bg|
(1− ρ∞) (27)

If we have ρg > 0.5 and ρ∞ > 0.5, then the variance of τ̂didg,c should be lower than that of the τ̂diffg,c . This
is a reasonable assumption since—for fixed timesteps g− 1 and c—there should be a strong relationship
between a model’s performance on an instance before (g− 1) and after (c) it has been trained on due
to factors such as vocabulary richness and grammatical structure.

B Statistical Estimands and Estimators in Prior Work

In this section, we formalise prior works’ estimators of memorisation using our formalisation of counter-
factual memorisation.
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B.1 Architectural Counterfactual Memorisation
In this section, we describe one potential estimator for architectural counterfactual memorisation τx,p(ψ) (in
Defn. 4). First, we need the following assumption in order to identify the causal estimand for this quantity.

Assumption 4 (Negligible training effect). In expectation, the effect of having a specific instance in the
training set is negligible on any validation instance. That is, for any two instances x and x′:

E
ψ

[
YT (x

′;∞) |G(x)=∞
]
= E
ψ

[
YT (x

′;∞) |G(x) ̸=∞
]

(28)

Given this assumption, we can identify the following statistical estimand for τx,p(ψ):

τarchx,p(ψ) = E
ψ
[YT (x;G(x)) | G(x) ̸= ∞]− E

ψ
[YT (x;∞) | G(x) = ∞] (29)

We now define the architectural estimator, associated with this statistical estimand.

Estimator 3. The architectural estimator, defined as:20

τ̂archx,p(ψ) =
1

|Θg|
∑

θ∈Θg

YT (x)−
1

|Θ∞|
∑

θ∈Θ∞

YT (x) (30)

is an unbiased estimator of τx,p(ψ) under Assump. 4. In this equation, Θg and Θ∞ are sets of model
parameters trained independently with or without x in the training set.

Proof. First, we prove that the statistical estimand τarchx,p(ψ) identifies τx,p(ψ):

τarchx,p(ψ) = E
ψ
[YT (x;G(x)) | G(x) ̸= ∞]− E

ψ
[YT (x;∞) | G(x) = ∞] (31a)

= E
ψ
[YT (x;G(x)) | G(x) ̸= ∞]− E

ψ
[YT (x;∞) | G(x) ̸= ∞] By Assump. 4 (31b)

= E
ψ
[YT (x;G(x))− YT (x;∞) | G(x) ̸= ∞] Linearity of expectations (31c)

= τx,p(ψ) (31d)

We now prove the estimator above is unbiased:

τ̂archx,p(ψ) = E
Θg ,Θ∞


 1

|Θg|
∑

θ∈Θg

YT (x)−
1

|Θ∞|
∑

θ∈Θ∞

YT (x)


 (32a)

= E
Θg


 1

|Θg|
∑

θ∈Θg

YT (x)


− E

Θ∞


 1

|Θ∞|
∑

θ∈Θ∞

YT (x)


 (32b)

= E
ψ
[YT (x;G(x)) | G(x) ̸= ∞]− E

ψ
[YT (x;∞) | G(x) = ∞] (32c)

= τarchx,p(ψ) (32d)

This completes the proof.

B.2 Influence Functions
As mentioned in §5.2, influence functions approximate θ−x,T using a first-order Taylor expansion of the
training objective around θT . This should lead to small errors under the following assumptions: (i) the
loss function is strictly convex in θ, (ii) Hθ is a positive-definite matrix, and (iii) the model has converged
(Koh and Liang, 2017). We make these assumptions explicit now.

Assumption 5 (Strict Convexity). The loss function L is strictly convex with respect to the parameters θ.
20We note that prior work has proposed more efficient estimators of the above (Bachmann et al., 2022; Lin et al., 2022; Ilyas

et al., 2022; Park et al., 2023). However, these estimators remain computationally expensive for large LMs.
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Assumption 6 (Local Optimality). The parameters θT locally minimise the loss function L, meaning that
the Hθ is a positive-definite matrix and that gradient of the loss with respect to the parameters θT is zero.

Given these assumptions, we can estimate the counterfactual term in τx,c (in eq. (2)) by computing
the performance using the updated parameters θ−x,T . As mentioned in the main text, we thus define
Y−x,T (x) = γ(θ−x,T ;x) and equate YT (x;∞) = Y−x,T (x).
Estimator 4. The influence function estimator, defined as:

τ̂inflx,T = YT (x)− Y−x,T (x) (33)

is an unbiased estimator of τx,T under Assumps. 5 and 6.
Proof. See Cook and Weisberg (1980) or Koh and Liang (2017) for derivations of how Y−x,T (x) approx-
imates the counterfactual YT (x;∞) under the assumptions above. The estimator then follows trivially
from replacing YT (x;∞) in eq. (2).

B.3 Extractable Memorisation
As mentioned in §5.3, extractable memorisation assumes zero-valued counterfactual performances
Yc(x;∞) = 0. We formalise this assumption, and the associated statistical estimand and estimator
in this section.
Assumption 7 (Negligible counterfactual). In the absence of training, performance on a string should be
zero: Yc(x;∞) = 0.

Given this assumption, we can trivially identify counterfactual memorisation as being equivalent to the
statistical estimand: τextrx,c = Yc(x; g). We can now define the (k,ℓ)-extractable memorisation estimator
under our framework.
Estimator 5. The (k, ℓ)-extractable memorisation estimator, defined as:

τ̂extrx,c = Yc(x) (34)

is an unbiased estimator of τx,c under Assump. 7.
Proof. This follows trivially from replacing Yc(x;∞) with 0 in eq. (2).

C Implementation Details

We implement all experiments using the PyTorch framework (Paszke et al., 2019). We use the Pythia
models as available through the transformers library (Wolf et al., 2020). For a consistent evaluation
between scales, we load every model using bfloat16 precision, which is needed for the larger versions.
We control randomness using CUDA deterministic operations and seeding the pseudo-random number
generators at every level of the stack and for each multi-processing worker. We use the implementation of
the Callaway and Sant’Anna (2021) estimator as available in the differences library.21

C.1 The Pythia Suite
We use the publicly available Pythia model suite (Biderman et al., 2023b), which was trained on the
Pile (Gao et al., 2020; Biderman et al., 2022). Both the preprocessed training data and intermediate
checkpoints are publicly available.22

Data. The Pile is a 300B-token curated collection of English documents. The deduplicated version of the
dataset is obtained by applying a near-deduplication method based on MinHashLSH and has 207B tokens.
Before being used for training, the dataset is shuffled, tokenised, and “packed” into sequences of 2,049
tokens with no end-of-document token.23 By design, each sequence can pack multiple documents and
tokens can attend across document boundaries. Noticeably, the packing process implies that the second
half-epoch of deduplicated data contains the same documents but not necessarily the same sequences.
There does not exist an official validation set for Pythia models. However, we confirmed with the authors
that the original Pile validation set has not been used for training.

21github.com/bernardodionisi/differences.
22github.com/EleutherAI/pythia.
23github.com/EleutherAI/pythia/issues/123.
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Models. The Pythia model suite is composed of 16 models: transformers of 8 different sizes trained
on the Pile as-is or deduplicated. All model sizes were trained using a cosine learning rate schedule
with warm-up, the same data order, and a batch size of 1,024 sequences, resulting in exactly 143k
optimisation steps. The final 48k optimisation steps correspond to the second half-epoch. Thus, we focus
on model checkpoints at initialisation (step 0), and after every 1k iterations (steps 1k-95k) resulting in
96 checkpoints evenly spaced throughout training. For completeness, we report the second half-epoch
(steps 96k-143k) analysis in App. D. Additionally, log-spaced checkpoints are available for timesteps
early in training (timesteps c ∈ {2i}9i=0). We do not consider them to obtain evaluations at evenly spaced
intervals. We use all available model sizes, that is, 70M, 160M, 410M, 1.4B, 6.9B, and 12B, except 2.8B.
We exclude 2.8B from the results since we found a potential mismatch between the available checkpoints
and the data order used during training.

C.2 Hardware Details
We use a server with one NVIDIA A100 80GB PCIe, 32 CPUs, and 32 GB of RAM for all experiments.
Below, we report a subset of the output of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

D Additional Results

On the next page in Fig. 7, we report the memorisation profiles obtained using other metrics besides
sequence-level log-likelihood. Specifically, the average token-level accuracy given the true context and
the average rank assigned by the model to the correct next token given the true context. We report the
results for the entire training process—i.e., using all the available checkpoints: c ∈ {0, 1k, ..., 143k} and
g ∈ {1k, ..., 143k}. We present the metrics from most coarse—i.e., average token accuracy (Fig. 7a)—to
most fine-grained—i.e., sequence log-likelihood (Fig. 7c).

As shown in Fig. 7, different performance metrics result in distinct memorisation estimates. Specifically,
finer-grained metrics—like sequence log-likelihood—allow us to detect smaller memorisation effects,
and vice versa. For example, average token accuracy, which is the most coarse-grained metric, mostly
does not capture instantaneous memorisation for Pythia 410M. Instead, a finer-grained metric—like
average token rank or sequence log-likelihood—detects additional effects. Depending on the use-case
different metrics might be appropriate. For example, analogously to extractable memorisation (Carlini
et al., 2021), average token accuracy could be used to measure memorisation as it matches the specific
use-case: detecting whether a model would generate a specific sequence when prompted with some of its
tokens. We chose sequence log-likelihood because it allows us to capture more fine-grained memorisation
effects beyond the capability of the model to generate a specific sequence. In particular, accuracy captures
“hard” transitions in the model’s output by determining whether a token is the most likely in the model’s
output distribution. Log-likelihood, on the other hand, captures more nuanced impacts of training on an
instance by assessing whether a token is more likely to be generated than it would be otherwise.
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(a) Average Token Accuracy:, γ(θc,x) =
1
|x|

∑|x|
i=1 1(x̂i = xi), where x̂i = argmaxx∈V pθc(x | x<i) is the predicted token

at position i computed using the correct previous tokens as context and |x| is the number of tokens in the sequence.
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(b) Average Rank of the True Token: γ(θc,x) = 1
|x|

∑|x|
i=1 rank(xi), where the function rank(·) returns the rank of the

true token at position i computed from the probabilities assigned by the model using the correct previous tokens as context, i.e.
pθc(x | x<i), and |x| is the number of tokens in the sequence.

20k

60k

100k

140k

20k 60k 100k 140k
20k

60k

100k

140k

20k 60k 100k 140k 20k 60k 100k 140k
Checkpoint Step

Tr
ea

tm
en

t S
te

p

70M 160M 410M

1.4B 6.9B 12B

(c) Sequence Log-Likelihood: γ(θc,x) = log pθc(x), where log pθc(x) =
∑|x|

i=1 log pθc(xi | x<i) and |x| is the number of
tokens in the sequence.

Figure 7: Memorisation profiles (τg,c) computed using different performance metrics γ using all the available
checkpoints—i.e., c ∈ {0, 1k, ..., 143k} and g ∈ {1k, ..., 143k}. The dashed vertical line indicates the end of the
first epoch (c=95k). We only show statistically significant entries.
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