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Abstract

Zero-shot stance detection (ZSSD) aims to de-
termine whether the author of a text is in favor,
against, or neutral toward a target that is un-
seen during training. In this paper, we present
EZ-STANCE, a large English ZSSD dataset
with 47,316 annotated text-target pairs. In con-
trast to VAST (Allaway and McKeown, 2020),
which is the only other large existing ZSSD
dataset for English, EZ-STANCE is 2.5 times
larger, includes both noun-phrase targets and
claim targets that cover a wide range of do-
mains, provides two challenging subtasks for
ZSSD: target-based ZSSD and domain-based
ZSSD, and contains much harder examples for
the neutral class. We evaluate EZ-STANCE us-
ing state-of-the-art deep learning models. Fur-
thermore, we propose to transform ZSSD into
the NLI task by applying simple yet effective
prompts to noun-phrase targets. Our experi-
mental results show that EZ-STANCE is a chal-
lenging new benchmark, which provides signif-
icant research opportunities on English ZSSD.
We publicly release our dataset and code at
https://github.com/chenyez/EZ-STANCE.

1 Introduction

The goal of stance detection is to automatically
detect whether the author of a text is in favor of,
against, or neutral toward a specific target (Mo-
hammad et al., 2016b; Küçük and Can, 2020; AL-
Dayel and Magdy, 2021), e.g., public education,
mask mandate, or nuclear energy. The stance can
reveal valuable insights relevant to events such as
public policy-making and presidential elections.

Earlier research has concentrated on two types
of stance detection tasks: in-target stance detection,
in which models are trained and evaluated using
data from the same target, e.g., both train and test
sets contain data about “Donald Trump” (Hasan
and Ng, 2014; Mohammad et al., 2016b; Graells-
Garrido et al., 2020), and cross-target stance detec-
tion, where the models are trained on source targets

that are related to, but distinct from, the destina-
tion targets (Augenstein et al., 2016; Wei and Mao,
2019), which remain unseen during training (e.g.,
the destination target is “Donald Trump” whereas
the source target is “Hillary Clinton”). However,
it is unrealistic to incorporate every potential or
related target in the training set. As such, zero-shot
stance detection (ZSSD) has emerged as a promis-
ing direction (Allaway and McKeown, 2020) to
evaluate classifiers on a large number of unseen
(and unrelated) targets. ZSSD is more related to
real-world scenarios and has consequently started
to receive significant interest recently (Liu et al.,
2021; Luo et al., 2022; Liang et al., 2022b).

Despite the growing interest in ZSSD, the task
still exhibits several limitations. First, the VAST
dataset (Allaway and McKeown, 2020) which is the
only other large existing ZSSD dataset for English,
contains only noun phrase targets. Yet, in real-
world scenarios, stance is often taken toward both
noun phrases (Mohammad et al., 2016b; Glandt
et al., 2021) and claims (Ferreira and Vlachos,
2016; Derczynski et al., 2017). We notice that mod-
els trained on data with noun-phrase targets strug-
gle to accurately predict the stance for claim-target
data, and vice versa, due to the mismatch between
the training and test data. The need to incorporate
both types of targets for ZSSD has been relatively
overlooked. Second, VAST is designed solely to
detect the stance of unseen targets, but these un-
seen targets at the inference stage originate from
the same domain as the training targets (in-domain),
possessing similar semantics, which makes the task
less challenging. Third, despite being instrumental
for the development of zero-shot stance detection,
VAST generates data for the neutral class by ran-
domly permuting documents and targets, leading
to a lack of semantic correlation between the two
(we show an example from VAST from the neutral
class in Table 1). Deep learning models can easily
detect these patterns, consequently diminishing the
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VAST
Text: So if someone can’t do algebra they can out of it, but
if another student takes it and fails they get an F on their
transcripts? How could this work and be fair to those who
attempt to take subjects which challenge themselves?
Stance/Noun-phrase targets: Neutral / medical website
EZ-STANCE
Text: What happened to "herd immunity"? Are people
supposed to hide under their beds in a zip lock bag?
Stance/Noun-phrase targets: Against / herd immunity
Stance/Claim targets: Favor / People are not supposed to
be forced to stay indoors.
Stance/Noun-phrase targets: Neutral / zip lock bag

Table 1: Examples from EZ-STANCE and VAST.

complexity of the task.
In an effort to address the aforementioned lim-

itations and spur research in ZSSD, we present
EZ-STANCE, a large English Zero-shot stance de-
tection dataset collected from Twitter. In contrast
with VAST, EZ-STANCE is, to our knowledge, the
first large English ZSSD dataset that captures both
noun-phrase targets and claim targets, covering a
more diverse set of targets. By training a single
model on our comprehensive dataset, we achieve
comparable or superior performance than training
separate models for each type of target. Moreover,
EZ-STANCE includes two real-world scenarios for
zero-shot stance detection, namely target-based and
domain-based ZSSD. Subtask A: target-based
zero-shot stance detection. This subtask is the
same as the traditional ZSSD task (Allaway and
McKeown, 2020), where stance detection classi-
fiers are evaluated using a large number of com-
pletely unseen (and unrelated) targets, but from the
same domains (in-domain). Subtask B: domain-
based zero-shot stance detection. This subtask
is our proposed ZSSD task where stance detection
classifiers are evaluated using a large number of un-
seen targets from completely new domains (out-of-
domain). Furthermore, in EZ-STANCE, annotators
manually extract targets from each tweet to form
the neutral class, ensuring semantic relevance to
the tweet content. We show an example from our
dataset along with corresponding noun-phrase and
claim targets for each stance (against, favor, and
neutral) in Table 1. As we can see from the table,
the noun-phrase target “zip lock bag” is relevant to
the tweet but the author of the tweet holds a neutral
stance towards this target.

In summary, our contributions are as follows: 1)
We present EZ-STANCE, a unique large zero-shot
stance detection dataset, composed of 47,316 an-
notated English tweet-target pairs. EZ-STANCE is

2.5 times larger than VAST (Allaway and McKe-
own, 2020), which is the only large existing ZSSD
dataset for English. We provide a detailed de-
scription and analysis of our dataset; 2) We con-
sider a more diverse set of targets including both
noun phrase and claim targets (see Table 1); 3)
We include two challenging ZSSD subtasks in EZ-
STANCE: target-based zero-shot stance detection
and domain-based zero-shot stance detection; 4)
We establish baseline results using both traditional
models and pre-trained language models; 5) We
propose to formulate stance detection into the task
of natural language inference (NLI) by applying
simple yet effective prompts to noun-phrase targets.
Our results and analysis show that EZ-STANCE is
a challenging new benchmark.

2 Related Work

Target-specific stance detection is the most preva-
lent type of stance detection (ALDayel and Magdy,
2021), whose goal is to determine the stance ex-
pressed in a text towards a target. Usually, the tar-
get is an entity / short noun-phrase, e.g., a political
figure or controversial topic (Hasan and Ng, 2014;
Mohammad et al., 2016a; Zotova et al., 2020; Con-
forti et al., 2020a,b), or a claim, e.g., an article’s
headline or a reply to a rumorous post (Qazvinian
et al., 2011; Derczynski et al., 2015; Ferreira and
Vlachos, 2016; Bar-Haim et al., 2017; Derczynski
et al., 2017; Gorrell et al., 2019).

Most earlier research is centered around in-target
stance detection where a classifier is trained and
evaluated on the same target (Zarrella and Marsh,
2016; Wei et al., 2016; Vijayaraghavan et al., 2016;
Mohammad et al., 2016b; Du et al., 2017; Sun
et al., 2018; Wei et al., 2018; Li and Caragea, 2019,
2021). However, the challenge often arises in gath-
ering enough annotated data for each specific tar-
get, and traditional models perform poorly when
generalized to unseen target data. This spurred in-
terest in investigating cross-target stance detection
(Augenstein et al., 2016; Xu et al., 2018; Wei and
Mao, 2019; Zhang et al., 2020), where a classifier is
adapted from different but related targets. However,
cross-target stance detection still requires human
knowledge of the destination target and how it is
related to the training targets. Thus, models de-
veloped for cross-target stance detection are still
limited in their capability to generalize to a wide
range of unseen targets (Liang et al., 2022b).

Zero-shot stance detection (ZSSD) which aims
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Name Authors Source # Tar- Target Type Task Size

get(s) NounPhrase Claim
SemEval16 Mohammad et al. (2016b) Twitter 6 ✓ ✗ In-target 4,870
MultiTarget Sobhani et al. (2017) Twitter 4 ✓ ✗ Cross-target 4,455
WTWT Conforti et al. (2020b) Twitter 5 ✓ ✗ In-target 51,284
VAST Allaway and McKeown (2020) Comments 5,634 ✓ ✗ ZSSD 18,545
Covid19 Glandt et al. (2021) Twitter 4 ✓ ✗ In-target 6,133
P-STANCE Li et al. (2021) Twitter 3 ✓ ✗ In-target 21,574
Emergent Ferreira and Vlachos (2016) News articles 300 ✗ ✓ ZSSD 2,595
RumEval17 Derczynski et al. (2017) Twitter 325 ✗ ✓ Cross-target 5,568
RumEval19 Gorrell et al. (2019) Twitter, Reddit 446 ✗ ✓ ZSSD 8,574
EZ-STANCE Ours Twitter 40,678 ✓ ✓ ZSSD 47,316

Table 2: Comparison of English stance detection datasets.

to detect the stance on a large number of unseen
(and unrelated) targets represents a more realistic
scenario, and has received significant interest in
recent years (Allaway and McKeown, 2020; Liu
et al., 2021; Liang et al., 2022a,b; Luo et al., 2022;
Xu et al., 2022; Li et al., 2023; Zhao et al., 2023).
These works tackle stance detection where the tar-
get is an entity or noun phrase, whereas other works
that follow a ZSSD scenario (training and test data
are collected from different events) focus on stance
classification towards rumours in which the target
is a longer text or a claim (Ferreira and Vlachos,
2016; Derczynski et al., 2017; Gorrell et al., 2019).

Surprisingly, despite substantial interest in
ZSSD, large-scale datasets for the evaluation of
this task are limited. In Table 2, we compare our
EZ-STANCE dataset with existing English stance
detection datasets. As we can observe from the
table, VAried Stance Topics (VAST) (Allaway and
McKeown, 2020) is the only existing dataset for En-
glish ZSSD that encompasses thousands of targets,
whereas Emergent (Ferreira and Vlachos, 2016),
RumEval17 (Derczynski et al., 2017), RumEval19
(Gorrell et al., 2019) contain only several hundred
targets. We can also observe that these datasets
have either noun phrase targets or claim targets,
but not both. In contrast, our EZ-STANCE dataset
integrates both target types into a single dataset; in-
cludes two types of ZSSD subtasks—target-based
ZSSD (same as VAST) and domain-based ZSSD,
a new and more challenging task in which clas-
sifiers are evaluated on unseen targets from com-
pletely new domains; contains much harder neu-
tral examples—the targets of the neutral data in
EZ-STANCE are extracted from the texts, ensur-
ing strong semantic relevance to the text content,
while data for the neutral class in VAST is gen-
erated by randomly permuting existing texts and
targets, resulting in easy-to-detect patterns; and is
much larger in size—EZ-STANCE is notable for

its extensive range of 40,678 targets across a com-
prehensive corpus of 47,316 examples (we provide
more examples from EZ-STANCE in Appendix A).

3 Dataset Construction

Here, we detail the construction of EZ-STANCE.

3.1 Data Collection

Our data are collected using the Twitter API, span-
ning from May 2021 to January 2023. Like previ-
ous works (Mohammad et al., 2016b; Glandt et al.,
2021; Li et al., 2021), we crawl tweets using query
keywords. To cover a wide range of domains, we
use domain names from the Explore page of Twitter
as keywords for crawling (e.g., sports, education,
etc.). Then we expand the keywords set for the
next round by including the most frequent words
as supplementary keywords. In total, we collect
50,000 tweets. Next, we perform data filtering to
eliminate keywords and tweets that are not suitable
for stance detection. The detailed keywords selec-
tion process, the full list of keywords for crawling,
as well as our data filtering strategy are provided
in Appendix B. Eventually, we select 72 keywords
covering controversial topics. We summarize the
72 keywords into 8 domains: “Covid Epidemic"
(CE), “World Events" (WE), “Education and Cul-
ture" (EdC), “Entertainment and Consumption"
(EnC), “Sports" (S), “Rights" (R), “Environmental
Protection" (EP), and “Politics" (P). Table 3 shows
the domains and query keywords in each domain.

3.2 Data Annotation

The target and stance annotations of our dataset
are gathered through Cogitotech,1 a data annota-
tion company that provides annotation services for
big AI companies (e.g., OpenAI, AWS, etc.). To

1https://www.cogitotech.com/
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Domain Query Keywords

Covid Epidemic CE epidemic prevention, living with covid, herd-immunity, WFH, booster, vaccine, mask
mandate, FDA, post-covid, Fauci

World Events WE world news, Ukraine, Russia, migrant, NATO, China, Mideast, negative population
growth, terrorism

Education and
Culture EdC public education, pop culture, cultural output, home schooling, AI assistance writing,

arming teachers, private education, international student
Entertainment
and Consumption EnC prices, gasoline price, online shopping, TikTok, iPhone, Reels, Disney, medical insurance,

ethical consumption, vegetarian
Sports S World Cup, NBA, men’s football, women’s football, NCAA, MLB, NFL, WWE

Rights R gender equality, equal rights, women’s rights, LGBTQ, BLM, doctors and patients, racism,
Asian hate, gun control

Environmental
Protection EP climate change, clean energy, environmental awareness, environmental protection agency,

shut down coal plants, nuclear energy, electric vehicle

Politics P government, republican, reform, leftists, democrat, democracy, right-wing, politic,
presidential debate, presidential election, midterm election

Table 3: The domains used in our dataset and the selected query keywords for each domain.

Noun-phrase targets Claim targets

Domain Con Pro Neu Con Pro Neu
CE 971 812 853 1,329 1,328 1,327
WE 856 559 850 1,140 1,139 1,140
EdC 615 826 647 1,083 1,083 1,083
EnC 636 925 1,084 1,405 1,406 1,405
S 179 781 808 941 942 941
R 910 1,015 522 1,191 1,192 1,191
EP 515 987 563 979 980 979
P 1,184 846 829 1,386 1,387 1,386
Overall 5,866 6,751 6,156 9,454 9,457 9,452

Table 4: Overall label distribution for noun-phrase and
claim targets in each domain from our dataset. Con, Pro,
Neu represent against, favor, and neutral, respectively.

ensure high-quality annotations, we apply rigor-
ous criteria: 1) Annotators must have a minimum
education qualification of college graduation; 2)
The annotators’ native language must be English.
Moreover, we randomly sample 10% of each anno-
tator’s annotations to perform quality checks and
discard annotations from an annotator if the accep-
tance rate is lower than 90%. This data is re-sent to
other qualified annotators for labeling. The overall
stance label distribution for both noun-phrase and
claim targets for each domain is shown in Table 4.

3.2.1 Annotation for Noun-Phrase Targets
The annotation for noun-phrase targets is per-
formed in two steps. In step 1, one annotator is
asked to identify a minimum of 2 targets from each
given tweet. In step 2, we instruct 3 annotators to
assign a stance label to each tweet-target pair. The
instructions for the annotators are provided in Ap-
pendix C.1. After the annotations are completed,
we determine the stance for each tweet-target pair
by using the majority vote amongst the three an-
notators. The inter-annotator agreement measured
using Krippendorff’s alpha (Krippendorff, 2011) is
0.63, which is higher than VAST (0.427).

3.2.2 Annotation for Claim Targets

We ask one annotator to generate three claims for
each tweet, to which the tweet takes favor, against,
and neutral stances, respectively. The detailed an-
notation instructions are in Appendix C.2. For qual-
ity assurance, we hide the stance labels for a subset
of tweet-claim pairs and ask another group of anno-
tators (who did not write the claims) to annotate the
stance. The two groups agree on 95% of the times.
This result indicates high-quality generations of the
claim targets and stance labels.

3.3 Dataset Split

For subtask A, we split the dataset in alignment
with the VAST dataset (Allaway and McKeown,
2020): the training, validation, and test sets do not
share any texts (tweets) and targets with each other.
The detailed split process are shown in Appendix D.
For subtask B, we use the data from seven domains
(source) for training and validation, and the data
from the left-out domain (zero-shot) as the test set.
This results in 8 dataset splits for subtask B with
one dataset split assigned for each of the eight do-
mains, wherein each domain in turn is used as the
test set. We exclude data with overlapping targets
between the source and zero-shot domains, and
then partition the source domains into training and
validation sets, ensuring no duplication of tweets
and targets. The statistics of subtask A and sub-
task B (using “Covid Epidemic” as the zero-shot
domain) are shown in Table 5. The full statistics of
subtask B are shown in Appendix E.

3.4 Dataset Statistics

In this section, we present a statistical analysis of
our EZ-STANCE dataset.
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# Examples # Unique Avg. Length Lexsim

N C N C T N C T (%)

EZ-STANCE
Subtask A

Train 13,756 18,879 7,437 18,861 6,293 1.8 19.0 40.0 -
Val 2,354 4,349 2,284 4,345 1,454 2.4 19.0 40.0 13
Test 2,663 5,135 2,621 5,130 1,715 2.4 19.3 39.7 12

EZ-STANCE
Subtask B (CE)

Train 12,648 19,467 8,506 19,440 6,489 2.0 18.9 39.4 -
Val 1,958 3,753 1,932 3,749 1,251 2.4 19.2 40.4 11
Test 2,639 3,819 1,734 3,814 1,273 1.9 19.2 41.8 10

VAST
Train 13,477 - 4,003 - 1,845 1.8 - 101.3 -
Val 1,019 - 383 - 682 2.3 - 99.8 19
Test 1,460 - 600 - 786 2.4 - 100.5 16

Table 5: Comparison of key statistics of EZ-STANCE subtask A and subtask B (with Covid Epidemic (CE) as the
zero-shot domain) with the existing English ZSSD dataset (VAST). N, C, T represent noun-phrase targets, claim
targets, and texts/tweets, respectively. Lexsim represents the percentage of LexsimTopics.

Label Distribution We can observe from Ta-
ble 4 that the “Sports” (S) and the “Entertainment
and Consumption” (EnC) domains have the highest
percentage in the “Neutral” class. This might be
because these domains include more tweets related
to news. Moreover, people are showing a higher
percentage of “Against” stances toward targets in
the “Covid Epidemic” (CoE), “World Event” (WE),
and “Politics” (P) domains, where more contrary
opinions are often expressed.

Dataset Size In Table 5, we observe that EZ-
STANCE includes a much larger number of zero-
shot targets than VAST. EZ-STANCE uniquely pro-
vides zero-shot claim targets, further expanding its
coverage. Moreover, VAST only includes target-
based ZSSD, whereas EZ-STANCE also enables
the more challenging domain-based ZSSD.

Text/target Lengths Table 5 indicates that the
average word counts in EZ-STANCE are 2 for
noun-phrase targets, 19 for claim targets, and 40
for texts. VAST features similarly lengthed noun-
phrase targets but longer texts (around 100 words),
which are from New York Times news comments,
unlike the shorter tweet-based EZ-STANCE texts.

LexSimTopics Given the linguistic variations
in the noun-phrase target expressions, we investi-
gate the prevalence of LexSimTopics (Allaway and
McKeown, 2020) between the train and test sets.
LexSimTopics is defined as the percentage of tar-
gets that possess more than 0.9 cosine similarities
with any training targets in the word embedding
space (Bojanowski et al., 2017). As shown in Table
5, in Subtask A, we have 12% and 13% LexSim-
Topics in the test set and the validation set, respec-
tively, whereas for the “Covid Epidemic” domain
in subtask B, we only have 10% and 11% LexSim-
Topics for the test and validation sets, indicating
that subtask B poses more challenges as the targets

in the training and test sets exhibit more differ-
ences. In comparison, the VAST dataset has 16%
and 19% LexSimTopics in the test set and validation
set, respectively, which are higher than our dataset.

4 Methodology

We now present our approach for converting ZSSD
into the natural language inference (NLI) task.

4.1 Problem Definition
Suppose we are given a training set Dtrain=
{(xtraini , ttraini , ytraini )}Ntrain

i=1 and a test set Dtest=
{(xtesti , ttesti )}Ntest

i=1 , where xtraini is a training doc-
ument (tweet), ttraini is a target and ytraini is the
label (or stance) ∈ {Favor, Against, Neutral}. For
target-based ZSSD (subtask A), targets in xtesti do
not overlap with targets in xtraini . For domain-
based ZSSD (subtask B), targets in xtesti not only
do not overlap with the targets in xtraini , but they
also belong to a domain that is not seen in Dtrain.
The objective is to predict the stance given both
xtesti and ttesti by training a model on the Dtrain.

4.2 Transform ZSSD into NLI
Natural Language Inference (NLI) (Bowman et al.,
2015; Williams et al., 2018) is a task that classifies
the relationship between a premise and a hypothesis
as entailment, contradiction, or neutral. Models
pre-trained on NLI datasets are adept at discerning
intricate relationships between sentences, a skill
that is beneficial for similar NLP tasks.

To leverage the extensive knowledge of NLI pre-
trained models, we propose to transform stance
detection into NLI. Particularly, we convert the
text and target into the premise and hypothesis,
respectively. The task of predicting stance labels
(Favor, Against, or Neutral) is transformed into the
task of predicting entailment labels (Entailment,
Contradiction, or Neutral). To effectively apply
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Texts
(Premise):

Nuclear Energy is a much safer and cost
efficient source of energy than coal and
oil and people should be using it.

Target: Nuclear Energy
Stance: Favor
Hypothesis: The premise has an entailment relation

with Nuclear Energy!
NLI Label: Entailment
Texts
(Premise):

after struggling with my medical insur-
ance for months i finally got an appoint-
ment win an endocrinologist to start.

Target: medical insurance
Stance: Against
Hypothesis: The above text entails medical insurance!
NLI Label: Contradiction

Table 6: Examples of formulating ZSSD as NLI. The
prompts for NLI hypothesis formulation are in red.

NLI pre-trained models for stance detection, we
introduce prompt templates that transform noun-
phrase targets into sentence-like hypotheses, align-
ing them with the typical sentence format of NLI
hypotheses. Claim targets remain the same as they
already resemble hypotheses quite closely. Particu-
larly, we design five simple yet effective prompts:
"The above text entails [target]!", "The premise
has an entailment relation with [target]!", "This
implies an entailment relation with [target]!", "The
premise has the entailment relation with the hy-
pothesis [target]!", and "The premise entails the
hypothesis [target]!". For each noun-phrase target,
we randomly apply one of the five prompts. Ex-
amples in Table 6 demonstrate the re-formulation
of ZSSD as NLI. We fine-tune the BART-large en-
coder (Lewis et al., 2020) pre-trained on MNLI
(Williams et al., 2018) dataset to predict the stance.

5 Baselines and Models

We introduce the ZSSD baselines and our approach
of utilizing NLI pre-trained models for ZSSD.

5.1 ZSSD Baselines

We evaluate EZ-STANCE using the following
ZSSD baselines. BiCE (Augenstein et al., 2016)
and CrossNet (Xu et al., 2018) predict the stance us-
ing the conditional encoding of BiLSTM. TGA-Net
(Allaway and McKeown, 2020) captures implicit
relations/correlations between targets in a hidden
space to assist stance classification. Next, we con-
sider fine-tuning the base version of state-of-the-art
transformer-based models as strong baselines, in-
cluding BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019) and XLNet (Yang et al., 2019). We
also use LLaMA 2 and ChatGPT to directly predict

the stance label based on a task description (Zhang
et al., 2023; Touvron et al., 2023).

5.2 NLI Pre-trained Models

To evaluate NLI pre-trained models for ZSSD, we
compare the following methods. BART-MNLI-e:
We fine-tune the BART-MNLI encoder on our orig-
inal EZ-STANCE dataset without prompts. The
BART decoder is not included due to memory con-
straints. BART-MNLI-ep: Same as above, except
that the BART-MNLI encoder is fine-tuned on EZ-
STANCE with prompts applied to noun-phrase tar-
gets. Note that BART-MNLI-e and BART-MNLI-ep
are identical in experiments conducted with claim
targets. BART-MNLI: We use the pre-trained BART-
MNLI online version with both encoder and de-
coder without fine-tuning on EZ-STANCE to infer
the stance labels for the test set of EZ-STANCE.
In addition, to verify our approach across different
model architectures, we fine-tune other NLI pre-
trained models including BERT-MNLI, RoBERTa-
MNLI, and XLNet-MNLI using the original EZ-
STANCE dataset. We also experiment with these
models using prompted noun-phrase targets, des-
ignated as BERT-MNLIp, RoBERTa-MNLIp, and
XLNet-MNLIp, respectively. We show the hyperpa-
rameters used in experiments in Appendix F.

6 Results

In this section, we first present results for subtask
A (§6.1) and subtask B (§6.2). We then compare
EZ-STANCE with the VAST dataset (§6.3). Next,
we study the impact of different prompt designs
(§6.4). Like prior works (Allaway and McKeown,
2020), we employ the macro-averaged F1 score
across all classes as our evaluation metrics.

6.1 Target-based Zero-Shot Stance Detection

Target-based ZSSD (subtask A) aims to evaluate
the classifier on a large number of completely un-
seen targets. We train models using three scenarios:
1) on the full training set with both noun-phrase and
claim targets; 2) on training data with noun-phrase
targets only; and 3) training data with claim targets
only. Each model is then evaluated in three corre-
sponding scenarios: 1) the full test set with mixed
targets; 2) the test subset with noun-phrase targets
only; and 3) the test subset with claim targets only.

Results are shown in Table 7. First, we ob-
serve that models trained on noun-phrase targets
and evaluated on claim targets (N→C), or the re-
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Train/Val Mixed targets (M) Noun-phrase targets (N) Claim targets (C)

Test M N C M N C M N C
BiCE .468 .476 .451 .398 .529 .334 .286 .282 .316
Cross-Net .518 .509 .522 .407 .551 .336 .447 .241 .523
TGA Net .590 .579 .594 .398 .606 .334 .286 .282 .596
LLaMA 2 .404 .436 .374 .404 .436 .374 .404 .436 .374
ChatGPT .499 .604 .440 .499 .604 .440 .499 .604 .440
RoBERTa .784 .639 .858 .433 .656 .318 .687 .345 .856
RoBERTa-MNLI .797 .642 .876 .525 .659 .451 .706 .339 .880
RoBERTa-MNLIp .799 .661 .878 .532 .662 .492 - - -
BART-MNLI .664 .295 .817 .664 .295 .817 .664 .295 .817
BART-MNLI-e .810 .661 .883 .451 .675 .334 .716∗ .345 .888∗

BART-MNLI-ep .812∗ .669∗ .885∗ .446 .687∗ .322 - - -

Table 7: Subtask A: Comparison of F1macro of models on EZ-STANCE. ∗: our approach improves the best ZSSD
baseline at p < 0.05 with paired t-test.

verse (C→N), demonstrate much worse perfor-
mance compared to those trained with mixed tar-
gets (M→N or M→C) or with consistent target
types (N→N or C→C). This suggests that datasets
limited to one target type struggle to correctly pre-
dict the stance of the other, highlighting the ne-
cessity for developing a dataset that includes both
noun-phrase and claim targets. Second, models
trained on mixed targets demonstrate similar per-
formance on both noun-phrase and claim targets
(M→N or M→C) compared to those trained solely
on noun-phrase or claim targets (N→N or C→C),
respectively. This underscores the advantages of
our dataset: training a single model on mixed tar-
gets yields similar results compared to training sep-
arate models for each target type, demonstrating
both efficiency and efficacy. Third, fine-tuning
MNLI pre-trained models (e.g., BART-MNLI-e,
etc.) consistently outperform traditional ZSSD
baselines (that do not have NLI pre-trained knowl-
edge) in all three settings, showing the effectiveness
of transforming ZSSD into NLI. Forth, when evalu-
ated on noun-phrase targets, MNLI models trained
with prompted noun-phrase targets consistently out-
perform those trained with original noun-phrase
targets, indicating that our proposed prompts can
effectively formulate noun-phrase targets into more
refined hypotheses to better leverage the MNLI
model for ZSSD. Note that when trained with claim
targets, where prompts are not incorporated, BART-
MNLI-ep and BART-MNLI-e are exactly the same.
Our results with BERT-based and XLNet-based
models (provided in Appendix G) show similar ob-
servations. Next, the BART-MNLI model without
fine-tuning on EZ-STANCE performs much worse
than the fine-tuned BART-MNLI encoders, particu-
larly for the noun-phrase targets. This result demon-
strates the necessity of developing a large dataset
for ZSSD, so that the NLI pre-trained knowledge

can be fine-tuned and better utilized. Moreover,
LLaMA 2 and ChatGPT exhibit much lower perfor-
mance than fine-tuned transformer-based models,
indicating that our dataset is very challenging even
for advanced large language models.

6.2 Domain-based Zero-Shot Stance Detection

Domain-based ZSSD (subtask B) focuses on evalu-
ating classifiers using unseen topics from new do-
mains. One domain is selected as the zero-shot do-
main, and the remaining seven as source domains.
Models are trained and validated on source domain
data and tested on zero-shot domain data, with
eight different zero-shot domain settings in total.

Table 8 shows F1macro scores for various zero-
shot domain settings. Models trained on the full
mixed-target dataset are evaluated across three set-
tings: 1) the full mixed-target test set; 2) the noun-
phrase target-only test set; and 3) the claim target-
only test set, denoted as M, N, and C, respectively.
First, we notice that models show lower perfor-
mance when compared with the in-domain sub-
task A (see results in Table 7). This is because
the domain shifts between the training and test-
ing stages introduce additional complexity to the
task, making domain-based ZSSD a more chal-
lenging ZSSD task. Second, models generally per-
form worse on the “Covid Epidemic” (CE) and the
“Politics” (P) domain, suggesting that these two
domains share less domain knowledge with other
domains, making them more difficult zero-shot do-
mains. Moreover, we observe that most models
show higher performance when predicting stances
for the “Rights” (R) and the “Environmental Protec-
tion” (EP) domain. BERT-based and XLNet-based
models exhibit worse performance than RoBERTa-
based models, as illustrated in Appendix G. Class-
specific performance for both Subtasks A and B is
shown in Appendix H.
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Model CE WE EdC EnC S R EP P

BiCE
M .437 .440 .478 .464 .475 .479 .470 .442
N .442 .461 .476 .463 .442 .492 .471 .468
C .423 .423 .458 .443 .437 .436 .445 .414

CrossNet
M .501 .513 .514 .500 .509 .546 .521 .512
N .475 .492 .480 .483 .473 .508 .512 .486
C .518 .525 .530 .513 .505 .534 .509 .516

TGA-Net
M .568 .569 .583 .580 .572 .635 .566 .577
N .531 .554 .556 .551 .563 .588 .565 .555
C .589 .568 .600 .602 .572 .631 .565 .582

LLaMA 2
M .345 .328 .348 .342 .273 .354 .330 .328
N .375 .341 .404 .391 .353 .393 .383 .345
C .322 .320 .310 .314 .240 .321 .288 .314

ChatGPT
M .485 .493 .490 .497 .506 .486 .513 .491
N .576 .563 .568 .586 .586 .564 .572 .564
C .422 .445 .435 .437 .448 .429 .464 .438

RoBER-
Ta

M .738 .758 .762 .753 .765 .777 .769 .755
N .597 .624 .609 .606 .609 .625 .648 .620
C .826 .849 .862 .851 .848 .846 .845 .838

RoBER-
Ta-MNLI

M .760 .773 .777 .776 .778 .787 .779 .766
N .616 .624 .614 .615 .617 .642 .654 .618
C .856 .872 .881 .876 .866 .861 .861 .862

RoBER-
Ta-MNLIp

M .753 .772 .776 .776 .776 .787 .778 .767
N .597 .617 .603 .621 .608 .638 .642 .623
C .855 .876 .884 .877 .868 .866 .863 .863

BART-
MNLI

M .597 .594 .637 .632 .671 .623 .652 .591
N .307 .264 .337 .332 .369 .327 .364 .315
C .778 .813 .806 .800 .814 .797 .802 .776

BART-
MNLI-e

M .767 .782 .788 .776 .798 .778 .787 .775
N .624 .637 .625 .623 .630 .612 .665 .627
C .861 .879 .890 .880 .886 .868 .867 .876

BART-
MNLI-ep

M .768∗ .789∗ .784 .777∗ .792 .783 .791∗ .777∗

N .627∗ .638∗ .615 .625∗ .625 .615 .672∗ .624
C .863∗ .890∗ .888 .878 .882 .873∗ .872∗ .877∗

Table 8: Subtask B: Comparison of F1macro of models
trained and evaluated using 8 zero-shot domain settings
(denoted by each column). Models are trained on train-
ing set with mixed targets. Test results are denoted as M
for mixed, N for noun-phrase, and C for claim targets.
∗: our approach improves the best ZSSD baseline at
p < 0.05 with paired t-test. Blue, red, and cyan mark
the best performance for M, N, and C, respectively.

6.3 EZ-STANCE vs. VAST

We compare EZ-STANCE and VAST to understand
which dataset presents more challenges. We con-
sider the following experiments: 1) cross-dataset
setting: training our best-performing BART-MNLI-
ep using one dataset and testing the model using the
other dataset, and 2) in-dataset setting: training and
testing the model on the same dataset. Since VAST
is designed for target-based ZSSD and includes
only noun-phrase targets, we ensured a fair com-
parison by utilizing the dataset with noun-phrase
targets from subtask A of EZ-STANCE.

Per-class and overall results are shown in Table
9. First, we observe that models show higher per-
formance for the in-dataset setting than the cross-
dataset setting. Second, in the in-dataset setting,
the model trained on EZ-STANCE (E→E) exhibits
much lower performance for the neutral class than

Setting Train/Val Test Con Pro Neu All
Cross-
dataset

E V .600 .593 .309 .501
V E .584 .570 .167 .440

In-data
set

E E .740 .724 .597 .687
V V .706 .690 .921 .772

Table 9: Cross-dataset and in-dataset performance of
BART-MNLI-ep trained using EZ-STANCE and VAST
(denoted as E and V, respectively).

Prompts Con Pro Neu All
no prompt .724 .712 .588 .674
The above text entails [target]! .725 .717 .599 .681
The premise has entailment rela-
tion with [target]!

.725 .710 .602 .679

This implies the entailment rela-
tion with [target]!

.736 .723 .576 .679

The premise has the entailment re-
lation with the hypothesis [target]!

.728 .723 .594 .682

The premise entails the hypothesis
[target]!

.730 .702 .602 .678

Ours .740 .724 .597 .687

Table 10: Comparison of F1macro of BART-MNLI-ep
trained using different prompts.

its VAST-trained counterpart (V→V). The result
demonstrates that data from the neutral class in EZ-
STANCE with close semantic correlations between
documents and targets are much more challenging
than in VAST, where documents and targets are ran-
domly permuted (and do not reflect the natural/real-
world data for the neutral class). Third, in the
cross-dataset setting, the model trained on VAST
performs extremely poorly on the neutral class of
the EZ-STANCE test set (V→E), while the model
trained on EZ-STANCE show much higher perfor-
mance on VAST, particularly for the neutral class
(E→V). This indicates that EZ-STANCE test set
captures more challenging real-world ZSSD data,
especially for the neutral category. This reinforces
our motivation to create a new, large ZSSD dataset.

6.4 Impact of Prompt Templates

To assess the efficacy of various prompt templates
in our proposed approach, we compare the follow-
ing prompt settings for noun-phrase targets: 1) ap-
plying no prompt to noun-phrase targets; 2) using
one of our proposed prompts consistently across
all noun-phrase targets; and 3) our approach that
randomly assigns each noun-phrase target with one
of five distinct prompts. The results with our best-
performing BART-MNLI-ep model are shown in
Table 10. We observe that the models trained using
our random-prompt approach exhibits better perfor-
mance than those trained with the singular-prompt
approach or no prompts at all.
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7 Conclusion
In this paper, we present EZ-STANCE, a large
English ZSSD dataset. Compared with existing
English ZSSD datasets, our dataset is larger and
more challenging. EZ-STANCE covers both noun-
phrase targets and claim targets and also com-
prises two challenging ZSSD subtasks: target-
based ZSSD and domain-based ZSSD. We improve
the data quality of the neutral class by extracting
targets from texts. We evaluate EZ-STANCE on
ZSSD baselines and propose to transform ZSSD
into the NLI task which outperforms traditional
baselines. We hope EZ-STANCE can facilitate
future research for varied stance detection tasks.

Limitations

Our EZ-STANCE data is collected from social me-
dia. This might be perceived as a drawback as it
might not encompass all facets of formal texts that
could be found in essays or news comments. In
the future, we aim to expand this dataset to include
other types of text (e.g., from social media to re-
search articles). Yet, this restriction is not unique
to our dataset, but also affects any other datasets
that concentrate on social media content.

Ethical Statement

Our dataset does not provide any personally iden-
tifiable information. Tweets are collected using
generic keywords instead of user information as
queries, therefore our dataset does not have a large
collection of tweets from an individual user. Thus,
our dataset complies with Twitter’s information
privacy policy.
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A More Examples of EZ-STANCE

In this section, we show examples of tweets with
noun-phrase targets and claim targets for each do-
main of our EZ-STANCE dataset in Table 11.

B Query Keywords and Data Filtering
Strategy

The full keywords set that we used for data crawl-
ing is shown in Table 12. We generate the list
as follows. First, we use domain names from the
Explore page of Twitter as keywords for crawling
(e.g., sports, education, etc.). This represents our
initial set of keywords. After we collect tweets
using this initial set, we tokenize the tweets and re-
move stop words and words with part-of-speeches
other than nouns and adjectives, and form words /
phrases (from the contiguous words in the text) us-
ing the regular expression adjective*noun+. These
words/phrases (possibly single words if no adjec-
tives appear in front of the nouns) represent our
candidate set of keywords / keyphrases. We then
calculate the frequency of these candidates from
the tweet collection and rank them in descending

order of their frequency. Last, we selected the top-
20 keywords / keyphrases as supplementary query
keywords / keyphrases to collect tweets in the next
iteration. We repeat this process in multiple itera-
tions until we collect enough data.

After we collect the initial keywords set, we per-
form keyword filtering in the following steps: 1)
We manually detect a subset of tweets crawled us-
ing each keyword and we remove keywords that
are frequently associated with promotional content
(e.g., YouTuber, live shopping, etc.), whose main
purpose is for product/people promotion instead of
addressing controversial topics; 2) Keywords that
people predominantly hold single stances on are fil-
tered out, e.g., pollution, crime, delicious food, etc.
This is because models would simply learn the cor-
relation between the keywords and the stance and
predict stances based solely on keywords instead
of the content of tweets and targets.

To ensure the quality of our dataset, we then
perform the following preprocessing steps: 1) We
remove tweets with less than 20 or more than 150
words. According to our observations, tweets with
less than 20 words are either too easy or cannot
include enough information to express stances to-
ward multiple targets. Tweets with more than 150
words usually contain links to external content; 2)
We remove duplicates and retweets; 3) We keep
only tweets in English; 4) We filter out tweets con-
taining advertising contents (e.g., scan the QR code,
reply or DM me, sign up, etc.); and 5) We remove
emojis and URLs as they may introduce noise. We
randomly select around 86 tweets for each keyword,
obtaining 6204 tweets for annotation.

C Annotation Instruction

C.1 Noun-phrase Targets

For noun-phrase targets, the annotation takes two
steps. For step1, annotators are given the following
instructions: From each tweet, please identify at
least 2 noun-phrase targets. Targets should meet
the following criteria: 1) Targets should be the
principal subject of the tweet rather than minor de-
tails; 2) Targets should represent widely discussed
topics where different stances are exhibited; 3) Tar-
gets where people often express the same stance
should be avoided, e.g., violence abuse. In step
2, we instruct 3 annotators to assign a stance la-
bel to each tweet-target pair, using the following
instructions: Imagine yourself as the author of the
tweet, please annotate the stance that you would
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CE

Tweet Cost of living off the scale, country being flooded with migrants, covid scam and jab injuries out
there. How much more before the people decide enough is enough.

N target/Stance Covid Scams / Against
C target/
Stance

Skyrocketing living costs and on the other side migrants will come in a lot of amounts so the
country’s population will increase someday. / Neutral

WE

Tweet
China’s economy isn’t just doing well. It is increasingly becoming 1 in several categories. Home
prices are growing at slow and healthy rates, inflation is normal and healthy and the yuan is solid.
The west should be trying to befriend China. Make a friend, not an adversary.

N target/Stance China’s economy / Favor
C target/
Stance

The economy of china is decreasing at an alarming rate due to which it’s occupied last position in
several categories. / Against

EdC

Tweet
To my Twitter pals who are parents in Ontario, trying to deal with homes chooling and work and
all the stresses of the pandemic, my God, I don’t know how you’ve managed to pull this off. But
you have, even if you’re exhausted. And you all rock.

N target/Stance home schooling / Against
C target/
Stance

Parents in Ontario have managed to cope with homeschooling, work, and the pandemic, even if
they are exhausted. / Favor

EnC

Tweet Interviewer: why do you want this position? Me: so I can pay for all the online shopping I did
this while being stressed about this interview.

N target/Stance online shopping / Favor
C target/Stance I do online shopping when I’m stressed. / Neutral

S

Tweet Dwyane Wade winning an NBA Championship in his 3rd NBA season as the best player on the
team .. does not get spoken on enough.

N target/Stance Dwyane Wade / Favor
C target/Stance Dwyane Wade’s success in his 3rd NBA season made him the best player of all times. / Neutral

R

Tweet
The FEUHS Student Government is one with the LGBTQIA community in celebrating the
PrideMonth2021 and pursuing equal rights for everyone, regardless of sexual orientation, gender
identity, and expression.

N target/Stance Equal Rights / Favor
C target/
Stance

Regardless of sexual orientation, gender identity, or gender expression, the FEUHS Student
Government opposes equitable rights for everyone. / Against

EP

Tweet
The Sines coal plant in Portugal has been shut down nine years ahead of schedule, reducing the
country s carbon emissions by 12%. A second and final plant is due to close in November which
will make Portugal the fourth European country to eliminate.

N target/Stance Carbon emissions / Against
C target/
Stance

Portugal’s Sines coal facility was shut down nine years earlier than expected, cutting the nation’s
carbon emissions by 12 percent. / Favor

P

Tweet
I wish Democrats would play tough and just release an ad that says "GOP loves guns more than
our kids." Just show the 234 mass shootings in 2022 and how GOP has obstructed every attempt
at gun reform. There’s no lie in that claim. At the very least don’t call them "rational."

N target/Stance GOP / Against
C target/Stance The GOP will bring gun reform to stop the mass shootings. / Neutral

Table 11: Examples of noun-phrase targets and claim targets for tweets in each domain of our EZ-STANCE dataset.
“N target” and “C target” represent the noun-phrase target and the claim target, respectively.

YouTube shorts, modern history, work from home, herd immunity, living with covid, Fauci, public education, college
football, pop culture, war, LGBTQ, environmental awareness, YouTube, career, vaccine, reels, democracy, pop culture,
online shopping, hockey, reform, AI assistance writing, working class, election, parenting, global news, China, NBA,
sports, student loan, traditional culture, Asian hate, presidential debate, Russia, bully, climate change, medicare, forcing
electrical power, Mideast, doctors and patients, anti LGBTQ, post-covid, cooking, Snapchat, EU, presidential election,
tictok, pfizer, business, general election, baseketball, prices, Chinese history, insurance, covid conspiracy, live shopping,
SAT, Taliban, MLB, baseball, vaccine injury, tiger parents, environmental protection a, gency cultural output, Reels,
government, family, new energy, WFH, clean energy, consumption concept, right wing, quality education, world news,
stock market, private education, racism, long covid, NFL, vote, negative population growth, youtube, NASA, co-exist-
ence with Covid, WWE, DPR, political correctness, world cup, relationship, epidemic prevention, mideast, artificial
intelligence, ethical consumption, Garbage classification, arming teachers, force kid to compete, health insurance, media,
Negative population growth, terrorism, NATO, population aging, MLB’s rule change, technology, wildfire, gun control,
gender equality, migrant, doctors and patient, debate, mRNA vaccine, boxing, booster, leftists, republican, life in reels,
abortion, teacher carry gun, Disney, overloaded kids, reward unreliable electricity gasoline price, international student,
Ukraine, women’s football, BLM, DPRK, privacy, shut down coal plants, homeschooling, physical education, men’s
football, NCAA, security, mask, sealed management, medical insurance, vegetarian, short video, iPhone, Iran, democrat,
FDA, mid-term election, livestream shopping, CDC, women’s rights, politic, electric vihicles, new york time, Hollywood,
immigrant, Metoo, covid-19, equal rights, nuclear energy, mask mandate

Table 12: The full query keywords list used in our work for tweet crawling.

15709



# Examples # Unique Avg. Length

N C N C T N C T

Covid Epidemic
Train 12,648 19,467 8,506 19,440 6,489 2 18.9 39.4
Val 1,958 3,753 1,932 3,749 1,251 2.4 19.2 40.4
Test 2,639 3,819 1,734 3,814 1,273 1.9 19.2 41.8

World Event
Train 12,736 20,025 8,574 19,998 6,675 2 18.9 39.5
Val 1,996 3,762 1,968 3,755 1,254 2.4 19.2 40.3
Test 2,286 3,252 1,655 3,252 1,084 1.9 19.3 41.6

Education and
Culture

Train 13,054 20,196 8,736 20,169 6,732 2 18.9 39.6
Val 1,962 3,765 1,940 3,758 1,255 2.3 19.1 39.7
Test 2,109 3,078 1,515 3,077 1,026 2 19.5 42.2

Entertainment
and Consumption

Train 12,760 19,407 8,388 19,386 6,469 2 19.1 40.6
Val 1,880 3,579 1,850 3,571 1,193 2.4 19.4 40.7
Test 2,702 4,053 1,949 4,047 1,351 1.9 17.8 35.8

Sports
Train 14,253 20,631 8,838 20,606 6,877 1.9 19 40.4
Val 1,977 3,747 1,945 3,740 1,249 2.3 19.2 40.5
Test 1,807 2,661 1,413 2,655 887 2.1 18.4 35.6

Rights
Train 12,619 19,851 8,464 19,824 6,617 2 18.9 39.7
Val 1,960 3,783 1,936 3,778 1,261 2.4 19.1 40.1
Test 2,468 3,405 1,793 3,400 1,135 2 19.2 40.5

Environmental
Protection

Train 12,989 20,436 8,688 20,406 6,812 2 18.8 39.6
Val 2,003 3,831 1,978 3,824 1,277 2.3 19.1 39.9
Test 2,071 2,772 1,519 2,772 924 2.3 19.8 41.9

Politics
Train 12,066 19,419 8,281 19,393 6,473 2 18.9 39.7
Val 1,846 3,621 1,828 3,617 1,207 2.4 19.3 40.6
Test 2,890 3,999 2,074 3,995 1,333 1.9 18.9 40.2

Table 13: Data statistics of all 8 dataset splits for subtask B. N, C, and T represent noun-phrase targets, claim targets,
and tweets, respectively.

take on this given target as “Favor”, “Against”, or
“Neutral”.

C.2 Claim Targets
For claim targets, annotators are provided with the
following instructions: Based on the message that
you learned from the tweet, write the following
three claims: 1) The author is definitely in favor
of the point or message of the claim (favor); 2)
The author is definitely against the point or mes-
sage from the claim (against); 3) Based solely on
the information from the tweet, we cannot know
whether the author definitely supports or opposes
the point or message of the claim (neutral). To
make this task more challenging, we establish some
extra requirements: First, claims labeled with fa-
vor must not replicate the tweet verbatim. Sec-
ond, claims labeled with against should not merely
negate the tweet content (e.g., adding “not" before
verbs). Models could easily detect such linguistic
patterns and predict stances without learning the
content of tweet-claim pairs.

D Split Method

Initially, we randomly select x% of unique tweets
for the training set and the rest as the combination
of validation and test set. We then move data with
overlapping targets and documents from the mix-
ture of validation and test sets to the training set.

After this step, we may introduce some additional
overlapping targets during the transaction. This is
because the tweets that are moved to the training
set may have other noun-phrase targets that overlap
with the remaining validation and test set. There-
fore we repeat this transferring procedure y times
until we do not have any overlapping targets and
documents between the training set and the mixture
of validation and test set. In our experiments, we
use x=40% and y=4, because with these parame-
ters, 66% tweets are split into our final training
(similar to VAST). We then perform similar proce-
dures to split validation and the test set. Therefore,
the training, validation, and test set do not include
overlapping tweets and targets with each other.

E Full Statistics of Subtask B

The statistics of the 8 dataset splits (data from seven
domains for training and validation, and the data
from the left-out domain as the zero-shot test set)
are shown in Table 13.

F Training Details

Our experiments are carried out using an NVIDIA
RTX A5000 GPU based on the PyTorch (Paszke
et al., 2019). Hyperparameters were fine-tuned us-
ing our validation set. The BiCE and CrossNet
models were trained using AdamW (Loshchilov
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Train/Val Mixed targets Noun-phrase targets Claim targets

Test M N C M N C M N C
BERT .760 .636 .823 .408 .633 .288 .653 .320 .816
BERT-MNLI .772 .625 .847 .420 .638 .305 .679 .338 .851
BERT-MNLIp .775 .635 .848 .409 .643 .295 - - -
XLNet .775 .642 .842 .427 .651 .310 .670 .305 .842
XLNet-MNLI .794 .635 .875 .498 .655 .415 .701 .358 .875
XLNet-MNLIp .799 .641 .878 .452 .663 .345 - - -

Table 14: Comparison of F1macro of BERT-based models and XLNet-based models on EZ-STANCE subtask A. M,
N, C represent mixed, noun-phrase, and claim targets, respectively.

Model CE WE EdC EnC S R EP P

BERT
M .707 .731 .726 .726 .735 .752 .739 .725
N .570 .610 .576 .605 .598 .626 .626 .593
C .798 .811 .818 .810 .810 .811 .812 .804

BERT-
MNLI

M .726 .740 .744 .741 .754 .761 .757 .734
N .578 .595 .585 .598 .593 .606 .623 .581
C .825 .835 .843 .836 .841 .841 .839 .827

BERT-
MNLIp

M .723 .741 .745 .735 .753 .755 .756 .734
N .575 .596 .589 .586 .599 .604 .631 .586
C .822 .836 .843 .834 .838 .841 .835 .826

XLNet
M .722 .741 .748 .732 .745 .762 .752 .738
N .594 .625 .595 .606 .599 .622 .639 .612
C .806 .819 .844 .818 .822 .827 .823 .817

XLNet-
MNLI

M .738 .772 .766 .767 .775 .776 .768 .754
N .580 .622 .586 .617 .606 .627 .639 .608
C .846 .873 .877 .867 .864 .851 .850 .848

XLNet-
MNLIp

M .749 .765 .766 .760 .775 .767 .768 .762
N .600 .609 .594 .605 .605 .604 .629 .620
C .850 .868 .873 .863 .865 .854 .855 .852

Table 15: Comparison of F1macro of BERT-based mod-
els and XLNet-based models on subtask B. Models are
trained and evaluated using datasets for 8 zero-shot do-
main settings (denoted by each column). Models are
trained on the full training set with mixed targets. Test
results are denoted as M for mixed targets, N for noun-
phrase targets, and C for claim targets.

and Hutter, 2019) as the optimizer with a learn-
ing rate of 0.001. Each model was trained for
20 epochs, with each mini-batch of size 128. As
for TGA-Net, we adhered to the hyperparameters
as recommended in prior research (Allaway and
McKeown, 2020). The AdamW optimizer with
a learning rate of 2e-5 was utilized for vanilla
transformer-based models (BERT, RoBERTa, XL-
Net), and the NLI pre-trained models (BERT-
MNLIp2, RoBERTa-MNLIp3, XLNet-MNLIp4,
BART-MNLI-ep5), which were fine-tuned for 4
epochs using batch size of 64. The entire training
process for each model was completed within 3
hours. Each result is the average of 4 runs with dif-

2https://huggingface.co/textattack/
bert-base-uncased-MNLI

3https://huggingface.co/textattack/
roberta-base-MNLI

4https://huggingface.co/textattack/
xlnet-base-cased-MNLI

5https://huggingface.co/facebook/
bart-large-mnli

ferent initializations. For ChatGPT, we utilized the
gpt-3.5-turbo-0301 version. We use the following
prompt to extract stance predictions using Chat-
GPT: “Q: What is the stance of the text ’[tweet]’
towards the target ’[target]’? The answer should
be selected from ’Favor’, ’Against’, or ’None’. A:”
For LLaMA 2, we utilized the Llama-2-13b-chat-
hf version with the following prompt: “Classify the
stance that the author of the text takes towards the
target into favor, against, or neutral. The answer
should only be one of the following three words:

’favor’, ’against’, or ’neutral’. Don’t give further
explanation other than one of these three words.
Text: "[tweet]". Target: "[target]".”

G Evaluations on BERT-based and
XLNet-based Models for Subtask A
and Subtask B

We also evaluate BERT-based models (i.e., BERT,
BERT-MNLI, BERT-MNLIp) and XLNet-based
models (i.e., XLNet, XLNet-MNLI and XLNet-
MNLIp). The results for subtask A and subtask
B are shown in Table 14 and Table 15, respec-
tively. First, we can observe that for both sub-
task A and subtask B, the models with MNLI pre-
training (BERT-MNLI, XLNet-MNLI) outperform
the corresponding standard BERT and XLNet mod-
els. Additionally, when our proposed prompts are
applied to noun-phrase targets, BERT-MNLIp and
XLNet-MNLIp demonstrate enhanced performance
compared to BERT-MNLI and XLNet-MNLI, espe-
cially in experiments involving noun-phrase targets.
This finding underscores the effectiveness of our
prompts in improving the MNLI model with BERT
and XLNet architectures.

H Class-specific Performance for Subtask
A and Subtask B

To establish more comprehensive results, for sub-
task A and subtask B, we report the class-specific
performance. The performance is reported using
F1 score for the against (Con), favor (Pro), neutral
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Train/Val Mixed targets Noun-phrase targets Claim targets

Test M N C M N C M N C

BiCE
Con .519 .512 .521 .387 .546 .305 .369 .352 .364
Pro .376 .524 .262 .417 .541 .354 .251 .257 .241
Neu .509 .393 .568 .390 .500 .344 .237 .238 .343

Cross-Net
Con ..494 .542 .472 .396 .564 .304 .362 .146 .446
Pro .509 .549 .485 .426 .571 .365 .497 .495 .512
Neu .551 .436 .608 .400 .518 .339 .482 .083 .612

TGA Net
Con .552 .611 .524 .461 .658 .357 .460 .347 .513
Pro .603 .636 .583 .448 .628 .354 .535 .419 .602
Neu .614 .491 .674 .364 .534 .280 .531 .189 .672

LLaMA 2
Con .272 .379 .226 .272 .379 .226 .272 .379 .226
Pro .516 .571 .483 .516 .571 .483 .516 .571 .483
Neu .200 .190 .205 .200 .190 .205 .200 .190 .205

ChatGPT
Con .556 .653 .511 .556 .653 .511 .556 .653 .511
Pro .517 .637 .445 .517 .637 .445 .517 .637 .445
Neu .424 .523 .365 .424 .523 .365 .424 .523 .365

BERT
Con .748 .692 .776 .428 .678 .296 .624 .409 .765
Pro .768 .680 .819 .494 .689 .401 .650 .257 .811
Neu .765 .535 .875 .302 .533 .165 .686 .295 .872

BERT-MNLI
Con .774 .678 .818 .459 .682 .351 .667 .386 .823
Pro .777 .669 .841 .483 .688 .378 .680 .374 .847
Neu .766 .526 .881 .317 .546 .187 .690 .254 .883

BERT-MNLIp
Con .768 .660 .817 .421 .678 .302 - - -
Pro .783 .670 .845 .465 .688 .364 - - -
Neu .775 .575 .882 .341 .563 .220 - - -

XLNet
Con .766 .678 .806 .450 .690 .322 .650 .440 .803
Pro .781 .694 .834 .469 .698 .352 .666 .196 .835
Neu .776 .553 .886 .362 .565 .256 .694 .280 .887

XLNet-MNLI
Con .804 .694 .857 .601 .704 .552 .702 .441 .859
Pro .805 .682 .877 .520 .695 .425 .706 .333 .874
Neu .774 .528 .890 .373 .567 .268 .695 .299 .891

XLNet-MNLIp
Con .807 .702 .859 .533 .703 .454 - - -
Pro .815 .701 .882 .491 .706 .390 - - -
Neu .776 .520 .893 .331 .581 .190 - - -

RoBERTa
Con .785 .692 .827 .482 .698 .376 .680 .428 .821
Pro .794 .679 .859 .473 .699 .357 .683 .226 .860
Neu .773 .547 .888 .345 .571 .219 .699 .381 .888

RoBERTa-MNLI
Con .805 .697 .855 .581 .714 .511 .707 .366 .860
Pro .810 .695 .877 .589 .698 .535 .712 .459 .884
Neu .775 .535 .894 .404 .564 .308 .699 .193 .897

RoBERTa-MNLIp
Con .809 .718 .859 .504 .722 .426 - - -
Pro .810 .700 .881 .617 .689 .590 - - -
Neu .779 .566 .894 .474 .593 .459 - - -

BART-MNLI
Con .669 .188 .811 .669 .188 .811 .669 .188 .811
Pro .697 .523 .843 .697 .523 .843 .697 .523 .843
Neu .626 .173 .797 .626 .173 .797 .626 .173 .797

BART-MNLI-e
Con .823 .708 .873∗ .458 .724 .319 .726∗ .400 .875∗

Pro .819 .696 .890 .504 .712 .398 .717 .454 .887
Neu .787 .578∗ .886 .391 .588 .286 .705 .179 .903

BART-MNLI-ep
Con .824∗ .724∗ .870 .478 .740∗ .362 - - -
Pro .825∗ .717∗ .888 .494 .724∗ .388 - - -
Neu .788 .567 .898∗ .364 .597 .217 - - -

Table 16: Comparison of class-specific F1 scores of models on EZ-STANCE subtask A. M, N, C represent mixed,
noun-phrase, and claim targets, respectively. The performance is reported using F1 score for the against (Con), favor
(Pro), neutral (Neu). ∗: our approach improves the best ZSSD baseline at p < 0.05 with paired t-test. Blue, red, and
cyan represent best performance in against, favor, and neutral class, respectively.
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Model CE WE EdC EnC S R EP P

BiCE
M .514 .544 .521 .498 .443 .575 .457 .558
N .492 .553 .502 .436 .212 .620 .432 .607
C .524 .538 .528 .520 .477 .545 .467 .523

CrossNet
M .500 .533 .477 .478 .452 .555 .504 .549
N .541 .588 .487 .472 .309 .656 .535 .627
C .470 .491 .471 .480 .479 .454 .485 .474

TGA-Net
M .553 .550 .536 .545 .497 .636 .519 .584
N .598 .635 .585 .545 .455 .709 .551 .662
C .521 .472 .503 .545 .507 .577 .502 .510

LLaMA 2
M .329 .315 .288 .248 .119 .342 .226 .326
N .407 .358 .371 .359 .276 .399 .286 .383
C .277 .286 .240 .192 .082 .303 .194 .282

ChatGPT
M .567 .578 .559 .523 .474 .592 .586 .603
N .640 .632 .614 .594 .520 .651 .577 .685
C .516 .536 .525 .482 .460 .547 .591 .537

BERT
M .695 .718 .711 .706 .722 .731 .739 .732
N .633 .673 .630 .608 .506 .721 .673 .708
C .741 .756 .761 .755 .770 .738 .778 .755

BERT-
MNLI

M .727 .738 .746 .736 .765 .755 .768 .748
N .654 .662 .641 .614 .513 .710 .682 .701
C .786 .802 .811 .800 .823 .795 .820 .794

BERT-
MNLIp

M .721 .747 .743 .733 .765 .750 .763 .745
N .641 .678 .648 .608 .517 .699 .672 .696
C .781 .806 .807 .798 .821 .794 .817 .793

XLNet
M .720 .740 .752 .713 .740 .757 .759 .742
N .673 .697 .651 .614 .493 .736 .694 .711
C .758 .777 .815 .768 .793 .775 .795 .772

XLNet-
MNLI

M .741 .781 .774 .769 .794 .779 .783 .766
N .640 .690 .640 .625 .511 .739 .691 .711
C .818 .857 .856 .844 .858 .815 .835 .818

XLNet-
MNLIp

M .754 .779 .779 .766 .796 .774 .785 .775
N .664 .694 .648 .625 .522 .727 .684 .730
C .824 .852 .853 .838 .856 .816 .841 .818

RoBERTa
M .745 .766 .769 .752 .768 .775 .780 .765
N .694 .703 .656 .625 .522 .744 .702 .731
C .789 .818 .839 .819 .826 .802 .824 .798

RoBERTa
-MNLI

M .769 .779 .791 .777 .793 .788 .797 .785
N .688 .700 .673 .626 .540 .748 .702 .726
C .832 .847 .864 .853 .857 .823 .848 .840

RoBERTa
-MNLIp

M .764 .787 .790 .779 .794 .794 .795 .789
N .687 .708 .662 .623 .534 .748 .691 .730
C .827 .855 .867 .854 .860 .834 .850 .842

BART-
MNLI

M .574 .587 .629 .627 .735 .568 .654 .562
N .224 .193 .200 .200 .290 .225 .232 .236
C .761 .794 .797 .776 .822 .760 .803 .754

BART-
MNLI-e

M .779 .798 .804 .780 .820 .786 .809 .799
N .692 .720 .691 .638 .542 .723 .730 .738
C .844 .862 .872 .859 .876 .837 .855 .857

BART-
MNLI-ep

M .786∗ .807∗ .801 .775 .812 .798∗ .812∗ .801∗

N .703∗ .723∗ .682 .626 .543∗ .738 .722 .738∗

C .849∗ .876∗ .871 .855 .872 .849∗ .862∗ .857∗

Table 17: Comparison of F1 for the “against” class of
different models trained on mixed targets for 8 different
zero-shot domain settings, and tested using the full test
set with mixed targets (M), the noun-phrase targets (N),
and the claim targets (C), respectively. Results are aver-
aged over four runs. ∗: our approach improves the best
ZSSD baseline at p < 0.05 with paired t-test. Blue, red,
and cyan represent best performance in mixed targets,
noun-phrase targets, and claim targets, respectively.

(Neu). Results are shown in Table 16 (subtask A),
Table 17, Table 18, and Table 19 (subtask B).

Model CE WE EdC EnC S R EP P

BiCE
M .300 .257 .424 .390 .430 .371 .478 .254
N .420 .397 .580 .478 .538 .602 .642 .445
C .190 .153 .284 .245 .295 .180 .324 .139

CrossNet
M .459 .446 .542 .464 .499 .545 .557 .455
N .420 .397 .580 .478 .538 .602 .642 .445
C .478 .470 .508 .449 .461 .499 .461 .459

TGA-Net
M .571 .539 .610 .575 .610 .643 .605 .560
N .564 .462 .607 .560 .647 .702 .655 .542
C .576 .570 .611 .583 .580 .585 .556 .570

LLaMA 2
M .489 .459 .535 .520 .561 .547 .582 .486
N .518 .433 .609 .569 .642 .629 .681 .489
C .466 .478 .475 .483 .496 .476 .490 .483

ChatGPT
M .483 .444 .528 .491 .554 .556 .615 .510
N .590 .518 .633 .607 .641 .672 .713 .576
C .408 .399 .443 .406 .475 .459 .517 .467

BERT
M .712 .730 .748 .724 .737 .768 .788 .715
N .586 .571 .666 .611 .644 .728 .752 .602
C .792 .808 .820 .800 .812 .803 .825 .791

BERT-
MNLI

M .735 .738 .755 .750 .746 .768 .806 .732
N .593 .545 .654 .627 .623 .699 .760 .587
C .825 .830 .844 .838 .843 .829 .856 .823

BERT-
MNLIp

M .732 .736 .761 .748 .753 .763 .805 .735
N .592 .547 .661 .629 .651 .686 .763 .592
C .822 .829 .845 .836 .839 .828 .848 .825

XLNet
M .729 .732 .759 .740 .748 .771 .797 .734
N .614 .582 .670 .623 .668 .730 .765 .608
C .801 .806 .838 .813 .817 .807 .833 .812

XLNet-
MNLI

M .751 .771 .788 .776 .776 .787 .813 .758
N .598 .581 .682 .641 .670 .727 .760 .614
C .848 .867 .885 .869 .867 .840 .869 .855

XLNet-
MNLIp

M .765 .770 .784 .769 .778 .774 .818 .772
N .626 .583 .684 .630 .678 .696 .768 .629
C .850 .865 .877 .865 .867 .838 .873 .860

RoBERTa
M .748 .760 .779 .757 .763 .791 .818 .755
N .637 .594 .676 .617 .645 .742 .774 .629
C .821 .848 .865 .851 .853 .835 .865 .839

RoBERTa
-MNLI

M .769 .774 .789 .788 .776 .804 .821 .770
N .622 .583 .679 .652 .658 .744 .769 .622
C .858 .870 .885 .882 .871 .856 .876 .864

RoBERTa
-MNLIp

M .766 .773 .792 .786 .778 .800 .829 .773
N .625 .584 .686 .654 .665 .734 .784 .631
C .858 .874 .889 .880 .873 .856 .879 .867

BART-
MNLI

M .641 .623 .684 .670 .711 .689 .723 .632
N .462 .372 .530 .502 .602 .562 .636 .436
C .808 .854 .843 .836 .837 .830 .837 .822

BART-
MNLI-e

M .782 .786 .808 .799 .790 .789 .830 .787
N .650 .618 .707 .677 .666 .716 .778 .635
C .866 .880 .898 .887 .890 .857 .886 .883

BART-
MNLI-ep

M .783∗ .796∗ .802 .797 .790∗ .795 .832∗ .785
N .658∗ .613 .703 .669 .672 .717 .777 .638
C .864 .894∗ .894 .886 .886 .865∗ .890∗ .882

Table 18: Comparison of F1 for the “favor” class of
different models trained on mixed targets for 8 different
zero-shot domain settings, and tested using the full test
set with mixed targets (M), the noun-phrase targets (N),
and the claim targets (C), respectively. Results are aver-
aged over four runs. ∗: our approach improves the best
ZSSD baseline at p < 0.05 with paired t-test. Blue, red,
and cyan represent best performance in against, favor,
and neutral class, respectively.
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Model CE WE EdC EnC S R EP P

BiCE
M .496 .520 .489 .505 .552 .491 .474 .513
N .465 .491 .371 .498 .573 .265 .360 .387
C .556 .577 .561 .563 .539 .583 .543 .581

CrossNet
M .544 .559 .524 .558 .575 .539 .501 .531
N .465 .491 .371 .498 .573 .265 .360 .387
C .606 .614 .610 .609 .575 .650 .582 .617

TGA-Net
M .579 .618 .602 .621 .610 .625 .573 .588
N .431 .563 .475 .549 .586 .354 .488 .461
C .670 .663 .687 .679 .631 .729 .637 .664

LLaMA 2
M .215 .210 .221 .258 .141 .174 .182 .172
N .199 .231 .234 .245 .140 .153 .183 .163
C .224 .195 .214 .267 .142 .184 .182 .178

ChatGPT
M .405 .457 .383 .478 .491 .311 .339 .360
N .498 .538 .455 .558 .598 .367 .425 .432
C .342 .399 .336 .423 .411 .281 .286 .312

BERT
M .713 .745 .720 .750 .746 .758 .689 .727
N .492 .586 .431 .595 .643 .429 .454 .469
C .860 .869 .872 .874 .847 .891 .832 .867

BERT-
MNLI

M .715 .742 .729 .736 .751 .760 .698 .724
N .487 .578 .459 .552 .643 .408 .427 .455
C .863 .873 .875 .869 .858 .899 .842 .864

BERT-
MNLIp

M .715 .740 .731 .724 .743 .751 .699 .721
N .492 .562 .458 .521 .628 .428 .459 .470
C .864 .873 .876 .867 .854 .901 .842 .860

XLNet
M .716 .751 .733 .743 .748 .760 .699 .737
N .495 .596 .465 .580 .634 .399 .459 .518
C .857 .872 .879 .874 .854 .898 .842 .868

XLNet-
MNLI

M .721 .763 .737 .755 .756 .761 .708 .737
N .503 .596 .436 .585 .636 .416 .465 .498
C .871 .895 .890 .889 .867 .899 .847 .873

XLNet-
MNLIp

M .727 .747 .734 .745 .750 .754 .702 .740
N .510 .552 .451 .559 .614 .389 .435 .501
C .875 .889 .888 .886 .872 .908 .850 .878

RoBERTa
M .719 .749 .739 .750 .763 .764 .707 .744
N .461 .575 .496 .577 .660 .388 .469 .500
C .868 .881 .882 .884 .866 .902 .845 .877

RoBERTa
-MNLI

M .741 .766 .750 .764 .764 .770 .719 .742
N .540 .588 .491 .598 .652 .434 .492 .506
C .879 .899 .893 .894 .870 .905 .859 .881

RoBERTa
-MNLIp

M .729 .757 .744 .764 .755 .768 .710 .740
N .479 .560 .459 .597 .625 .431 .451 .507
C .880 .898 .896 .896 .871 .910 .861 .879

BART-
MNLI

M .576 .572 .599 .600 .567 .613 .580 .579
N .235 .226 .282 .295 .214 .195 .224 .272
C .764 .792 .778 .789 .783 .801 .766 .751

BART-
MNLI-e

M .740 .760 .752 .752 .785 .759 .721 .748
N .530 .574 .477 .553 .681 .398 .489 .507
C .879 .894 .899 .893 .891 .908 .859 .887

BART-
MNLI-ep

M .736 .764 .747 .758 .775 .757 .729∗ .746
N .521 .577 .461 .580 .659 .389 .518∗ .497
C .876 .901 .898 .892 .887 .905 .865 .891∗

Table 19: Comparison of F1 for the “neutral” class of
different models trained on mixed targets for 8 different
zero-shot domain settings, and tested using the full test
set with mixed targets (M), the noun-phrase targets (N),
and the claim targets (C), respectively. Results are aver-
aged over four runs. ∗: our approach improves the best
ZSSD baseline at p < 0.05 with paired t-test.
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