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Abstract

Information about pretraining corpora used to
train the current best-performing language mod-
els is seldom discussed: commercial models
rarely detail their data, and even open mod-
els are often released without accompanying
training data or recipes to reproduce them. As
a result, it is challenging to conduct and ad-
vance scientific research on language modeling,
such as understanding how training data im-
pacts model capabilities and limitations. To
facilitate scientific research on language model
pretraining, we curate and release Dolma, a
three-trillion-token English corpus, built from
a diverse mixture of web content, scientific pa-
pers, code, public-domain books, social media,
and encyclopedic materials. We extensively
document Dolma, including its design princi-
ples, details about its construction, and a sum-
mary of its contents. We present analyses and
experimental results on intermediate states of
Dolma to share what we have learned about
important data curation practices. Finally, we
open-source our data curation toolkit to enable
reproduction of our work as well as support
further research in large-scale data curation.1

hf.co/datasets/allenai/dolma

github.com/allenai/dolma

♥Core authors. See Appendix B for list of contributions.

1 Introduction
Language models are now central to tackling myriad nat-
ural language processing tasks, including few-shot learn-
ing, summarization, question answering, and more. In-
creasingly, the most powerful language models are built
by a few organizations who withhold most model devel-
opment details (Anthropic, 2023; OpenAI, 2023; Anil
et al., 2023; Gemini Team et al., 2023). In particular, the
composition of language model pretraining data is often
vaguely described, even in cases where the model itself
is released for public use, such as Llama 2 (Touvron
et al., 2023b). This hinders understanding of the effects
of pretraining corpus composition on model capabilities
and limitations, with impacts on scientific progress as
well as on the public who interfaces with these models.
Our aim is to increase participation in scientific research
of language models through open corpora:

• Data transparency helps developers and users of ap-
plications that rely on language models to make more
informed decisions (Gebru et al., 2021). For example,
models have shown to perform better on tasks that
are more similar to their pretraining data (Razeghi
et al., 2022; Kandpal et al., 2023), or social biases in
models’ pretraining data may necessitate additional
consideration when using them (Feng et al., 2023;
Navigli et al., 2023; Seshadri et al., 2023).

• Open pretraining data is necessary to analyze how
1This manuscript was prepared for Dolma v.1.6. As our

work on open data for language modeling continues, we will
continue to improve Dolma. Updated versions can be found
in the provided links.
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Source Doc Type UTF-8 bytes
(GB)

Documents
(millions)

Unicode
words

(billions)

Llama
tokens

(billions)

Common Crawl � web pages 9,812 3,734 1,928 2,479
GitHub Ð code 1,043 210 260 411
Reddit Ü social media 339 377 72 89
Semantic Scholar � papers 268 38.8 50 70
Project Gutenberg [ books 20.4 0.056 4.0 6.0
Wikipedia, Wikibooks ] encyclopedic 16.2 6.2 3.7 4.3

Total 11,519 4,367 2,318 3,059

Table 1: The Dolma corpus at-a-glance. It consists of three trillion tokens sampled from a diverse set of domains;
sourced from approximately 200 TB of raw text before curation down to an 11 TB dataset. It has been extensively
cleaned for language model pretraining use. Tokens calculated using the LLaMA tokenizer.

its composition influences model behavior, allowing
those training models to interrogate and improve cur-
rent data practices (Longpre et al., 2023; Gao, 2021;
Elazar et al., 2023). Examples of this research in-
clude memorization (Carlini et al., 2022; Chang et al.,
2023), deduplication (Lee et al., 2022), adversarial
attacks (Wallace et al., 2021), benchmark contamina-
tion (Magar and Schwartz, 2022), and training data
attribution (Hammoudeh and Lowd, 2022; Grosse
et al., 2023).

To support broader participation and inquiry in these
lines of research, we present Data for Open Language
Models’ Appetite (Dolma), an open corpus of three
trillion tokens designed to support language model pre-
training research. We source much of our data from
sources similar to those present in past work, including
a mix of web text from Common Crawl, scientific re-
search from Semantic Scholar, code from GitHub, pub-
lic domain books, social media posts from Reddit, and
encyclopedic materials from Wikipedia. Compared to
other publicly-available pretraining corpora, Dolma of-
fers a larger pool of tokens at comparable quality while
maintaining diverse data composition. In summary, our
contributions are two-fold:

• We release the Dolma Corpus, a diverse, multi-
source collection of 3T tokens1 across over 4B doc-
uments acquired from 6 different data sources that
are (i) commonly seen in large-scale language model
pretraining and (ii) made accessible to the general
public. Table 1 provides a high-level overview of the
amount of data from each source.

• We open source the Dolma Toolkit, a high-
performance, portable tool designed to efficiently cu-
rate large datasets for language model pretraining.
Through this toolkit, practitioners can not only re-

1We follow the definition of “token” as a subword obtained
using a tokenizer (such as LLaMA’s or GPT-NeoX’s), which
is distinct from “word”, as in a unit of text as defined by the
Unicode text segmentation standard.

produce our dataset, but also study and improve data
curation practices.

2 Related Work

Closed data curation practices in language model
pretraining research. Pretraining data practices for
language model research have grown increasingly
closed, both with respect to access to data as well as
documentation of key details about the data itself or
its curation practices that would enable reproduction
efforts or further scientific study. Proprietary models
(e.g., GPT-4, OpenAI, 2023; PaLM 2, Anil et al., 2023;
Claude, Anthropic, 2023) disclose little to no informa-
tion (not even corpus size, or data provenance), and do
not share data artifacts. Despite increasing access to
powerful open models, few are released alongside their
training data; exceptions include T5 on C4 (Raffel et al.,
2020), BLOOM (Leong et al., 2022) on ROOTS (Piktus
et al., 2023), GPT-J (Wang and Komatsuzaki, 2021),
GPT-NeoX (Black et al., 2022), Pythia (Biderman et al.,
2023) on Pile (Gao et al., 2020), and INCITE (Together
Computer, 2023c) on RedPajama v1 (Together Com-
puter, 2023a). The most powerful open models (e.g.,
Llama 2 (Touvron et al., 2023b), Mistral (Jiang et al.,
2023), Yi (Bai et al., 2023), Qwen (01.AI, 2023)) do
not share their data nor provide sufficient details for
reproduction. Among large-scale language model pre-
training efforts, the ones accompanied with transparent
data curation documentation include LLaMA (Touvron
et al., 2023a) (released model, unreleased data), Go-
pher (Rae et al., 2021) (unreleased model and data),
and Falcon (Almazrouei et al., 2023) (released model,
released partial data). Appendix §C further illustrates
the many unknowns of data curation practices of open
and closed models, as well as recent trends away from
open data practices that have motivated our work.

Open corpora for language model pretraining. We
recognize prior efforts to curate, document, and release
open corpora to support language model pretraining
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research. However, limitations in these prior corpora
have motivated us to curate a new dataset:

• C4 (Raffel et al., 2020) (175B tokens) and Pile (Gao
et al., 2020) (387B tokens) are high-quality datasets
with demonstrated use in training language models,
but are unfortunately limited in scale. ROOTS (Pik-
tus et al., 2023) is large (≈400B tokens) but given its
multilingual focus, its English-only portion is only
30% of the dataset and thus contributes too few to-
kens to train English-only models. We recognize that
scale and English-only concentration do not imply
a “higher-quality” dataset; rather, certain threads of
research necessitate these foci, motivating our new
corpus (see §3).

• While Falcon (Almazrouei et al., 2023) (580B tokens)
and RedPajama v2 (Together Computer, 2023b) (30T
tokens) meet our scale criterion, they are entirely de-
rived from Common Crawl web pages, and thus lack
source diversity commonly targeted when curating
data for the largest language models (e.g., scientific
papers, code). We also note that RedPajama v2 is
only lightly-curated, distributing content output by
CCNet (Wenzek et al., 2020) mostly as-is, thus plac-
ing the onus on model developers to decide their own
filtering before training.

• RedPajama v1 (Together Computer, 2023a) (≈1.2T
tokens) is most similar to our effort and a source of in-
spiration when designing Dolma. While RedPajama
v1 was a specific reproduction of the LLaMA (Tou-
vron et al., 2023a) training data, we have a broader
reproduction target which required diving into data
sources that RedPajama v1 did not pursue, includ-
ing larger collections of scientific papers and social
media forums like Reddit (see § 3). Further, recent
work has identified data quality issues suggesting
significant additional cleanup of RedPajama v1 is
recommended before costly language model train-
ing (Soboleva et al., 2023; Elazar et al., 2023).

While this manuscript was under review, several other
open corpora for language modeling have been re-
leased, including FineWeb (Penedo et al., 2024),
Zyda (Tokpanov et al., 2024), and the datasets used
to train LLM360 Amber (Liu et al., 2023), LLM360
K2 (LLM360 Team, 2024), and MAP-Neo (Zhang et al.,
2024) models.

3 Data Design Goals
We present the design goals of Dolma and discuss how
these goals guided our decision-making during data cu-
ration. In sharing these, we hope to inform users of
Dolma’s strengths and limitations while also reinforcing
practice around such disclosures in dataset curation re-
search (see curation rationales in Bender and Friedman
(2018) and motivation questions in Gebru et al. (2021)).

Be consistent with prior language model pretrain-
ing recipes. By matching data sources and methods

used to create other language modeling corpora, to the
extent they are known, we enable the broader research
community to use our artifacts to study (and scrutinize)
language models being developed today, even those
developed behind closed doors. In this reproduction
effort, we follow established practices to the extent they
are known. Notably, this also means scoping Dolma
to English-only text to better leverage known curation
practices and maximize generalizability of scientific
work on Dolma to existing language models.2

When in doubt, make evidence-backed decisions.
Still, there remain myriad data curation decisions for
which there is no single clear recipe from prior work,
both when best practice isn’t known as well as when
implementations differ in subtle ways. In such cases,
we prioritize decisions that maximize performance of
language models trained on Dolma over a diverse suite
of tasks and datasets (see §4.2).

Large scale data to train large models. Hoffmann
et al. (2022) suggested that one can train compute-
optimal models by maintaining a fixed ratio between
language model size (in parameters) and a minimum
number of training tokens. Recent works that follow
these “scaling laws,” such as Llama 2, show that there is
still room for performance improvement by increasing
the number of training tokens. We aim for a sufficiently
large corpus—2–3T tokens—to allow further study of
the relationship between model and dataset size.

Make necessary adjustments to preserve openness.
A core tenet of our work is openness, which we define to
mean (i) sharing the data itself and (ii) documenting
the process to curate it. This requirement means we
occasionally must deviate from known recipes due to
additional practical, legal or ethical considerations that
arise when pursuing dataset research in the open. For
example, despite their use in training language models
like LLaMA, we avoid sources like Books3 (Gao et al.,
2020) which are the center of ongoing legal cases around
AI use of copyrighted materials (Knibbs, 2023). Simi-
larly, despite the lack of discussion around the removal
of personally identifiable information in prior recipes,
we perform this filtering to mitigate risks associated
with data release (Subramani et al., 2023).

4 Data Curation Methodology
4.1 The Dolma Toolkit
Pretraining data curation requires defining complex
pipelines that transform raw data from multiple sources
into a single collection of cleaned, plain text docu-
ments (Wenzek et al., 2020; Almazrouei et al., 2023).
To curate Dolma, we create and open-source a high-
performance toolkit to facilitate efficient processing on

2Recognizing that this focus reinforces the assumption of
English as the “default” language, we hope to expand Dolma
to more languages in the future. We release our data curation
tools to support such efforts.
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hundreds of terabytes of text content. Our toolkit uni-
fies common dataset curation steps into “filtering” and
“mixing” operations:

Zfiltering We unify common data transformations
like language, quality or content filters into a single im-
plementation. Given a configuration—a text unit (e.g.,
document, paragraph,3 sentence, etc.), a scoring method
(e.g., linear classifier, language model perplexity, reg-
ular expression matches), and a removal policy (e.g.,
delete, replace with string)—our toolkit parallelizes fil-
tering operations by identifying and removing undesir-
able text at massive scale. For Dolma, we use these to
filter non-English, “low quality” or unnatural,4 toxic-
ity,5 and PII at the document and sub-document levels.
In internal tests to replicate C4 recipe, our toolkit per-
formed filtering at a rate of 122 CPU hours per TB; for
reference, processing the full “raw” Dolma files totaling
200 TB on a c6a.48xlarge instance with 192 vCPUs
would take 5 days.

ç mixing We unify common cross-file operations,
like up/down-sampling, deduplication and decontami-
nation, into a single Rust module that “mixes” content
across files into a smaller set of files. For example, we
can achieve up-sampling by repeatedly reading the same
file paths when mixing. We also implement a Bloom
filter (Bloom, 1970) compatible with our mixer which
enables linear-time probabilistic detection of duplicates.
We can repurpose this for test set decontamination by
first seeding the Bloom filter with test examples, then
flagging any detected duplicates when mixing the pre-
training data.

4.2 Data Ablations

To help us make informed decisions, we conduct data
ablations in which we train language models on a
dataset following a specific data curation decision, or
intervention, and evaluate the resulting model’s perfor-
mance on a range of test datasets against a baseline
dataset. By comparing intervention and baseline results
while controlling for model architecture and training,
we can isolate the impact of specific dataset curation
decisions on downstream models.

3We define a paragraph to be a span of text ending in a
newline UTF-8 character “\n”.

4The term “quality filter,” while widely used in literature,
does not appropriately describe the outcome of filtering a
dataset. Quality might be perceived as a comment on the
informativeness, comprehensiveness, or other characteristics
valued by humans. However, the filters used in Dolma and
other language models efforts select text according to criteria
that are inherently ideological (Gururangan et al., 2022).

5Similar to “quality”, there is no single definition for “toxi-
city”. Rather, specific definitions vary depending on task (Vid-
gen and Derczynski, 2020) and dataset curators’ social iden-
tities (Santy et al., 2023); annotators’ beliefs also influence
toxic language detection (Sap et al., 2021). Predicting toxi-
city remains challenging (Welbl et al., 2021; Markov et al.,
2023), especially as existing methods have been shown to
discriminate against minoritized groups (Xu et al., 2021).

Model training. We conduct data ablations using
a 1.2 billion parameter decoder-only model from the
OLMo family of open language models (Groeneveld
et al., 2024). This is in line with similar model sizes
that have been used for ablations in prior work (Le Scao
et al., 2022). As training such models to completion
is prohibitively expensive, especially when one must
perform these experiments for each significant data cu-
ration decision, we only train these models up to 150
billion tokens before terminating them early. Further
details of our training setup in Appendix D.1.

Tasks and test datasets. To select our evaluation tasks
and datasets, we prioritize those that (i) have been used
in prior language model pretraining evaluation, (ii) cap-
ture a diverse range of language model knowledge and
capabilities, and (iii) for which we can avoid test set
contamination (Dodge et al., 2021; Yang et al., 2023).
We arrive at 8 datasets in our evaluation suite (full
details in Appendix §D) that have been used in prior
language modeling research (e.g., LLaMA, Llama 2,
etc.) and capture a range of capabilities (e.g., question
answering, commonsense reasoning, etc.). Full test set
contamination analysis validating our dataset choices in
Appendix §L.

Evaluation. We perform evaluation of our data ab-
lation models using zero-shot in-context prompting,
casting every task as (ranked) text classification, fol-
lowing in-context prompt truncation from Min et al.
(2022), prompts from PromptSource (Bach et al., 2022),
and using an in-house evaluation harness similar to the
Eleuther harness (Gao et al., 2023).

5 � Curating Dolma-Web
In this section, we describe the web subset of Dolma,
which consists of 2.28T tokens derived from Common
Crawl,6 a collection of over 250 billion pages that were
crawled since 2007. Common Crawl is organized in
snapshots, each corresponding to a full crawl over its
seed URLs; as of Feb 2024, there are 97 snapshots. We
used 25 snapshots between 2020-05 to 2023-06.7

5.1 � Acquisition & Z Language Filtering
Our web pipeline leverages CCNet (Wenzek et al., 2020)
to perform language filtering and initial content dedupli-
cation. CCNet has been used to develop other language
model datasets like that for LLaMA, RedPajama v1,
RedPajama v2. CCNet processes each web page with
a FastText (Joulin et al., 2016a) language ID model8 to
determine the primary language for each document; we
keep all pages with English document score greater than
or equal to 0.5 (removed 61.7% of the data, by byte size).

6
commoncrawl.org

7To minimize storage and compute costs, we only acquired
enough shards of Common Crawl to meet our target 2-3T
token corpus size, assuming at least a 10x reduction from the
sum of all data cleaning efforts, including CCNet (§3).

8
fasttext.cc/docs/en/language-identification
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Further, CCNet identifies and removes very common
paragraphs by grouping shards in each snapshot into
small sets and removing duplicated paragraphs in each.
This step removed approximately 70% of paragraphs,
primarily consisting of headers and navigation elements.
Overall, CCNet pipeline filters out 84.2% of the content
in Common Crawl, from 175.1 TB to 27.7 TB. More
details are provided in our Datasheet §N.

5.2 Z Quality Filtering
Web crawled data requires significant cleanup before
language model training; undesirable content ranges
from artifacts introduced by HTML to plain text con-
version (e.g., page headers, ill-formatted text) to pages
lacking “prose-like” content (e.g., boilerplate text, short
segments). Per arguments posed in Rae et al. (2021)
and Almazrouei et al. (2023) against model-based qual-
ity filters, we approach quality filtering by combining
heuristics introduced by Gopher and C4. Specifically,
we keep all the Gopher rules (Gopher All) and keep a
single heuristic from C4 designed to remove paragraphs
that do not end in punctuation (C4 NoPunc), as opposed
to adopting the full set of C4 rules (C4 All). Implemen-
tation details of all filtering rules are provided in our
Datasheet §N.
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Figure 1: We find a positive effect of web data quality
filters on 1.2B model performance, evaluated across
training iterations, over a no-filtering baseline. We only
show results on HellaSwag here; all figures for other
evaluation datasets are in the Appendix §O.

Ablation results shown in §1 validate our filtering
strategy: we find that C4 NoPunc on its own outper-
forms both C4 All as well as Gopher All on both
perplexity and downstream tasks. Finally, combining
Gopher All + C4 NoPunc offers the best performance.
In all, Gopher All tagged 15.23% of UTF-8 charac-
ters for removal, while C4 NoPunc tagged 22.73% of
characters for removal.

Model and heuristic filters are orthogonal. CCNet
also provides quality scores using KenLM (Heafield,
2011) perplexity that groups documents based on
Wikipedia-likeness; these buckets are often interpreted
as high (21.9%), medium (28.5%), or low (49.6%) qual-
ity content, in which more Wikipedia-like is often asso-

ciated with higher quality. To our surprise, we found our
heuristic filtering rules did not affect these proportions,
suggesting that such model-based quality filters may
capture other signals orthogonal to heuristic filters.

5.3 Z Content Filtering
Filtering Toxic Content Data sampled from the web
often contains harmful or toxic content (Matic et al.,
2020; Luccioni and Viviano, 2021; Birhane et al.,
2023a,b). Such content is often filtered to minimize the
likelihood that downstream language models are prone
to toxic content generation (Anil et al., 2023; Rae et al.,
2021; Thoppilan et al., 2022; Hoffmann et al., 2022;
Longpre et al., 2023). To remove this content from
Dolma, we train our own FastText classifiers on the
Jigsaw Toxic Comments (cjadams et al., 2017) dataset,
producing two models that identify “hate” and “NSFW”
content, respectively. See Appendix §H for implementa-
tion details. We run these classifiers on Common Crawl
sentences9 and remove any sentence scored above a set
threshold.
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Figure 2: We find a positive effect of web data content
filters on 1.2B model performance, evaluated across
training iterations, over a no-filtering baseline. We only
show results on HellaSwag here; all figures for other
evaluation datasets are in the Appendix §O.

To understand filter thresholding effects on Dolma,
we conduct a data ablation choosing two very different
thresholds for these content filters (§2). We find the
“High Threshold” (τ = 0.4) removes less content (5.5–
7.3%), but generally yields lower downstream perfor-
mance than the “Low Threshold” (τ = 0.0004) which
removes more content (29.1–34.9%).10

Weighing the tradeoff between dataset scale (“High”)
and performance maximization (“Low”), we adopt the
more permissive “High” threshold to ensure we meet our
minimum token count requirement. The cause of this
was surprising: Our quality, content, and deduplication
filters overlap very little in which texts they remove

9Using BlingFire sentence splitter (Microsoft, 2019).
10Manual inspection of the distribution of sentence scores

revealed a bi-modal distribution with peaks near 0.0 and 1.0
(e.g., Figure 8). As such, we chose “Low” to remove even
slightly toxic data (> 0.0), and “High” to limit our max data
removal amount to preserve our target dataset scale.
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(Figure 9), resulting in a compounded filtering effect
when combining them. In future versions of Dolma, we
will start with more shards of Common Crawl and adopt
stricter filter thresholds.

Filtering Personally Identifiable Information Data
sampled from the web can also leak personally identifi-
able information (PII) of users (Luccioni and Viviano,
2021; Subramani et al., 2023). Traces of PII are abun-
dant in large-scale datasets (Elazar et al., 2023), and lan-
guage models have also been shown to reproduce PII at
inference time (Carlini et al., 2022; Chen et al., 2023b).
Dolma’s size makes it impractical to use model-based
PII detectors like Presidio (Microsoft, 2018); instead,
we rely on carefully-crafted regular expressions that sac-
rifice some accuracy for significant speed-up. Following
Subramani et al. (2023), we focus on three kinds of PII
that are detectable with high precision: email addresses,
IP addresses and phone numbers. For documents with 5
or fewer PII spans, we replace the span with a special
token (e.g., |||EMAIL_ADDRESS|||); this affects 0.02% of
documents. Otherwise, we remove entire documents
with higher density of PII spans; this affects 0.001%
of documents. In data ablation experiments, we find
that execution details around PII (e.g., removal versus
special token replacement) had no effect on model per-
formance, which is expected given the tiny percentage
of affected data. See Appendix §I for implementation
details; all figures for results on evaluation suite are in
the Appendix §O.

5.4 ç Deduplication
Deduplication of pretraining data has been shown to be
effective for improving token efficiency during model
training (Lee et al., 2022; Abbas et al., 2023; Tirumala
et al., 2023); as such, it has become common practice
among pretraining data recipes. In Dolma, we perform
three stages of deduplication:

(i) Exact URL dedup filters 53.2% of documents.

(ii) Exact document dedup filters 14.9% of URL-
deduped documents, including empty documents.

(iii) Exact paragraph dedup filters 18.7% of para-
graphs from the URL-deduped documents, includ-
ing empty paragraphs.

This multi-stage approach is designed to increase ef-
ficiency: Stage (i) is commonly used first thanks to its
computational efficiency (Agarwal et al., 2009; Koppula
et al., 2010; Penedo et al., 2023). Stages (i) and (ii) are
designed to remove copies of the same item, such as
re-crawls of the same URL and identical pages with
multiple URLs (e.g., same news article in multiple on-
line newspapers). Performing these early before any
content or quality filtering greatly reduces the number
of documents to process. In contrast, Stage (iii) removes
common boilerplate content (e.g., the byline under all
articles by the same author); as paragraph removal risks
disrupting content analysis, we perform it last. We per-
form all three stages using the Bloom filter in §4.1.

5.5 �Zç Putting It All Together
To summarize, the Dolma web pipeline transforms the
output of CCNet through URL and document-level
deduplication, then quality and content filtering, and
finally paragraph-level deduplication.
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Figure 3: We find a positive compounding effect on
1.2B model performance, evaluated across training iter-
ations, when stacking quality filtering, content filtering
and paragraph-level deduplication, over a no-filtering
baseline. We show results on HellaSwag here; all figures
for other evaluation datasets are in the Appendix §O.

We show the positive compounding effect of all stages
of our web pipeline on downstream model performance,
as assessed through our data ablations §4.2. We present
summary statistics in Appendix §K.

6 Ð Curating Dolma-Code
In this section, we describe the code subset of Dolma,
which consists of 411B tokens derived from GitHub.

6.1 � Acquisition & Z Language Filtering
Like prior work in code language models (e.g., Star-
Coder (Li et al., 2023b)), we also acquire code through
the Stack (Kocetkov et al., 2022), a deduplicated but
otherwise unfiltered collection of permissively-licensed
GitHub repositories. The raw version of this dataset was
collected in March 2023. We filter data-heavy files with
extensions such as JSON and CSV.

6.2 Z Quality Filtering
We apply heuristics derived from the code subset of Red-
Pajama v1 and StarCoder. RedPajama v1 uses rules to
remove repetitive file preambles, such as license state-
ments and documents with excessively long lines or
mostly numerical content. Overall, RedPajama v1 is
removes files that are mostly data or generated through
templates. To select high-quality code snippets, we also
use rules from the StarCoder pipeline; these heuristics
filter GitHub repositories with no to few stars, files with
too few or too many comments, and HTML files with
low code-to-text ratio. Implementation details of all
filtering rules are provided in our Datasheet §N.

When conducting data ablations, we find that, com-
pared to RedPajama v1 rules alone, RedPajama v1 and
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StarCoder rules combined lead to lower perplexity on
code datasets (e.g., HumanEval; Chen et al., 2021) and
improved performance on datasets in our evaluation
suite.11 Therefore, we chose to use this combination of
the two filtering rules for this Dolma code subset.

6.3 Z Content Filtering

We apply the same heuristics to filter and mask PII used
in the web subset (§5). Additionally, we filter any doc-
uments containing code secrets and software-specific
personal information by running the detect-secrets
library (Yelp, 2013) and removing any documents with
a match.

6.4 ç Deduplication

We started from the already-deduplicated version of the
Stack, which used the pipeline first introduced by Allal
et al. (2023), which uses MinHash (Broder, 2002) and
Locally Sensitive Hashing to find similar documents.

7 Ü Curating Dolma-Social

In this section, we describe the social media subset
of Dolma, which consists of 80B tokens derived from
Reddit data.

7.1 � Acquisition & Z Language Filtering

We derive this subset from 378M posts from Decem-
ber 2005 until March 2023 obtained through Pushshift
(Baumgartner et al., 2020). We include both submis-
sions—initial message in conversations on Reddit—and
comments—replies to messages. The tree-like structure
of Reddit threads allows for multiple possible data for-
mats depending on how the various components of a
thread are linearized for language model pretraining.
To better inform this transformation, we conduct a data
ablation over several approaches:

1. Atomic Content. Treats all comments and submis-
sionas independent documents.

2. Partial Threads. Comments from the same thread
combined into a multi-round dialogue between
users. Submissions as separate documents.

3. Full Threads. Combines submissions with all
child comments into one document.

See Appendix §E for implementation details. From
results in Figure 4, we see treating submissions and
comments as independent documents (Atomic Content)
leads to better performance on our evaluation suite. We
hypothesize that artificial formatting introduced when
combining thread elements negatively impacts language
model training; we leave further investigation to future
work. Finally, we filter non-English content using the
approach from §5.1.

11All figures for results on evaluation suite in Appendix §O.
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Figure 4: Experimenting with different Reddit thread
linearization methods with 1.2B models, evaluated
across training iterations. We only show results on Hel-
laSwag here; all figures for other evaluation datasets are
in the Appendix §O.

7.2 Z Quality Filtering
Like web crawled data, social media posts also require
significant cleanup before language model training. We
repurpose the pipeline introduced by Henderson et al.
(2019) to filter submissions and comments. We remove
comments shorter than 500 characters, and submissions
shorter than 400 characters.12 We also remove docu-
ments over 40,000 characters.

We remove comments with fewer than 3 votes13, as
lower scores are more likely for comments that are
deeply nested in a conversational thread (Weninger
et al., 2013) or content that is more likely to results
in emotionally-charged discourse (Davis and Graham,
2021). Votes have been used as a signal in construct-
ing the WebText (Radford et al., 2019) and OpenWeb-
Text (Peterson, 2020) corpora. We discard documents
that have been deleted by their authors, removed by
moderators, or labeled by their authors as “over 18”.
We exclude any document originated from a set 26,123
banned or NSFW subreddits.14

7.3 Z Content Filtering
We apply the same content filtering in §5.3, except due
to the short length of many Reddit documents, instead
of masking PII, we fully remove the document.

7.4 ç Deduplication
We employ the same strategy used in the web
pipeline (§5.4). Since submissions and comments are
shorter than web documents, we only deduplicate at a

12Qualitative inspection of the data suggested that submis-
sions are of higher quality than comments; thus, we use a
more permissive minimum length.

13The total votes for each document are obtained by com-
puting the difference between positive votes, also known as
“upvotes”, negative votes or “downvotes”.

14Available on GitHub as part of Dolma Toolkit (see
subreddit_blocklist.txt) . The list was curated by merg-
ing several sources that tracked banned subreddits. We also
include any subreddit with over 10% of posts tagged as NSFW.
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document-level. This strategy is useful to reduce the
incidence of “copypasta” (identical text repeated across
comments and subreddits for comedic effect) and other
repetitive information.

8 Assembling Other Data Sources
In this section, we briefly summarize additional high-
quality sources that were used to derive Dolma. More
details on collection and processing in Datasheet §N.

� C4 for Curated Web Content Similar to data
recipes for LLaMA and Llama 2, we supplement our
web subset with C4 (Raffel et al., 2020). We further
refine this data by reprocessing it through our full web
pipeline (excluding URL deduplication) (§5) which re-
moved additional content, including more low-quality
and duplicated texts, and performed PII masking.

� Semantic Scholar for Academic Literature The
peS2o dataset (Soldaini and Lo, 2023) is a collection
of approximately 40 million open-access academic pa-
pers that have been cleaned, filtered, deduplicated, and
formatted for pretraining language models. It is de-
rived from the Semantic Scholar Open Research Corpus
(S2ORC; Lo et al., 2020). As this dataset has been
created for language modeling purposes, we use it as-is.

[ Project Gutenberg for Books Project Gutenberg
is a repository of over 70 thousand public domain books.
We collected Project Gutenberg’s archive in April 2023.
We use English language books, which we filter using
the same approach described in §5.1. We deduplicate
this dataset based on book title exact match.

] Wikipedia and Wikibooks for Encyclopedic Con-
tent This dataset was derived by March 2023 Wikime-
dia dumps. We use the “English” and “Simple” editions
of Wikipedia and Wikibooks as base for the Encyclo-
pedic subset of Dolma. Sources were processed using
WikiExtractor(Attardi, 2023). We remove any document
with 25 or fewer UTF-8-segmented words, as we found
shorter pages to either be the result of short, templated
pages (e.g., pages containing only a few words and an
information box) or XML parsing errors. By design,
this dataset does not contain duplicated documents.

9 Training a Language Model on Dolma
As a final validation step of the Dolma pipeline, we
train, evaluate and release a decoder-only, autoregres-
sive language model which we call OLMo-1B. We present
zero-shot experimental results of OLMo-1B on a range of
downstream tasks demonstrating comparable quality to
other released language models of comparable size.

9.1 Evaluating OLMo-1B

In Table 2 we compare OLMo-1B with other 1B mod-
els. We note that, while all models share a roughly
comparable number of parameters, only TinyLlama
was trained on roughly the same number of tokens as
OLMo-1B. Pythia was trained on nearly 10 times fewer
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.2

B
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ARC-E 63.7 50.2 53.2 58.1
ARC-C 43.8 33.1 34.8 34.5
BoolQ 76.6 61.8 64.6 60.7

HellaSwag 68.2 44.7 58.7 62.5
OpenBookQA 45.8 37.8 43.6 46.4

PIQA 74.0 69.1 71.1 73.7
SciQ 94.7 86.0 90.5 88.1

WinoGrande 64.9 53.3 58.9 58.9

Average 66.5 54.5 59.4 60.3

Table 2: Comparison of OLMo-1B and other similarly-
sized language models on our evaluation suite.

tokens and StableLM2 was trained on 2 trillion tokens
for two epochs (data composition not shared). Neverthe-
less, we find that OLMo-1B performs better on average
than the most comparable model, TinyLlama, outper-
forming it in 4 out of 8 tasks from our evaluation suite
§4.2. Though zero-shot evaluations of such tasks are
often challenging for smaller 1B models, we see that
performance across all tasks and models is above naive
random performance.

9.2 Measuring Domain Fit

In §3, we motivated our decision in curating Dolma to
cover a diverse set of sources. In this section, we use
OLMo-1B to assess Dolma’s distribution of documents
leads to pretrained language models that fit well to di-
verse textual domains, compared to training on other
open corpora. To represent diverse domains, we use
Paloma (Magnusson et al., 2023), a stratified collection
of hundreds of fine-grained textual sources; thus, train-
ing on more diverse datasets should result in models
with lower overall perplexity on Paloma. We repeat
our data ablation methodology, training 1.2B models on
150B token samples from C4, mC4 (English-only) (Xue
et al., 2020), RedPajama v1, RefinedWeb (Almazrouei
et al., 2023), Pile, and Dolma.

From the results in Figure 5, we observe the follow-
ing: (1) The model trained on Pile performs well as it
is comprised of many diverse sources, despite its over-
all smaller scale. (2) Larger multi-source datasets like
Dolma and, to a lesser extent, RedPajama v1 yield mod-
els with similar coverage of diverse domains to Pile.
(3) Finally, training on single-source corpora like C4,
mC4 (English-only), and RefinedWeb leads to models
with poor fit to diverse domains as indicated by higher
average perplexity.

Our controlled perplexity analysis reveals the impor-
tance of including non-web data from diverse curated
sources. The metric that we use from Paloma surfaces
how models fit more heterogeneous data, because it sam-
ples marked domains from each source equally rather
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Figure 5: 1.2B parameter language models trained on
150B tokens from Dolma and other open corpora, evalu-
ated across training iterations on perplexity over diverse
domains in Paloma (Magnusson et al., 2023).

than by their unequal proportions in the source. Intu-
itively, the model trained on the Pile is well-fit to such
data as that pretraining corpus is mostly sourced from
similar smaller, hand-picked sources. But as we wish to
scale the total number of tokens in a corpus, the chal-
lenge becomes how to integrate more available web data
without losing sample efficiency on diverse evaluations
such as Paloma. In this case, we see that OLMo-1B nearly
matches the perplexity curve of the Pile model despite a
much larger fraction of web data included.

Conclusion

In this manuscript, we introduce Dolma, a three trillion
token English corpus for language model pretraining.
The Dolma corpus is comprised of a diverse set of con-
tent, including web documents, scientific papers, code,
public-domain books, social media, and encyclopedic
materials. Building off a list of explicit desiderata, we
document our data curation pipelines, providing exper-
imental results that support our decisions. We freely
release Dolma and open-source all tools we used to
curate this dataset as part of the OLMo project (Groen-
eveld et al., 2024). Since the time of writing, we have
made improvements to Dolma and have continued to
make releases; for example, our follow-on release of
Dolma v.1.7 yields significant performance improve-
ment on downstream tasks, holding the model con-
stant.15 We hope this line of work can promote trans-
parency, reproducibility, and further research in the field
of language modeling, as well as address the current
gap in the availability of pretraining data of commercial
and open language models. We release Dolma under
ODC-By and our toolkit under Apache 2.0.

15
medium.com/p/92b43f7d269d

Limitations

English-only corpus. Dolma was curated to contain
English data. As tools for language identification may
have false negatives, Dolma might contain a small per-
centage of non-English data. Traces of non-English data
are unlikely to lead to any meaningful downstream per-
formance on non-English tasks for any model trained
on Dolma. Thus, Dolma reinforces the expectation of
English being the “default” language for NLP.

Representativeness of sources in Dolma. As men-
tioned in §3, it is impossible to curate a corpus that
is representative of all language model data curation
practices. Further, many open and close language mod-
els are trained on content that cannot be acquired or
redistributed, and thus could not be included in Dolma.

Single model configuration for ablations. The ex-
perimental setup we use to validate our data curation
pipeline only covers a subset of model types used to
create language models. For example, while many lan-
guage models are in the 7 billion to 70 billion parameters
range, we train 1 billion parameter models; further, we
did not investigate the use of any alternative architec-
tures to dense auto-regressive transformer models. This
choice was dictated by the need to efficiently iterate over
many possible configurations, but it might result in de-
sign decisions that are not relevant at larger model sizes.
We expect downstream model developers to scrutinize
Dolma before using it to train their language models,
similar to the process we sketch in §9.

Limited tasks in evaluation suite. As detailed in
§4.2, we select tasks that have been used to evaluate
previous base language models, and that are not present
in our training data (i.e., Dolma is not contaminated
against them). As such, we can only assess a subset of
tasks language models are routinely used for. For exam-
ple, the effect of adding code to pretraining data cannot
be fully measured until models are able to generate exe-
cutable code; such capability is typically observed only
after models are finetuned to follow instructions (Muen-
nighoff et al., 2023a; Zhuo et al., 2024).

Manual inspection and evaluation of Dolma is in-
feasible. Given the corpus size, it is impossible to
fully inspect Dolma to assess its content. While
tools like WIMBD (Elazar et al., 2023) and Data Por-
traits (Marone and Durme, 2023) aid programmatic in-
spection of subsets of data, they cannot provide an as-
sessment of all documents in a corpus. As such, we
cannot fully describe the properties of Dolma in terms
of data distribution, content quality, and potential harms
due to the inclusion or exclusion of particular content.

Ethical Considerations

Minimize risk of harm to individuals during data
curation. Curating a pretraining corpus may intro-
duce risk to individuals, either by facilitating access
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to information that is present in the corpus, or by en-
abling training of harmful models that disclose personal
information (Carlini et al., 2020) or produce toxic con-
tent (Gehman et al., 2020; Ngo et al., 2021). To mini-
mize these risks while meeting our stated goals, we en-
gaged with legal and ethics experts early in the project
and evaluated data design decisions based on their feed-
back on a case-by-case basis. Broadly, we follow ac-
cepted practices when available (e.g., masking of certain
personal identifiable information), and take a measured
approach when diverging opinions exist in the literature
(e.g., most effective approach to identify and remove
toxic content). Further, we will provide tools to request
data removal16 We believe in compromising on desired
research artifact properties like model reproducibility,
performance, and extensibility in cases of significant
harm to individuals.

Besides a risk-based approach, alternative frame-
works for considering the ethical implications of lan-
guage model data have also been proposed. Data stew-
ardship (Jernite et al., 2022) seeks to create a framework
to collect and reflect explicit interests of data owners.
Data trusts (Chan et al., 2023) or data licensing (Li et al.,
2023a) can also enable explicit consent in sharing data
for AI training. As no current state-of-the-art model
is trained on data collected through these frameworks,
these approaches would limit the representativeness goal
stated in §3. As these principles are adopted, we will
consider them for future versions of Dolma.

Copyright and fair use considerations. At the time
of writing, the landscape governing applicability of
copyright law and fair use doctrine (also known as
“fair dealing”) and language models is largely unde-
termined (Cooper et al., 2023; Lee et al., 2024). In
the United States, legal scholars and practitioners have
suggested that training models on copyright content
might constitute fair use (Balasubramaniam et al., 2023;
MacKie-Mason and Li, 2023; Henderson et al., 2023),
while also recognizing limitations of existing doctrine
in this application (Farhadi et al., 2023). Further, le-
gal assessments regarding the use of copyrighted data
in language models vary widely depending on jurisdic-
tion: in early 2024, Israel (Israel Ministry of Justice,
2022) and Japan (Technomancers.ai, 2023) allow copy-
righted content to be used for AI training data, although
the latter is currently re-considering this framework.
While most datasets we used were curated with copy-
right and licensing in mind (e.g., open access papers in
peS2o (Soldaini and Lo, 2023), open source repositories
in the Stack (Kocetkov et al., 2022)) or were already
permissively licensed (e.g., Wikipedia is released un-
der a Creative Commons license), we recognize that
large web crawls may also contain copyrighted material.
Yet, given current tools, it’s not possible to reliably or
scalably detect copyrighted materials in a corpus of this
size. Our decision to curate and distribute Dolma fac-

16Available at forms.gle/FzpUXLJhE57JLJ3f8

tors in several considerations, including that all our data
sources were publicly available and already being used
in large-scale language model pretraining (both open
and closed). We recognize that the legal landscape of
AI is changing rapidly, especially as it pertains to use of
copyrighted materials for training models.
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mar, Nikola Mrkšić, Georgios Spithourakis, Pei-Hao
Su, Ivan Vulic, and Tsung-Hsien Wen. 2019. A repos-
itory of conversational datasets. In Proceedings of
the Workshop on NLP for Conversational AI. Data
available at github.com/PolyAI-LDN/conversational-
datasets.

Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori
Hashimoto, Mark A. Lemley, and Percy Liang.
2023. Foundation models and fair use. ArXiv,
abs/2303.15715.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals,
and L. Sifre. 2022. Training compute-optimal large
language models. ArXiv, abs/2203.15556.

Jimin Hong, TaeHee Kim, Hyesu Lim, and Jaegul Choo.
2021. AVocaDo: Strategy for adapting vocabulary
to downstream domain. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4692–4700, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

15740

http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2312.11805
http://arxiv.org/abs/2402.00838
https://api.semanticscholar.org/CorpusID:260682872
https://api.semanticscholar.org/CorpusID:260682872
https://aclanthology.org/2022.emnlp-main.165
https://aclanthology.org/2022.emnlp-main.165
https://aclanthology.org/2022.emnlp-main.165
https://api.semanticscholar.org/CorpusID:254535627
https://api.semanticscholar.org/CorpusID:254535627
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123
https://arxiv.org/abs/1904.06472
https://arxiv.org/abs/1904.06472
https://api.semanticscholar.org/CorpusID:257771630
https://api.semanticscholar.org/CorpusID:247778764
https://api.semanticscholar.org/CorpusID:247778764
https://doi.org/10.18653/v1/2021.emnlp-main.385
https://doi.org/10.18653/v1/2021.emnlp-main.385


Israel Ministry of Justice. 2022. Opinion: Uses of copy-
righted materials for machine learning. Accessed:
2024-02-15.

Yacine Jernite, Huu Nguyen, Stella Biderman, Anna
Rogers, Maraim Masoud, Valentin Danchev, Samson
Tan, Alexandra Sasha Luccioni, Nishant Subramani,
Gérard Dupont, Jesse Dodge, Kyle Lo, Zeerak Ta-
lat, Isaac Johnson, Dragomir R. Radev, So maieh
Nikpoor, Jorg Frohberg, Aaron Gokaslan, Peter Hen-
derson, Rishi Bommasani, and Margaret Mitchell.
2022. Data governance in the age of large-scale data-
driven language technology. Proceedings of the 2022
ACM Conference on Fairness, Accountability, and
Transparency.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7b. ArXiv, abs/2310.06825.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016a. Fasttext.zip: Compressing text classification
models. arXiv preprint arXiv:1612.03651.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016b. Bag of tricks for efficient
text classification. arXiv preprint arXiv:1607.01759.

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric
Wallace, and Colin Raffel. 2023. Large language
models struggle to learn long-tail knowledge. In
Proceedings of the 40th International Conference
on Machine Learning, volume 202 of Proceedings
of Machine Learning Research, pages 15696–15707.
PMLR.

Rodney Kinney, Chloe Anastasiades, Russell Authur,
Iz Beltagy, Jonathan Bragg, Alexandra Buraczyn-
ski, Isabel Cachola, Stefan Candra, Yoganand Chan-
drasekhar, Arman Cohan, Miles Crawford, Doug
Downey, Jason Dunkelberger, Oren Etzioni, Rob
Evans, Sergey Feldman, Joseph Gorney, David Gra-
ham, Fangzhou Hu, Regan Huff, Daniel King, Se-
bastian Kohlmeier, Bailey Kuehl, Michael Langan,
Daniel Lin, Haokun Liu, Kyle Lo, Jaron Lochner,
Kelsey MacMillan, Tyler Murray, Chris Newell,
Smita Rao, Shaurya Rohatgi, Paul Sayre, Zejiang
Shen, Amanpreet Singh, Luca Soldaini, Shivashankar
Subramanian, Amber Tanaka, Alex D. Wade, Linda
Wagner, Lucy Lu Wang, Chris Wilhelm, Caroline
Wu, Jiangjiang Yang, Angele Zamarron, Madeleine
Van Zuylen, and Daniel S. Weld Weld. 2023. The Se-
mantic Scholar Open Data Platform. arXiv preprint
arXiv:2301.10140.

John Kirk and Gerald Nelson. 2018. The international
corpus of english project: A progress report. World
Englishes.

Kate Knibbs. 2023. The battle over books3 could
change ai forever.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li,
Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jer-
nite, Margaret Mitchell, Sean Hughes, Thomas Wolf,
et al. 2022. The Stack: 3 TB of permissively licensed
source code. arXiv preprint arXiv:2211.15533.

Hema Swetha Koppula, Krishna P. Leela, Amit Agarwal,
Krishna Prasad Chitrapura, Sachin Garg, and Amit
Sasturkar. 2010. Learning url patterns for webpage
de-duplication. In Proceedings of the Third ACM
International Conference on Web Search and Data
Mining, WSDM ’10, page 381–390, New York, NY,
USA. Association for Computing Machinery.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium. As-
sociation for Computational Linguistics.

Hugo Laurenccon, Lucile Saulnier, Thomas Wang,
Christopher Akiki, Albert Villanova del Moral,
Teven Le Scao, Leandro von Werra, Chenghao Mou,
Eduardo Gonz’alez Ponferrada, Huu Nguyen, Jorg
Frohberg, Mario vSavsko, Quentin Lhoest, Angelina
McMillan-Major, Gérard Dupont, Stella Rose Bider-
man, Anna Rogers, Loubna Ben Allal, Francesco De
Toni, Giada Pistilli, Olivier Nguyen, Somaieh
Nikpoor, Maraim Masoud, Pierre Colombo, Javier
de la Rosa, Paulo Villegas, Tristan Thrush, S. Long-
pre, Sebastian Nagel, Leon Weber, Manuel Sevilla
Muñoz, Jian Zhu, Daniel Alexander van Strien,
Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu,
Itziar Gonzalez-Dios, Aitor Soroa Etxabe, Kyle Lo,
Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan,
Shamik Bose, David Ifeoluwa Adelani, Long Phan,
Hieu Trung Tran, Ian Yu, Suhas Pai, Jenny Chim, Vi-
olette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha
Luccioni, and Yacine Jernite. 2023. The bigscience
roots corpus: A 1.6tb composite multilingual dataset.
ArXiv, abs/2303.03915.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Stas
Bekman, M Saiful Bari, Stella Biderman, Hady Elsa-
har, Niklas Muennighoff, Jason Phang, Ofir Press,
Colin Raffel, Victor Sanh, Sheng Shen, Lintang
Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Lau-
nay, and Iz Beltagy. 2022. What language model to
train if you have one million GPU hours? In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 765–782, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Katherine Lee, A. Feder Cooper, and James Grimmel-
mann. 2024. Talkin’ ’Bout AI Generation: Copyright

15741

https://www.gov.il/BlobFolder/legalinfo/machine-learning/he/18-12-2022.pdf
https://www.gov.il/BlobFolder/legalinfo/machine-learning/he/18-12-2022.pdf
https://api.semanticscholar.org/CorpusID:249431979
https://api.semanticscholar.org/CorpusID:249431979
https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494
https://proceedings.mlr.press/v202/kandpal23a.html
https://proceedings.mlr.press/v202/kandpal23a.html
https://api.semanticscholar.org/CorpusID:150172629
https://api.semanticscholar.org/CorpusID:150172629
https://www.wired.com/story/battle-over-books3/
https://www.wired.com/story/battle-over-books3/
https://doi.org/10.1145/1718487.1718535
https://doi.org/10.1145/1718487.1718535
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://api.semanticscholar.org/CorpusID:257378329
https://api.semanticscholar.org/CorpusID:257378329
https://aclanthology.org/2022.findings-emnlp.54
https://aclanthology.org/2022.findings-emnlp.54
https://doi.org/10.2139/ssrn.4523551


and the Generative-AI Supply Chain. Journal of the
Copyright Society. Forthcoming.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2022. Deduplicating training
data makes language models better. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8424–8445, Dublin, Ireland. Association for
Computational Linguistics.

Colin Leong, Joshua Nemecek, Jacob Mansdorfer, Anna
Filighera, Abraham Owodunni, and Daniel White-
nack. 2022. Bloom library: Multimodal datasets in
300+ languages for a variety of downstream tasks.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8608–8621, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Proceedings of the Thirteenth International Confer-
ence on Principles of Knowledge Representation and
Reasoning, KR’12, page 552–561. AAAI Press.

Quentin Lhoest, Albert Villanova del Moral, Patrick
von Platen, Thomas Wolf, Mario Šaško, Yacine
Jernite, Abhishek Thakur, Lewis Tunstall, Suraj
Patil, Mariama Drame, Julien Chaumond, Julien Plu,
Joe Davison, Simon Brandeis, Victor Sanh, Teven
Le Scao, Kevin Canwen Xu, Nicolas Patry, Steven
Liu, Angelina McMillan-Major, Philipp Schmid, Syl-
vain Gugger, Nathan Raw, Sylvain Lesage, Anton
Lozhkov, Matthew Carrigan, Théo Matussière, Lean-
dro von Werra, Lysandre Debut, Stas Bekman, and
Clément Delangue. 2021. Datasets: A Community
Library for Natural Language Processing. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 175–184. Association for Computational
Linguistics.

Hanlin Li, Nicholas Vincent, Yacine Jernite, Nick Mer-
rill, Jesse Josua Benjamin, and Alek Tarkowski.
2023a. Can licensing mitigate the negative impli-
cations of commercial web scraping? In Companion
Publication of the 2023 Conference on Computer
Supported Cooperative Work and Social Computing,
CSCW ’23 Companion, page 553–555, New York,
NY, USA. Association for Computing Machinery.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nourhan Fahmy, Urvashi Bhat-
tacharyya, W. Yu, Swayam Singh, Sasha Luccioni,

Paulo Villegas, Maxim Kunakov, Fedor Zhdanov,
Manuel Romero, Tony Lee, Nadav Timor, Jennifer
Ding, Claire Schlesinger, Hailey Schoelkopf, Jana
Ebert, Tri Dao, Mayank Mishra, Alexander Gu,
Jennifer Robinson, Carolyn Jane Anderson, Bren-
dan Dolan-Gavitt, Danish Contractor, Siva Reddy,
Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Car-
los Muñoz Ferrandis, Sean M. Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries.
2023b. Starcoder: may the source be with you!
ArXiv, abs/2305.06161.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. ArXiv,
abs/1907.11692.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, Richard Fan,
Yi Gu, Victor Miller, Yonghao Zhuang, Guowei He,
Haonan Li, Fajri Koto, Liping Tang, Nikhil Ranjan,
Zhiqiang Shen, Xuguang Ren, Roberto Iriondo, Cun
Mu, Zhiting Hu, Mark Schulze, Preslav Nakov, Tim
Baldwin, and Eric P. Xing. 2023. Llm360: Towards
fully transparent open-source llms.

LLM360 Team. 2024. Llm360 k2-65b: Scaling up open
and transparent language models.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4969–4983, Online. Associ-
ation for Computational Linguistics.

S. Longpre, Gregory Yauney, Emily Reif, Katherine
Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason
Wei, Kevin Robinson, David M. Mimno, and Daphne
Ippolito. 2023. A pretrainer’s guide to training data:
Measuring the effects of data age, domain coverage,
quality, & toxicity. ArXiv, abs/2305.13169.

Alexandra Luccioni and Joseph Viviano. 2021. What’s
in the box? an analysis of undesirable content in the
Common Crawl corpus. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 182–189, Online. Association
for Computational Linguistics.

Jeffrey MacKie-Mason and Haipeng Li. 2023. Re:
Notice of inquiry (“noi”) and request for com-
ments, artificial intelligence and copyright, docket
no. 2023-6. https://www.regulations.gov/
comment/COLC-2023-0006-8194. Posted by the
U.S. Copyright Office.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. In Proceedings
of the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1384–1403, Abu

15742

https://doi.org/10.2139/ssrn.4523551
https://doi.org/10.18653/v1/2022.acl-long.577
https://doi.org/10.18653/v1/2022.acl-long.577
https://aclanthology.org/2022.emnlp-main.590
https://aclanthology.org/2022.emnlp-main.590
https://dl.acm.org/doi/10.5555/3031843.3031909
https://aclanthology.org/2021.emnlp-demo.21
https://aclanthology.org/2021.emnlp-demo.21
https://doi.org/10.1145/3584931.3611276
https://doi.org/10.1145/3584931.3611276
https://api.semanticscholar.org/CorpusID:258588247
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
http://arxiv.org/abs/2312.06550
http://arxiv.org/abs/2312.06550
https://huggingface.co/datasets/LLM360/K2Datasets
https://huggingface.co/datasets/LLM360/K2Datasets
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:258832491
https://api.semanticscholar.org/CorpusID:258832491
https://doi.org/10.18653/v1/2021.acl-short.24
https://doi.org/10.18653/v1/2021.acl-short.24
https://doi.org/10.18653/v1/2021.acl-short.24
https://www.regulations.gov/comment/COLC-2023-0006-8194
https://www.regulations.gov/comment/COLC-2023-0006-8194
https://aclanthology.org/2022.emnlp-main.90
https://aclanthology.org/2022.emnlp-main.90


Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 157–165, Dublin, Ireland. Association
for Computational Linguistics.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann,
Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord,
Dustin Schwenk, Evan Pete Walsh, Yanai Elazar,
Kyle Lo, Dirk Groeneveld, Iz Beltagy, Hannaneh Ha-
jishirzi, Noah A Smith, Kyle Richardson, and Jesse
Dodge. 2023. Paloma: A benchmark for evaluating
language model fit. arXiv [cs.CL].

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen
Katz, and Britta Schasberger. 1994. The Penn Tree-
bank: Annotating predicate argument structure. In
Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March
8-11, 1994.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A SICK cure for the evaluation of
compositional distributional semantic models. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 216–223, Reykjavik, Iceland. European Lan-
guage Resources Association (ELRA).

Todor Markov, Chong Zhang, Sandhini Agarwal, Flo-
rentine Eloundou Nekoul, Theodore Lee, Steven
Adler, Angela Jiang, and Lilian Weng. 2023. A
holistic approach to undesired content detection
in the real world. In Proceedings of the Thirty-
Seventh AAAI Conference on Artificial Intelligence
and Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence and Thirteenth Sympo-
sium on Educational Advances in Artificial Intelli-
gence, AAAI’23/IAAI’23/EAAI’23. AAAI Press.

Marc Marone and Benjamin Van Durme. 2023. Data
portraits: Recording foundation model training data.
ArXiv, abs/2303.03919.

Srdjan Matic, Costas Iordanou, Georgios Smaragdakis,
and Nikolaos Laoutaris. 2020. Identifying sensitive
urls at web-scale. Proceedings of the ACM Internet
Measurement Conference.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer Sentinel Mixture Mod-
els. arXiv preprint arXiv:1609.07843.

Microsoft. 2018. Presidio - data protection and de-
identification sdk.

Microsoft. 2019. Blingfire: A lightning fast Fi-
nite State machine and REgular expression manip-
ulation library. https://github.com/microsoft/
BlingFire.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv [cs.CL].

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2022. MetaICL: Learning to learn
in context. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2791–2809, Seattle, United States.
Association for Computational Linguistics.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai
Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam Singh,
Xiangru Tang, Leandro Von Werra, and Shayne Long-
pre. 2023a. Octopack: Instruction tuning code large
language models. arXiv preprint arXiv:2308.07124.

Niklas Muennighoff, Alexander M Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023b. Scaling data-constrained language models.
arXiv preprint arXiv:2305.16264.

Roberto Navigli, Simone Conia, and Björn Ross. 2023.
Biases in large language models: Origins, inventory,
and discussion. J. Data and Information Quality,
15(2).

Helen Ngo, Cooper Raterink, João G M Araújo, Ivan
Zhang, Carol Chen, Adrien Morisot, and Nicholas
Frosst. 2021. Mitigating harm in language models
with conditional-likelihood filtration.

Ofir Press, Noah A Smith, and Mike Lewis. 2021. Train
short, test long: Attention with linear biases enables
input length extrapolation.

Open Data Commons. 2010. Open Data Commons
Attribution License (ODC-By) v1.0. https://
opendatacommons.org/licenses/by/1-0/. An-
nouncement. [accessed August 2023].

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Antonis Papasavva, Savvas Zannettou, Emiliano
De Cristofaro, Gianluca Stringhini, and Jeremy
Blackburn. 2020. Raiders of the lost kek: 3.5 years of
augmented 4chan posts from the politically incorrect
board. 14th International AAAI Conference On Web
And Social Media (ICWSM), 2020.

Guilherme Penedo, Hynek Kydlíček, Loubna Ben
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detail their contributions below (authors in alphabetical
order):

Contributors to data acquisition and source-specific
data processing include Akshita Bhagia, Dirk Groen-
eveld, Rodney Kinney, Kyle Lo, Dustin Schwenk, and
Luca Soldaini. Everyone contributed to literature review
on available sources and best practices and decisions
around sources to pursue. Akshita Bhagia, Rodney Kin-
ney, Dustin Schwenk, and Luca Soldaini handled the
bulk of data acquisition and processing and ablation
experiments with 1B models for source-specific design
decisions. Kyle Lo and Luca Soldaini handled discus-
sions with legal to inform our choice of sources.

Contributors to infrastructure and tooling include
Russell Authur, Dirk Groeneveld, Rodney Kinney, Kyle
Lo, and Luca Soldaini. Rodney Kinney, Kyle Lo, and
Luca Soldaini designed and implemented the shared
toolkit used for processing our corpus at scale. Dirk
Groeneveld wrote the Bloom filter for deduplication

and decontamination. Russell Authur wrote a toolkit for
acquisition and storage of Common Crawl data.

Contributors to source-agnostic data processing in-
clude Khyathi Chandu, Yanai Elazar, Rodney Kinney,
Kyle Lo, Xinxi Lyu, Ian Magnusson, Aakanksha Naik,
Abhilasha Ravichander, Zejiang Shen, and Luca Sol-
daini. Khyathi Chandu, and Aakanksha Naik developed
the toxic text filter. Kyle Lo, and Xinxi Lyu helped eval-
uate it. Luca Soldaini developed the language filtering
approach. Rodney Kinney, Zejiang Shen, and Luca Sol-
daini developed the “quality” filter. Yanai Elazar identi-
fied repeating n-gram sequences. Abhilasha Ravichan-
der, Kyle Lo, and Luca Soldaini developed the PII filter.
Jesse Dodge and Ian Magnusson developed the evalua-
tion set decontamination approach.

Contributors to ablation experiments include Iz Belt-
agy, Akshita Bhagia, Jesse Dodge, Dirk Groeneveld,
Rodney Kinney, Kyle Lo, Ian Magnusson, Matthew
Peters, Kyle Richardson, Dustin Schwenk, Luca Sol-
daini, Nishant Subramani, Oyvind Tafjord, and Pete
Walsh. This work included designing and prioritizing
experiments given compute constraints, implementing
and running the 1B model experiments, and interpret-
ing results. In particular, Oyvind Tafjord’s work on the
evaluation toolkit and Pete Walsh’s work on the model
implementation were critical.

Contributors to posthoc experiments and analysis
on the final Dolma artifacts. Ben Bogin led the probing
experiments on 1B model weights to assess impact of
differing code mixtures with support from Kyle Lo and
Niklas Muennighoff. Yanai Elazar ran the data analysis
tool to summarize and document Dolma’s composition.
Valentin Hofmann led the tokenization fertility analysis
with support from Kyle Lo. Ananya Harsh Jha and Ian
Magnusson performed experiments training and evalu-
ating baseline 1B models on other open datasets with
support from Luca Soldaini. Sachin Kumar and Jacob
Morrison performed analysis of systematic issues in
our choice of language identification and toxicity classi-
fiers with support from Kyle Lo. Niklas Muennighoff
led analysis of correlation between different filters em-
ployed on Common Crawl data with support from Kyle
Lo and Luca Soldaini.

Contributors to licensing and release policy include
David Atkinson, Jesse Dodge, Jennifer Dumas, Nathan
Lambert, Kyle Lo, Crystal Nam, and Luca Soldaini.
David Atkinson, Jesse Dodge, Jennifer Dumas, and
Crystal Nam led the bulk of this, including research into
data licenses, risk-level determination for pretraining
data, and defining the release policy. Kyle Lo and Luca
Soldaini provided feedback throughout this process and
handled technical details needed for the release. Nathan
Lambert provided feedback on release process and han-
dled the actual release strategy, particularly around ex-
ternal communication.

All of the contributors above helped with documen-
tation and writing of their respective components. In
particular, Li Lucy provided an extensive literature re-
view of language models, open corpora and pretraining
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corpus creation practices. Emma Strubell gave valu-
able feedback on our manuscript. Nathan Lambert
helped with feedback on the blog post and other forms
of external-facing communication about Dolma.

Hannaneh Hajishirzi, Noah Smith, and Luke Zettle-
moyer advised on the project, including broad strat-
egy, writing, recruiting and providing resources. As
OLMo project leads, Iz Beltagy, Jesse Dodge, and Dirk
Groeneveld helped with visibility and coordination
with other critical OLMo project workstreams. Notably,
we credit Noah Smith for coming up with the name
Dolma.

Finally, Kyle Lo and Luca Soldaini led the overall
Dolma project and were involved in all aspects, includ-
ing project management, planning and design, discus-
sions with legal and ethics committees, data and com-
pute partnerships, infrastructure, tooling, implementa-
tion, experiments, writing/documentation, etc.

C (Lack of) details about pretraining data
curation for both open and closed
language models

We provide a high-level overview of the pretraining data
curation practices (or lack of reporting therof) of the
largest, most performant language models (in no partic-
ular order) to illustrate the need for clear documentation
and transparency around dataset curation.

C.1 PaLM 2 (Anil et al., 2023)

Anil et al. (2023) provides limited information on pre-
training data used for PaLM 2; we summarize what we
could from gather from their manuscript’s Sections 3
and D1:

1. Corpus size. Unreported other than it’s larger than
what was used to train PaLM (Chowdhery et al.,
2022)

2. Data provenance. Unreported other than they use
web documents, books, code, mathematics, and
conversational data.

3. PII. Reported as performed filtering, but without
further details.

4. Toxicity. Toxic text identified using Perspective
API but lacking details needed for reproduction
(i.e., text unit, threshold). No details on removal.
They did report tackling toxicity through the use of
control tokens, but do not provide enough details
on this method.

5. Language ID. Reports the most frequent lan-
guages included as well as their frequencies. Lack-
ing details needed for reproduction (i.e., text unit,
tools used, threshold).

6. Quality. Reported as performed filtering, but with-
out further details.

7. Deduplication. Reported as performed filtering,
but without further details.

8. Decontamination. N/A.

9. Other. Anil et al. (2023) report aggregated statis-
tics of how often certain demographic identities
are represented (or not) in the data. Such statis-
tics include identities (e.g., American) or English
pronouns. These were identified using tools such
as KnowYourData or those available on Google-
Cloud, but the manuscript lacks specifics necessary
for reproduction.

C.2 GPT-4 (OpenAI, 2023)
OpenAI (2023) provides limited information on pre-
training data used for GPT-4; we summarize what we
could from gather from their manuscript’s Section 2, Ap-
pendix C and D, footnotes 5, 6, 10 and 27, and Sections
1.1 and 3.1 in the System Card:

1. Corpus size. N/A

2. Data provenance. N/A aside from reporting that
(1) data was sourced from both the Internet as
well as third-party providers, (2) data was sourced
mainly before September 2021 with trace amounts
of more recent data, and (3) they included GSM-
8K (Cobbe et al., 2021) as a tiny fraction of the
total pretraining mix.

3. PII. N/A.

4. Toxicity. Removed documents that violate
their usage policies from pretraining, including
“erotic content,” using a combination of lexicon-
based heuristics and bespoke classifiers following
Markov et al. (2023).

5. Language ID. N/A aside from reporting that the
majority of pretraining data is in English.

6. Quality. N/A.

7. Deduplication. N/A.

8. Decontamination. No discussion of decontami-
nation procedures, but instead reported post-hoc
statistics measuring extent of contamination on pro-
fessional and academic exams, as well as several
academic benchmarks. Method for identifying con-
tamination based on exact substring match (after
removing whitespaces) of a test example against
a pretraining data example. They reported some
contamination with BIG-Bench (Srivastava et al.,
2023).

9. Other. There are myraid works performing “data
archeology” on GPT-4 that is, attempting to glean
information about the pretraining data used in GPT-
4 through probes for memorization. For example,
Chang et al. (2023) show GPT-4 can generate se-
quences from copyrighted books. We do not at-
tempt to survey all of these investigative works.
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C.3 Claude (Anthropic, 2023)

Unfortunately, we know next to nothing about the pre-
training data used for Claude.

C.4 Llama 2 (Touvron et al., 2023b)

Touvron et al. (2023b) provides limited information on
pretraining data used for Llama 2; we summarize what
we could from gather from their manuscript’s Sections
2.1, 4.1, and A.6:

1. Corpus size. 2T tokens.

2. Data provenance. N/A aside from they avoided
using Meta user data.

3. PII. Reported as excluded data from certain web-
sites known to contain high volumes of PII, though
what these sites are was not disclosed.

4. Toxicity. Not explicitly discussed, but appears
to not have performed toxicity filtering, opting
instead to handle toxic text generation in a later
training stage. They do report results from a
post hoc analysis in which they used a Hate-
BERT (Caselli et al., 2021) classifier finetuned
on ToxiGen (Hartvigsen et al., 2022) to score
each document line (and averaged to produce a
document-level score).

5. Language ID. Not stated as used in pretraining
data curation, but they provide a post hoc analysis
of the pretraining dataset using FastText Language
ID with a 0.5 threshold for detected language. We
assume this is likely the same protocol they used
for pretraining data curation as it is also seen in the
CCNet library (Wenzek et al., 2020), which was
used for Llama (Touvron et al., 2023a).

6. Quality. N/A.

7. Deduplication. N/A.

8. Decontamination. They provide extensive report-
ing on their deduplication method, which relies on
a modified version of the ngram deduplication tool
from Lee et al. (2022).

9. Other. Reported upsampling certain sources, but
without further details. They also report a similar
analysis as in PaLM 2 (Anil et al., 2023) on ag-
gregate statistics about demographic identities and
English pronouns.

C.5 LLaMA (Touvron et al., 2023a)

Touvron et al. (2023a) provides some information on
pretraining data used for training LLaMA; we summa-
rize what we could gather from their manuscript’s Sec-
tion 2.1.

1. Corpus size. 1.4T tokens.

2. Data provenance. LLaMA used data with known
provenance, including five shards of Common-
Crawl between 2017 and 2020, C4 (Raffel et al.,
2020), GitHub code from Google BigQuery pub-
lic datasets (restricted to Apache, BSD and MIT
licenses), Wikipedia dumps from June to August
2022, Project Gutenberg books, Books3 from The
Pile (Gao et al., 2020), LaTeX files from arXiv, and
StackExchange pages.

3. PII. N/A.

4. Toxicity. N/A. Reports evaluation on the RealTox-
icityPrompts (Gehman et al., 2020) benchmark.

5. Language ID. Reports use of the CCNet li-
brary (Wenzek et al., 2020), which employs Fast-
Text (Joulin et al., 2016a) classifiers to remove
non-English text (below a 0.5 threshold). No addi-
tional language ID reported for C4, GitHub, Books,
arXiv, and StackExchange sets. For Wikipedia, re-
ported restriction of pages to those using Latin or
Cyrillic scripts: bg, ca, cs, da, de, en, es, fr, hr, hu,
it, nl, pl, pt, ro, ru, sl, sr, sv, uk.

6. Quality. Reports use of the CCNet li-
brary (Wenzek et al., 2020) to remove low-
quality content from CommonCrawl; CCNet uses
KenLM (Heafield, 2011), an n-gram language
model to score perplexity of text as a measure of
similarity to Wikipedia text. They do not report
their chosen threshold for filtering. They also re-
port use of a linear model trained to classify pages
as Wikipedia Reference-like or not. They also re-
port light heuristic filtering of boilerplate content
for GitHub and Wikipedia subsets.

7. Deduplication. Reports use of the CCNet li-
brary (Wenzek et al., 2020) to identify duplicated
lines for Common Crawl texts, file-level exact
match deduplication for GitHub code, and dedu-
plicating books with over 90% for Gutenberg and
Books3 subsets.

8. Decontamination. N/A.

9. Mixture. The manuscript reports a mixture of
67% CommonCrawl, 15% C4, 4.5% GitHub, 4.5%
Wikipedia, 4.5% Books, 2.5% arXiv, and 2.0%
StackExchange. Model training was a single epoch
over this mixture except for an upsampling of
Wikipedia and Books (2 epochs).

C.6 OPT (Zhang, 2022)

From Zhang (2022)’s manuscript and provided
datasheet (Gebru et al., 2021), we summarize the fol-
lowing:

The OPT model was trained on 180B tokens from
data sources with known provenance: the datasets used
for RoBERTa (Liu et al., 2019), a subset of the Pile (Gao

15751

https://cloud.google.com/bigquery/public-data/
https://cloud.google.com/bigquery/public-data/


et al., 2020), and the Pushshift Reddit Dataset (Baum-
gartner et al., 2020) as processed by (Roller et al., 2021).
They made several notable changes to these sources:

1. RoBERTa. Reports updated the CC-News collec-
tion up to September 2021.

2. Pile. Reports restricted to the following collections:
CommonCrawl, DM Mathematics, Project Guten-
berg, HackerNews, OpenSubtitles, OpenWebText2,
USPTO and Wikipedia. (Zhang, 2022) report omis-
sion of other Pile subsets due to gradient norm
spikes at the 1B model scale.

3. Pushshift Reddit. Reports restricted to only the
longest chain of comments in each thread; an oper-
ation that reportedly reduced the dataset by 66%.

Also describes: (1) deduplication using Min-
HashLSH (Rajaraman and Ullman, 2011) with a Jaccard
similarity threshold of 0.95, and (2) language ID filter-
ing to English-only text, though they do not describe the
method used.

They do not discuss whether they do (or do not) per-
form any processing for PII, toxicity, quality, or de-
contamination.

D Experimental Setup
D.1 Ablation Setup
For all data ablations described in this section, we train
a 1B parameter model on up to 150B tokens. We follow
model architecture and training from OLMo (Groen-
eveld et al., 2024); we summarize key details here, but
direct the reader to the manuscript for further details.
Each model is an decoder-only transformer model with
16 layers, 16 attention heads, and 2048 dimensional-
ity. We use ALiBi positional embeddings (Ofir Press
et al., 2021), SwiGLU activation (Shazeer, 2020), and
mixed precision; model context size is set to 2048 to-
kens. We use EleutherAI’s GPT NeoX tokenizer (Black
et al., 2022). The model is trained using the LionW opti-
mizer (Chen et al., 2023a) with 1e-4 peak learning rate,
warm-up of 2000 steps, cosine decay, and 1e-2 weight
decay. Batch size was set to 1024. While we set our
max number of steps to 95k (which is approximately
200B tokens), we conclude our experiments at 150B
tokens.

We use 64 AMD Instinct MI250X accelerators. Each
MI250X accelerator contains two logical nodes; there-
fore, from the point of view of our training code, our
experiments ran on 128 compute units grouped in 16
nodes. Per each logical unit, we use a micro-batch
size of 8. We implement our experiments using the
anonymized codebase.

D.2 Perplexity Evaluation Suite
For data ablations, we keep track of language model per-
plexity using Paloma (Magnusson et al., 2023). Datasets
included:

• C4 (Raffel et al., 2020; Dodge et al., 2021): Standard
contemporary LM pretraining corpus automatically
filtered from the April 2019 Common Crawl scrape.

• mC4 (Xue et al., 2020); English subset: the English
language portion of a pretraining corpus automati-
cally filtered from 71 Common Crawl scrapes.

• Pile (Gao et al., 2020), validation set: widely-used
language modeling pretraining corpus; contains doc-
uments curated from multiple sources including sev-
eral non-web sources.

• WikiText 103 (Merity et al., 2016): a standard col-
lection of verified “Good” and “Featured” articles on
Wikipedia.

• Penn Tree Bank (Marcus et al., 1994): widely-used
NLP corpus derived from Wall Street Journal articles.

• M2D2 (Reid et al., 2022), S2ORC subset: papers
from Semantic Scholar (Lo et al., 2020) grouped by
hierarchical academic field categories.

• M2D2 (Reid et al., 2022), Wiki subset: Wikipedia
articles grouped by hierarchical categories in the
Wikipedia ontology

• C4 100 domains (Chronopoulou et al., 2022): bal-
anced samples of the top 100 domains in C4.

• Gab (Zannettou et al., 2018): data from 2016-2018
from an alt-right, free-speech-oriented social media
platform that has been shown to contain more hate
speech than mainstream platforms.

• ICE (Greenbaum, 1991): English from around the
world curated by local experts, with subsets for
Canada, East Africa, Hong Kong, India, Ireland, Ja-
maica, Philippines, Singapore, and the USA.

• Twitter AAE (Blodgett et al., 2016): balanced sets of
tweets labeled as African American or white-aligned
English.

• Manosphere (Ribeiro et al., 2021): sample of 9 fo-
rums where a set of related masculinist ideologies
developed over the past decade.

• 4chan (Papasavva et al., 2020): data from 2016-2019
politics subsection of an anonymity-focused forum
found shown to contain high rates of toxic content.

We also curated held-out sets from other open lan-
guage model corpora to augment Paloma:

• Dolma (this work), uniform sample: A sample 8,358
documents from the Dolma corpus across all of its
subsets (13 from books, 1,642 from Common Crawl
web pages, 4,545 Reddit submissions, 450 scientific
articles, 1,708 Wikipedia and Wikibooks entries).

• RedPajama v1 (Together Computer, 2023b): 1 tril-
lion tokens replication of the LLaMA 1 (Touvron
et al., 2023a) pretraining corpus.
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• Falcon RefinedWeb (Penedo et al., 2023): A corpus
of English sampled from all Common Crawl scrapes
until June 2023, more aggressively filtered and dedu-
plicated than C4 and mC4-en.

• Dolma 100 Subreddits (this work): Balanced sam-
ples of the top 100 subreddits by number of posts,
sourced from the Dolma Reddit subset.

• Dolma 100 Programming Languages (this work):
Balanced samples of the top 100 programming lan-
guages by number of tokens, sourced from the Dolma
Stack subset.

D.3 Downstream Evaluation Suite
We primarily base our data ablation decisions on the
performance of models on this evaluation suite:

• AI2 Reasoning Challenge (Clark et al., 2018): A
science question-answering dataset broken into easy
and challenge subsets. Only the easy subset was
used in online evaluations. The challenge subset was,
however, included in offline evaluations.

• BoolQ (Clark et al., 2019): A reading comprehen-
sion dataset consisting of naturally occurring yes/no
boolean questions and background contexts.

• HellaSwag (Zellers et al., 2019): A multiple-choice
question-answering dataset that tests situational un-
derstanding and commonsense.

• OpenBookQA (Mihaylov et al., 2018): A multiple-
choice question-answering dataset modeled on open-
book science exams.

• Physical Interaction: Question Answering
(PIQA) (Bisk et al., 2019): A multiple-choice
question-answering dataset that focuses on physical
commonsense and naive physics.

• SciQ (Welbl et al., 2017): A crowdsourced multiple-
choice question-answering dataset consisting of ev-
eryday questions about physics, chemistry and biol-
ogy, among other areas of science.

• WinoGrande (Sakaguchi et al., 2019): A dataset
of pronoun resolution problems involving various
forms of commonsense. Modeled after the Winograd
challenge from Levesque et al. (2012).

D.4 Training Setup for OLMo-1B

For OLMo-1B, we follow the experimental setup outlined
for dataset ablation experiments in Appendix D, with
the following differences:

• We set the max number of steps to 739,328 (which is
roughly 3.1T tokens).

• We double the batch size to 2048 and do so by scaling
up to 256 compute units (double what we used for
data ablations).

• Due to instabilities we found in the LionW optimizer,
we switched to using AdamW.

E Construction of Conversational
Threads in Forums Data

Content comes from Reddit’s data API in two separate
but linked forms: submissions and comments. Submis-
sions are either "link posts" to external content (e.g.
news articles, blogs, or even multimedia content) or
"self posts" (submissions written by the poster meant to
initiate a discussion thread on a topic). Comments are
user replies to either the initiating post (top level com-
ments) or to another user’s comment. Posts, top-level
comments, and replies to comments form a nested con-
versational thread with a submission post at it’s root and
comments branching out into multiple possible dialogue
trees.

The tree-like structure of Reddit threads allows for
multiple possible data formats depending on how the
various components of a thread are combined. We inves-
tigate three formats for their potential as LM pretraining
data:

• Atomic content. This simple format treats all com-
ments and submissions as independent documents
without any structure or connection to the thread they
appear in.

• Partial threads. This format assembles comments
from the same thread into a structured, multi-round
dialogue between users. Submissions are left as sepa-
rate documents. Assembled dialogues are limited to a
maximum parent depth, and the resulting documents
are only snippets of a their originating thread (which
are spread across several documents).

• Full threads. This complex format combines a given
submission and all of its child comments into a single
document encompassing an entire thread. Code-like
indentation is used to indicate the depth of a comment
in the thread’s hierarchy.

We experimentally evaluated these strategies for as-
sembling documents in Figure 4. We found that, for
language modeling purposes, treating comments and
submissions as atomic units leads to better downstream
performance compared to partial and full threads. We
hypothesize that the more complex formatting required
to handle dialogues might introduce undesirable con-
tent for language modeling, such as short and repeated
comments. We leave the study of better formatting for
forum content for language modeling to future work.

F Tokenization Analysis
The first step of processing text with LMs is tokeniza-
tion, i.e., mapping the text to a sequence of tokens with
corresponding input embeddings (Sennrich et al., 2016;
Kudo, 2018; Kudo and Richardson, 2018). Recently,
there has been a growing interest in the question of
how well LM tokenizers fit different data sources (e.g.,
data in different languages; Ahia et al., 2023; Petrov
et al., 2023) Inspired by this emerging line of work,
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(a) Count analysis
(b) Fertility analysis (c) Whitespace analysis

Figure 6: Tokenization analysis. Tokens with small IDs, which have a high count in the tokenizer training data, also
tend to have a high count in Dolma (a). The Stack has a substantially higher fertility compared to the other data
sources (b), which can be explained by the higher relative frequency of whitespace characters such “\n” and “\t” (c).
See text for more details.

we conduct an explorative analysis of the GPTNeoX
tokenizer (Black et al., 2022) applied to Dolma, which
provides a first picture of how challenging the different
data sources comprised by Dolma are for current LM
tokenizers.

We start by taking a global look at the tokenizer’s fit
to Dolma. Out of the 50,280 tokens in the tokenizer
vocabulary, 50,057 are present in the tokenized text
of Dolma. In other words, 223 tokens are never used,
amounting to roughly 0.4% of the tokenizer vocabu-
lary. The 223 tokens mostly consist of combinations of
whitespace characters (e.g., “\n\n ”, two newline char-
acters followed by two blank space characters). Note
that when training an LM with the examined tokenizer
on Dolma, the input embeddings corresponding to these
tokens would not be updated. In terms of the count
distribution of tokens, we find that tokens with smaller
IDs tend to have higher counts in Dolma (see Figure
6a), which is also reflected by a strong Spearman’s cor-
relation between (i) the ranking of tokens based on their
counts in Dolma and (ii) the token IDs (r = 0.638, p <
0.001). Given how the tokenizer was trained (Sennrich
et al., 2016; Black et al., 2022), smaller IDs correspond
to byte pairs merged earlier and hence tokens occurring
more frequently in the tokenizer training data Overall,
these results suggest a good fit of the GPTNeoX tok-
enizer to Dolma.

Does the tokenizer fit all data sources included in
Dolma equally well? To examine this question, we
analyze fertility, which is defined as the average number
of tokens per word generated by a tokenizer (Acs, 2019;
Scao et al., 2022), in our case measured on a specific
data source. We find that fertility is similar for most data
sources, ranging between 1.15 (conversational forum
subset) and 1.28 (books subset), with the exception of
the code subset, which has a substantially higher fertility
of 2.45 (see Figure 6b). This means that the costs of
processing the code subset — be they computational or
financial in nature (Petrov et al., 2023) — are more than
twice as high compared to the other data sources.

What causes this discrepancy? We find that in the

code subset (which mostly contains code), words are
often preceded by whitespace characters other than a
blank space (e.g., newline, tab, return). Crucially, while
a blank space before a word is tokenized as part of
that word (e.g., I love you → “I”, “ love”, “ you”),
other whitespace characters yield separate tokens (e.g.,
I love you → “I”, “\t”, “love”, “\t”, “you”). This
can also be seen by plotting the relative frequency of to-
kens representing whitespace characters by data source,
which is one order of magnitude higher for The Stack
compared to most other data sources (see Figure 6c).
When training LMs on The Stack (or code more gener-
ally), it thus might be advisable to add special tokens
to the tokenizer (e.g., “\nif”; Hong et al., 2021). It is
important to notice that this observation applies to most
tokenizers in use today (e.g., the tokenizer used by GPT-
4), which tend to lack tokens such as “\nif”.

G Auditing our Language Filter

To analyze the impact of the FastText language iden-
tification classifier, we ran an external audit on the In-
ternational Corpus of English (ICE) (Kirk and Nelson,
2018), a dataset containing spoken and written English
from nine countries around the world. We ran our lan-
guage ID tool on all documents in the ICE dataset to
estimate how many documents from each region would
have been erroneously filtered. The ground truth in this
analysis is that every document is in English, and should
be classified as such. Interestingly, we found that at our
fairly permissive threshold (keeping documents with
at least a 0.5 score for English) correctly identified all
English-language documents in ICE each as English, no
matter the region it was from.

H Details on Toxicity Filters

Implementation. To remove toxic content from
Dolma, we used the Jigsaw Toxic Comments
dataset (cjadams et al., 2017), which contains forum
comments tagged with (multilabel) categories “toxic”,
“severe toxic”, “threat”, “insult”, “obscene”,
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Figure 7: Percentage of English-language documents in
the International Corpus of English (ICE) (Kirk and Nel-
son, 2018) that would be misidentified as non-English
as a result of thresholding the FastText classifier’s pre-
dicted English score. We find a majority of English
documents in ICE remain identified as English even
with a threshold of 0.90.

and/or “identity hate” alongside unlabeled com-
ments, to train two FastText classifiers—a binary “hate”
detector and a binary “NSFW” detector:

1. For our “hate” detector, we group all unlabeled com-
ments and “obscene”-only comments as negatives
and leave remaining comments as positives.

2. For our “NSFW” detector, we take all comments tagged
as “obscene” as positives and leave other remaining
comments as negatives. It is important to note this
detector only filters toxic content that mentions sexual
or obscene topics, not sexual content in general.

Figure 8: Distribution of Reddit comments labeled as
toxic by English variation.

Analysis of resulting classifier. To measure dialectal
biases in the FastText toxicity classifier, we analyze its
proclivity to predict English variations spoken in differ-
ent countries as toxic. Starting with the unfiltered Reddit

corpus, we create a dataset of comments from location-
based subreddits,17 filtering for country-specific subred-
dits with more than 50K comments. This dataset serves
as a crude proxy for different dialects of English, assum-
ing most commenters live in the respective locations
and speak the variation. We further assume the fraction
of actually toxic comments in each of these subreddits
to be roughly the same. We compute the toxicity score
for each comment in this dataset using the FastText clas-
sifier and report the percentage of comments marked as
toxic against different classifier thresholds in Figure 8.
For all thresholds, for any two locations, we find <5%
difference in the fraction of comments marked as toxic
suggesting little to no bias. Further, we plot the distribu-
tion of toxicity scores for comments in each subreddit
and find that scores assigned to the comments often fall
at the extremes (close to 0 or close to 1), suggesting that
any reasonable threshold (lying between 0.1 to 0.9) to
predict toxicity will lead to similar outcomes.

I Details on PII Filters

Filter implementation. The Common Crawl, C4,
Reddit, and GitHub subsets used the same regular ex-
pressions for identifying PII. We refer the reader to our
GitHub for exact implementations of our regular expres-
sions for each of the PII types — email address, phone
number, and IP address. Once spans are tagged, we
employ different processing strategies based on the their
density on each document:

• 5 or fewer PII spans detected: we replace all spans
on a page with special tokens |||EMAIL_ADDRESS|||,
|||PHONE_NUMBER|||, and |||IP_ADDRESS||| for email
addresses, phone numbers, and IP addresses respec-
tively.18 In total, we find that 0.02% of documents in
the 25 Common Crawl snapshots match this filter.

• 6 or more PII spans detected: we remove any docu-
ment that contains 6 or more matching PII spans. We
use this approach because pages containing abundant
phone numbers and email addresses are likely to pose
a greater risk of disclosing other PII classes. 0.001%
of documents in the 25 Common Crawl snapshots
match this filter.

J Do quality and content filters have
similar effects?

In order to further understand how filters described in
§5.2, §5.3, and §5.4 interact with each other, we per-
form a correlation analysis on a subset of documents
sampled from our pipeline. The correlation among the
documents flagged for removal by our Common Crawl
filters is depicted in Figure 9. Overall, we find that cor-
relations are generally low, thus our filters select fairly
different documents and are not redundant.

17
reddit.com/r/LocationReddits/wiki/index

18When training models on Dolma, we add these special
tokens to the tokenizer vocabulary.
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Figure 9: Pearson Correlation of various Dolma filters on the High, Medium, and Low buckets of our Common
Crawl data, computed over 24M, 20M, and 43M documents, respectively. The filters are Gopher=Gopher rules
from Rae et al. (2021), Dedup.=Deduplication, PII=Personally Identifiable Information, Hate=Toxicity and De-
cont.=Decontamination. Calculated at the document-level: two filters contribute to positive correlation when any
span in a document is tagged by both filters. We find our various filters remove different documents and are not
redundant.

There is some positive correlation between our PII
(Personal Identifiable Information) filters and filters re-
moving hate speech. This is likely because hate speech
is often directed at people. The Gopher filtering rules
correlate negatively with our deduplication, especially
for the high-perplexity tail part of our data. This is due
to the Gopher rules removing many high-perplexity doc-
uments such as random strings, which are not caught by
deduplication due to their randomness. As these random
strings likely do not contribute to a better understanding
of language, it is important to filter them out and thus
rely on filters beyond deduplication.

K Dolma data distribution figures using
WIMBD

We use the tool from Elazar et al. (2023) to inspect the
final data composition in Figure 10. In particular, we
analyze web domain, year, and language distributions.

We note that Dolma contains documents from a
broad set of internet domains, mostly from 2020, 2022,
and 2021. The most common internet domains in
Dolma, per token, are patents.google.com, followed
by www.nature.com and www.frontiersin.org. In
fact, similar to other corpora reported in Elazar et al.
(2023), 63.6% of Dolma’s web documents are from
‘.com’ sites (followed then by ‘.org’ and ‘.co.uk’ sites).
Finally, as all language identification tools are imper-
fect, we summarize what languages are remaining post
English-only filtering: We find the most common lan-
guage after English is not well identified (‘un’) with
0.86% of the documents, followed by 0.06% of the doc-
uments identified as Chinese.

L Test Set Contamination in Dolma

Decontamination for perplexity evaluation. Using
the paragraph deduplication tools described in §5.4, we
mark any paragraph in Dolma as contaminated if (i) it

is longer than 13 Unicode-segmented tokens19 and (ii)
it appears in any of the documents in Paloma.

To train OLMo-1B, we remove any document with
at least one paragraph marked as contaminated. This
approach, while prone to false positives, has a negligible
impact on the final removal rate (≤ 0.001% characters in
Dolma contaminated, ≤ 0.02% of documents removed.),
and reduces likelihood of false negatives.

Decontamination of downstream tasks. Using
WIMBD (Elazar et al., 2023), we analyze test set con-
tamination in Dolma. We find contamination of entire
datasets from popular benchmarks like GLUE (Wang
et al., 2018) and SuperGLUE (Wang et al., 2019), and
evaluation datasets like SNLI (Bowman et al., 2015b)
and the Winograd Schema Challenge (Levesque et al.,
2012). Further analysis reveals that many of these sets
are contaminated in our code subset, as public reposito-
ries in GitHub often contains copies of these datasets.
We report the top contaminated datasets in Figure 11.

Results indicate that portion of datasets in Prompt-
source appear in Dolma. Six datasets are completely
contaminated (100%): the Winograd Schema Challenge
(Levesque et al., 2012), Sick (Marelli et al., 2014), AX
from GLUE (Wang et al., 2018), SemEval (specifically,
Task 1 from 2014), COPA from SuperGLUE (Roem-
mele et al., 2011), and AXb (the diagnostic task) from
SuperGLUE (Wang et al., 2019). In addition, other
datasets are mostly contaminated, with over 90% of
their test sets appearing in Dolma documents: OpenAI
HumanEval (Chen et al., 2021), WIC from SuperGLUE
(Pilehvar and Camacho-Collados, 2019), ESNLI (Cam-
buru et al., 2018), and SNLI (Bowman et al., 2015a).
We note that the contaminated datasets have been ex-
cluded from the downstream tasks we use for model
evaluation (c.r.f. Appendix D).

19Like in Elazar et al. (2023), we only consider paragraphs
of sufficient length to avoid false positive matches.
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Figure 11: Contamination percentages of datasets from PromptSource (Bach et al., 2022).

M Strategies for Subsets Mixing and
Upsampling with Dolma

Like the pretraining corpora of nearly every large-scale
language model, Dolma is a multi-source dataset. Train-
ing on Dolma thus requires a mixing strategy that de-
termines how much data from each source to include,
and potentially which sources to upsample. Like other
multi-source corpora (e.g., ROOTS (Laurenccon et al.,
2023), the Pile (Gao et al., 2020), RedPajama v1 (To-
gether Computer, 2023a)),20 Dolma does not prescribe
a single mixing strategy. We refer the reader to Rae et al.
(2021) for an example of how one might programmat-
ically search over mixing configurations to maximize
performance. Here, we perform mixing experiments as
an opportunity to answer some research questions about
how different data sources interact. We use the same
ablation setup described in §4.

How much code is important for pretraining? It is
common practice for language models to be pretrained
on some amount of code, even if code generation is not
the intended task. Some research has suggested that
mixing code into training over plain text documents im-
proves performance on reasoning tasks (Madaan et al.,
2022). We investigate whether this observation holds
for models trained on Dolma, and if so, how much code

20RedPajama v1 was a reproduction of the multi-source
corpus used in LLaMA (Touvron et al., 2023a). RedPajama
v2 (Together Computer, 2023b) focuses solely on Common
Crawl and is thus single-source.

is needed?
We create three mixtures from the C4 and Stack sub-

sets containing 0%, 5% and 15% of code data. On each,
we train a 1B model. We evaluate these models on three
different reasoning tasks: bAbI (Weston et al., 2015),
WebNLG (Gardent et al., 2017) and GSM8k (Cobbe
et al., 2021). For the first two tasks, we follow the
experimental setup of Muennighoff et al. (2023b) and
evaluate each model in an ICL setup with a changing
number of demonstrations (0-5) across 5 random seeds.
Muennighoff et al. (2023b) show that adding code to
pre-training data improves ICL performance on bAbI
and WebNLG and they suggest that code improves long-
range state-tracking capabilities. Our experiments, as
shown in Table 3, corroborate these findings: while the
C4-only model fails on all bAbI tasks, adding code im-
proves performance, with a similar trend for WebNLG.

On the more difficult GSM8k benchmark, all models
failed to get any correct answer in an ICL setup, and
even when fine-tuning the models on the entire training
set. However, we find that by fine-tuning on program-
aided output, where questions are solved by writing
Python snippets as described in (Gao et al., 2022), code
models outperform the C4-only model. These results
show that models pre-trained on code can leverage code
generation to answer challenging reasoning tasks even
when the original task does not directly involve code.

Evaluating mixing strategies for pretraining on
Dolma While Dolma does not prescribe a specific
source mixture, we analyze some commonly used strate-
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Dataset 0% Code 5% Code 15% Code

bAbI (ICL) 0.0 ± 0.0 8.8 ± 0.9 10.1 ± 2.8
WebNLG (ICL) 16.8 ± 1.1 19.3 ± 1.1 22.0 ± 1.3
GSM8K (FT) 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
GSM8K+PAL (FT) 11.8 ± 0.8 14.2 ± 1.3 14.7 ± 0.9

Table 3: Performance of three models pre-trained with increasing amounts of code on three datasets, across 5
random seeds. We measure exact match for bAbI and GSM8K, and Rouge-2 for WebNLG.

gies21 and compare their effect using the Paloma eval-
uation suite (Magnusson et al., 2023). Specifically, we
present and evaluate four possible data mixtures in Ta-
ble 4.

We show results of mixtures in Figure 12. Overall,
we observe that the different mixtures have an effect on
the ability of resulting models to capture specific subdo-
mains. All mixtures show similar perplexity scores on
pages sampled from 100 domains from C4 (Figure 12,
left), indicating their general effectiveness at modeling
web documents. On the other hand, we note how mod-
els struggle to model specialized domains unless they
are exposed to them. As an example, a model trained
on the Web-only mix struggles to represent data in the
code domain (Figure 12, center, HumanEval). Finally,
we use results on the S2ORC subset of M2D2, which
consists of academic papers, to illustrate how different
data mixtures affect perplexity. As is it the case with
code, Web-only model exhibits higer perplexity due to
domain mismatch. On the other hand, models trained
on Reference+ and Gopher-like mixes achieve lower
perplexity than the model trained on the Naïve mix, due
to more in-domain content. However, we note that, de-
spite significant differences in the amount of academic
papers between Reference+ and Gopher-like (4.9% vs
24.2%), they achieve nearly identical results, suggesting
that even a relatively small percentage of in-domain data
is sufficient to achieve good domain fit.

N Datasheet

Following the template by Gebru et al. (2021), we pro-
vide a Datasheet for Dolma.

N.1 Motivation for Dataset Creation

Why was the dataset created?
Dolma was created with the primary purpose of train-

ing OLMo autoregressive language model. It is a mix-
ture of documents from multiple data sources. Docu-
ments have been transformed using a combination of
rule-based and statistical tools to extract textual con-
tent, remove layout information, and filter for English
content.

Dolma contains data sourced from different domains.
In particular, it contains a mixture of text obtained from
a web scrape, scientific content extracted from academic

21We did not include any social data in these mixes as it
was not ready at the time of this experiment.

PDFs and its associated metadata, code over a vari-
ety of programming languages, reference material from
Wikipedia and Wikibooks, as well as public domain
books from Project Gutenberg.

What (other) tasks could the dataset be used for?
We expect this dataset to be useful to train other lan-

guage models, either in its current form or through fur-
ther filtering and combining it with other datasets.

Beside language model training, this dataset could be
used to study interaction between pretraining corpora
and models trained on them. For example, one could
study provenance of generations from the model, or
perform further corpus analysis.

Specific subset of Dolma could be used to train do-
main specific models. For example, the code subset
could be used to train an AI programming assistant.

Are there obvious tasks for which it should not be
used?

Due to the myriad transformations applied to the orig-
inal source materials to derive our dataset, we believe
it is ill-suited as a replacement for users seeking to di-
rectly consume the original content. We refer users
of our dataset to our license and terms on the Hug-
ging Face Hub huggingface.co/datasets/allenai/
dolma which detail any use restrictions.

Has the dataset been used for any tasks already?
The OLMo (Groeneveld et al., 2024) model family is

trained on this dataset.

If so, where are the results so others can compare?
Experimental results are detailed in this paper and in

the OLMo (Groeneveld et al., 2024) manuscript.

Who funded the creation of the dataset?
All individuals who are responsible for this dataset

are employed by the Allen Institute for AI. Similarly,
computing resources are provided by AI2.

If there is an associated grant, provide the grant
number.

Compute for the OLMo project is provided by AMD
and CSC, using GPUs on the LUMI supercomputer.

N.2 Dataset Composition
What are the instances? Are there multiple types of
instances?

Instances are plain-text spans on English text or
computer code. Each instance was obtained by pro-
cessing web pages (which might include news, docu-
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Mix Name Description Sampling Proportion

Naïve Sample each source in Table 1 equally.
� Web 100%
Ð Code 100%
] � Ref. 100%
[ Books 100%

� Web 83.5%
Ð Code 13.8%
] � Ref. 2.5%
[ Books 0.2%

Web Only
Similar to Ayoola et al. (2022), we test a mixture
that only uses web data.

� Web 100%
Ð Code 0%
] � Ref. 0%
[ Books 0%

� Web 100%
Ð Code 0%
]� Ref. 0%
[ Books 0%

Reference+

It is common practice to upsamole knowledge-
intensive documents when composing training
mixture. In our case, we upsample the PeS2o
papers, Wikipedia, Wikibooks, and Gutenberg
books subsets by 2x.

� Web 100%
Ð Code 100%
] � Ref. 200%
[ Books 200%

� Web 81.2%
Ð Code 13.5%
] � Ref. 4.9%
[ Books 0.4%

Gopher-like

Following Rae et al. (2021), we create a mix that
is heavily biased towards reference material. As
we do not have access to the same sources, an
exact replication of their mix is not possible.

� Web 17%
Ð Code 8%
] � Ref. 200%
[ Books 200%

� Web 68.4%
Ð Code 5.4%
] � Ref. 24.2%
[ Books 2.0%

Table 4: Overview of the mixtures and their composition.
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Figure 12: 1B model ablations for different proportions of Dolma data. All mixture perform similarly on web data
(left), while excluding code increases perplexity on code datasets (center). Finally, increasing reference material by
upsampling papers and Wikipedia yields lower perplexity on S2ORC (right). Overall, source distribution is linked
to downstream capabilities; thus, Dolma users should sample subsets according to their needs.

ments, forums, etc), academic articles, computer code
from GitHub, encyclopedic content from Wikipedia, or
Project Gutenberg books.

Are relationships between instances made explicit in
the data?

Metadata for subsets of Dolma could be used to re-
construct relationships between items:

• Common Crawl. Each document uses the URL of
the web page from which it was extracted as its identi-
fier; therefore, it can be used to identify relationships
between documents.

• C4. The URL of each web page from which docu-
ments were extracted is included as metadata; there-
fore, it can be used to identify relationships between
documents.

• Reddit. The originating subreddits and thread ids of
documents are included in the metadata.

• Semantic Scholar. The id of each document is the
Semantic Scholar Corpus ID of its corresponding
manuscript. Metadata for each manuscript can be
obtained using the Semantic Scholar APIs (Kinney
et al., 2023).

• GitHub. The name of the GitHub repository each
document belongs to is included as metadata.

• Project Gutenberg. The title of each book is in-
cluded as the first line of each document.

• Wikipedia, Wikibooks. For both, metadata includes
the URL corresponding to the page content was ex-
tracted from. Structure and connections between doc-
uments can be recovered through the URL.

How many instances of each type are there?
Summary statistics are reported in Table 1.

What data does each instance consist of? “Raw”
data (e.g., unprocessed text or images)? Fea-
tures/attributes?

For each source, raw data is not available directly but
could be recovered using source-specific methods:

• Common Crawl. We obtain data from common
crawl snapshots from 2020-05 to 2023-06. WARC
files from Common Crawl can be intersected with
Dolma ids to recover original HTML files.

• C4. We obtained this corpus from the Hugging Face
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Hub22. In turn, documents in C4 have been derived
from a Common Crawl snapshot for 04/2019. URLs
in C4 can be used to recover HTML files.

• Reddit. The complete set of monthly data dumps
used in this work are no longer distributed by
Pushshift, however they can still be obtained through
torrents and some public web archives.

• Semantic Scholar. peS2o is derived from
S2ORC (Lo et al., 2020). Original parsed documents
can be obtained from extracting documents in S2ORC
that share the same ID with peS2o. Further, metadata
in S2ORC can be used to obtain original PDF.

• GitHub. The filename and repository name, both
available in metadata, can be used to recover original
file contents.

• Project Gutenberg. The title of each book is the first
line of each document.

• Wikipedia, Wikibooks. For both, metadata includes
the URL corresponding to the page content was ex-
tracted from. Structure and connections between doc-
uments can be recovered through the URL.

Is there a label/target associated with instances? If
the instances are related to people, are subpopula-
tions identified (e.g., by age, gender, etc.) and what
is their distribution?

There are no labels associated with instances. Many
text instances were likely created by people or groups of
people, but in the vast majority of cases authorship infor-
mation is unavailable let alone subpopulation metadata.
we leave aggregation and reporting of these statistics to
future work.

Is everything included or does the data rely on ex-
ternal resources? (e.g., websites, tweets, datasets) If
external resources, a) are there guarantees that they
will exist, and remain constant, over time; b) is there
an official archival version. Are there licenses, fees
or rights associated with any of the data?

The data are derived from the web and the original
resources may not persist over time. However, each
source represents an archival snapshot of that data that
should remain fixed and available:

• Common Crawl. The Common Crawl data is avail-
able on Amazon S3 as part of the Amazon Web Ser-
vices’ Open Data Sponsorship program and can be
freely downloaded23. We followed Common Crawl
terms of use24.

• C4. This corpus can be obtained from from the
Hugging Face Hub22 and is released under ODC-By
1.0 (Open Data Commons, 2010).

22
hf.co/datasets/allenai/c4

23
commoncrawl.org/the-data/get-started

24
commoncrawl.org/terms-of-use

• Reddit. Pushshift no longer distributes this dataset
due to changes to the Reddit API’s terms. Unofficial
copies of the data might be be available through tor-
rents and some public web archives. Pushshift data
dumps inherit25 the Terms of use of the Reddit API
at the time of their collection (March 2023).

• Semantic Scholar. peS2o is derived from
S2ORC (Lo et al., 2020). S2ORC is released through
the Semantic Scholar Public API26 under ODC-By
1.0 (Open Data Commons, 2010).

• GitHub. The corpus is available on the Hugging Face
Hub27 and consists of code released under a variety
of permissive licenses. More details including terms
of use for hosting or sharing the corpus are provided
in the datacard at the link above.

• Project Gutenberg. Project Gutenberg consists of
books that are not protected under U.S. copyright law.
The corpus is available at gutenberg.org.

• Wikipedia, Wikibooks. Wikimedia data dumps are
freely available28 and released under CC BY-SA 4.0
license (Creative Commons, 2013).

Are there recommended data splits or evaluation
measures? (e.g., training, development, testing; ac-
curacy/AUC)

No. See current manuscript Section §4.2.

What experiments were initially run on this dataset?
Have a summary of those results and, if available,
provide the link to a paper with more information
here.

See current manuscript Section §4.2 for description
of data ablation methodology, and remainder of paper
for full set of experiments. Every experimental result is
available through links provided in the manuscript.

N.3 Data Collection Process

How was the data collected? (e.g., hardware ap-
paratus/sensor, manual human curation, software
program, software interface/API; how were these
constructs/measures/methods validated?)

Data acquisition for each subset was performed as
follows:

• Common Crawl. snapshots were downloaded from
Common Crawl’s official S3 bucket29 using the
cc_net pipeline (Wenzek et al., 2020). Data was
obtained between March 17th and March 27th, 2023.

25
reddit.com/r/pushshift/comments/d6luj5/

comment/f0ugpqp
26
semanticscholar.org/product/api

27
hf.co/datasets/bigcode/the-stack-dedup

28
dumps.wikimedia.org

29
s3://commoncrawl/
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• C4. We clone C4 from the Hugging Face Hub22 using
Git with the Git-LFS extension. Repository cloned
on May 24th, 2023.

• Reddit. Reddit was acquired in the form of monthly
data dumps of comments and submissions collected
and distributed by the Pushshift project30. We used
the complete set of 422 publicly available dumps
(208 comments, 214 submissions) spanning a period
from 06/2005–03/2023. The majority of Dumps were
acquired in March, 2023 with the last dumps down-
loaded in May of 2023.

• Semantic Scholar. We clone peS2o from the Hug-
ging Face Hub31 using Git with the Git-LFS exten-
sion. We use pes2o V2. Repository cloned on June
30th, 2023.

• GitHub. We clone The Stack (deduplicated) from
the Hugging Face Hub27 using Git with the Git-LFS
extension. Repository cloned on May 28th, 2023.

• Project Gutenberg. Data was downloaded directly
from gutenberg.org. We used GutenbergPy (Ange-
lescu, Radu, 2013) to extract books. Website accessed
on April 3rd, 2023.

• Wikipedia, Wikibooks. Dumps were downloaded
from Wikimedia’s website28. We use the dump from
March 20th, 2023.

Who was involved in the data collection process?
(e.g., students, crowdworkers) How were they com-
pensated? (e.g., how much were crowdworkers
paid?)

Data was collected and postprocessed by full-time
employees at the Allen Institute for AI. No instances in
this dataset are manually annotated.

Over what time-frame was the data collected? Does
the collection time-frame match the creation time-
frame?

Please see list above.

How was the data associated with each instance ac-
quired? Was the data directly observable (e.g., raw
text, movie ratings), reported by subjects (e.g., sur-
vey responses), or indirectly inferred/derived from
other data (e.g., part of speech tags; model-based
guesses for age or language)? If the latter two, were
they validated/verified and if so how?

Any metadata associated with each instance was ob-
tained directly from each source.

Does the dataset contain all possible instances? Or
is it, for instance, a sample (not necessarily random)
from a larger set of instances? If the dataset is a
sample, then what is the population? What was the

30
files.pushshift.io/reddit/submissions and

files.pushshift.io/reddit/comments
31
hf.co/datasets/allenai/peS2o

sampling strategy (e.g., deterministic, probabilistic
with specific sampling probabilities)? Is the sample
representative of the larger set (e.g., geographic cov-
erage)? If not, why not (e.g., to cover a more diverse
range of instances)? How does this affect possible
uses?

Sampling for each subset was performed as follows:

• Common Crawl. Common Crawl is not a
representative sample of the web. Summary
statistics about Common Crawl are reported
through the cc-crawl-statistics (Com-
mon Crawl, 2016) project, available at
commoncrawl.github.io/cc-crawl-statistics.
Dolma uses Common Crawl snapshots from 2020-05

to 2023-06
32.

• C4. We use C4 in its entirety.

• Reddit. We use all available Reddit content from
from 06/2005–03/2023.

• GitHub. We use The Stack (deduplicated) in its
entirety.

• Semantic Scholar. We use pes2o V2 in its entirety.

• Project Gutenberg. We process all Gutenberg
books.

• Wikipedia, Wikibooks. We use the English and
Simple subset of Wikipedia and Wikibooks in their
entirety.

Is there information missing from the dataset and
why? (this does not include intentionally dropped
instances; it might include, e.g., redacted text, with-
held documents) Is this data missing because it was
unavailable?

Common Crawl is the only source we did not use in
its entirety. We use only about a quarter of all snapshots
available. This amount was deemed sufficient for the
goal of the Dolma project. We decided to use the 24
most recent Common Crawl snapshots at the time.

Are there any known errors, sources of noise, or
redundancies in the data?

Not that we are aware of, although a negligible por-
tion of Common Crawl data could have been lost due
to network issues with S3 storage. When accessing
Common Crawl, we implemented retry mechanisms,
but copy could have failed due to exceeding the retry
limits.

N.4 Data Preprocessing
What preprocessing/cleaning was done? (e.g.,
discretization or bucketing, tokenization, part-of-
speech tagging, SIFT feature extraction, removal
of instances, processing of missing values, etc.)

32Common Crawl snapshots follow naming convention
xxxx-yy, where xxxx is the year the snapshot was finalized,
and yy is the week, ranging from 01 to 52.
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All data sources are filtered using FastText language
identification models (Joulin et al., 2016a,b) with an
English threshold of 0.5.

For the Common Crawl and C4 subsets, we use the
following filters that substantially modify the original
data. Note that data might be tagged for removal by one
or more filter.

• Only Common Crawl, as part of their distribution
pipeline: Linearize all HTML into plain text files
(WET files generation24);

• Only Common Crawl, as part of CCNet pipeline:
We remove frequently occurring paragraph in Com-
mon Crawl by identifying repeated paragraphs on
small subsets of each snapshots. This step gets rid of
headers that are shared across many pages, such as
navigational headers. Removal is operationalized as
follows: given 1 . . . , n, . . . , N shards each snapshot
is comprised to, group shards in sets S = {n − k, n};
then, remove exact duplicates of paragraphs in S.
Paragraphs are defined as newline-separated slices
of documents, and compared using their SHA1. We
choose k such that each set is at most 20GB33. (ap-
proximately 70% of paragraph removed);

• Only Common Crawl, deduplication by URL: We
deduplicate pages by URL (53% of duplicates re-
moved);

• Language identification: remove all documents with
an English score lower than 0.5, as determined by
FastText language identification models (Joulin et al.,
2016a,b) (removed 61.69% of web pages by size);

• Quality filter34: Remove documents with more than
half of their line not ending in “.”, “?”, “!”, or “"”.
(22.73% of characters tagged for removal);

• Quality filter34: Remove any document that does
not pass any of the Gopher rules (Rae et al., 2021)
(15.23% of characters tagged for removal);

– Fraction of characters in most common ngram
greater than a threshold35

33This is a slight modification of the original CCNet
pipeline, where k is chose so that each set is 2% of snapshot.
We chose to use a fixed shard size, rather an a percentage of
the corpus, because fixed size is more predictable in terms
of resource usage, leading to less-error prone code. Concep-
tually it’s equivalent to putting a threshold on the absolute
probability of a paragraph occurring

34The term “quality filter”, while widely used in literature,
does not appropriately describe the outcome of filtering a
dataset. Quality might be perceived as a comment on the
informativeness, comprehensiveness, or other characteristics
valued by humans. However, the filters used in Dolma and
other language models efforts select text according to criteria
that are inherently ideological (Gururangan et al., 2022).

35For bigrams, threshold of 0.20. For trigrams, 0.18. For
4-grams, 0.16.

– Fraction of characters in duplicate ngrams
greater than a threshold36

– Contains fewer than 50 or more than 100K
words

– Median word length is less than 3 or greater than
10

– Symbol to word ratio greater than 0.10
– Fraction of words with alpha character less than

0.80
– Contains fewer than 2 of a set of required

words37

– Fraction of lines in document starting with bullet
point greater than 0.90

– Fraction of lines in document ending with ellip-
sis greater than 0.30

– Fraction of lines in document that are duplicated
greater than 0.30

– Fraction of characters in duplicated lines greater
than 0.30

• Quality filter34: Remove any document that contains
a token or sequence of tokens repeating over 100
times38 (0.003% of characters tagged for removal);

• Content filter: Remove sentences that get ranked
as toxic by a FastText classifier (score above
0.4). We train a bigram classifier on the Jigsaw
dataset (cjadams et al., 2017) (1.01% of data tagged
for removal);

• Content filter: Mask Personal Identifiable Infor-
mation (PII) using regular expressions that identify
emails, phone numbers, and IP addresses; pages con-
taining 6 or more PIIs are completely removed from
the corpus (0.05% tagged for masking, 0.11% tagged
for removal);

• Exact document deduplication: duplicate docu-
ments the same text. No punctuation or whitespace
is removed. Empty documents count as duplicates
(14.9% of documents tagged for removal).

• Only Common Crawl, deduplication by paragraph:
We deduplicate the web subset at a paragraph level
using a Bloom filter (19.1% of UTF-8 characters
tagged for removal).

For the Reddit subset, we use the following filters
that substantially reduce the original data.

• Language identification: remove all documents with
an English score lower than 0.5, as determined by a
FastText language identification model.

36For 5-grams, 0.15. For 6-grams, 0.14. For 7-grams, 0.13.
For 8-grams, 0.12. For 9-grams, 0.11. For 10-grams, 0.10.

37“the”, “be”, “to”, “of”, “and”, “that”, “have”, “with”
38We use allenai/gpt-neox-olmo-dolma-v1\_5 to ob-

tain tokens.
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• Quality filter34: Remove comments and submissions
shorter than 500 characters in length.

• Quality filter34: Remove user comments with fewer
than three upvotes (Reddit users vote on the quality
of submissions and comments).

• Content filter34: Remove comments and submis-
sions from banned, toxic, or NSFW subreddits.

• Content filter34: Remove sentences that get ranked
as toxic or as hatespeech by a FastText classifier
(score above 0.4).

• Content filter: Mask Personal Identifiable Infor-
mation (PII) using regular expressions that identify
emails, phone numbers, and IP addresses

• Deduplication: We deduplicate comments and sub-
missions (jointly) at a paragraph level using a Bloom
filter.

For the code subset derived from The Stack (dedupli-
cated), we use the following filters:

• Language filter: Removed files associated with the
following programming languages:

– Data or numerical content: csv, json, json5,
jsonld, jsoniq, svg

– Assembly code: assembly

• Quality filter34: Removed copyright statements in
code files from document preamble39;

• Quality filter34: Removed documents matching any
of the RedPajama v1 (Together Computer, 2023a)
code filters (41.49% of data tagged for removal):

– Maximum line length > 1000 characters.
– Average line length > 100 characters.
– Proportion of alpha-numeric characters < 0.25.
– Ratio of alphabetical characters to number of

tokens < 1.540.

• Quality filter34: Removed documents matching any
of the following Starcoder filters (Li et al., 2023b):

– Contains XML template code.
– HTML code-to-text ratio <= 0.2.
– Java, Javascript, Python code-to-comment ratio

<= 0.01 or > 0.8.

• Content filter: Mask Personal Identifiable Infor-
mation (PII) using regular expressions that identify
emails, phone numbers, and IP addresses; pages con-
taining 6 or more PIIs are completely removed from
the corpus.

The Common Crawl, C4, Reddit, and Code subsets
used the same regular expressions for identifying PII:

39Code license and provenance is still tracked in metadata.
40Tokens counted using whitespace tokenizer

• Email addresses:
[.\s@,?!;:)(]*([\^\s@]+@[\^\s@,?!;:)
(]+?)[.\s@,?!;:)(]?[\s\n\r]

• IP addresses:
\s+\(?(\d{3})\)?[-\.
]*(\d{3})[-. ]?(\d{4})

• Phone numbers:
(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9]
{1,2})\.){3}(?:25[0-5]|2[0-4][0-9]|
[01]?[0-9]{1,2})

For the Wikipedia and Wikibooks subsets, we re-
move pages that contain fewer than 25 UTF-8 words.

For the Gutenberg subset:

• Language identification: for each paragraph (de-
fined as newline-separated spans of text), we use Fast-
Text to perform language identification. Then, we
compute the average language score by averaging the
score for all passages. If a document has a language
score lower than 0.5, it is discarded;

• Quality filter34: we remove pages that contain fewer
than 25 UTF-8 words;

• Quality filter34: Remove any document that contains
a token or sequence of tokens repeating over 100
times38.

For the Semantic Scholar subset, we remove any
document that contains a token or sequence of tokens
repeating over 100 times38 .

For Dolma versions 1.0 and 1.5, we perform decon-
tamination for all subsets of Dolma. In particular, we
remove paragraphs that are shared with documents in
the Paloma evaluation suite (Magnusson et al., 2023).
Overall, only 0.003% of our dataset is removed due to
contamination with this evaluation set. Dolma version
1.6 is not decontaminated.

Was the “raw” data saved in addition to the prepro-
cessed/cleaned data? (e.g., to support unanticipated
future uses)

Raw data is available for all subsets except Common
Crawl. Due to space constrains, we only keep linearized
version of Common Crawl snapshots, filtered by Lan-
guage ID as described above.

Raw data is not available for download outside the
Allen Institute for AI. Interested individuals may contact
authors of this manuscript if they require access to raw
data.

Is the preprocessing software available?
Yes, all preprocessing software is available on GitHub

at github.com/allenai/dolma and on PyPI41.

Does this dataset collection/processing procedure
achieve the motivation for creating the dataset stated
in the first section of this datasheet?

Yes, it does.
41
pypi.org/project/dolma
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N.5 Dataset Distribution

How is the dataset distributed? (e.g., website, API,
etc.; does the data have a DOI; is it archived redun-
dantly?)

Dolma is distributed via the Hugging Face Hub,
which offers access via the datasets (Lhoest et al.,
2021) Python package, direct download, and Git using
the Git-LFS extension. Additionally, a copy is stored on
the cloud storage of the Allen Institute for AI.

When will the dataset be released/first distributed?
(Is there a canonical paper/reference for this
dataset?)

The dataset is available now. This manuscript serves
as a reference for the dataset.

What license (if any) is it distributed under? Are
there any copyrights on the data?

Information about the license associated with Dolma
are available on its release page on the Hugging Face
Hub: huggingface.co/datasets/allenai/dolma.

Are there any fees or access/export restrictions?
The dataset is distributed for free. Users should verify

any restrictions on its release page on the Hugging Face
Hub: huggingface.co/datasets/allenai/dolma.

N.6 Dataset Maintenance

Who is supporting/hosting/maintaining the dataset?
How does one contact the owner/curator/manager
of the dataset (e.g. email address, or other contact
info)?

The Allen Institute for AI maintains the dataset. For
support questions, users are invited to open an issue on
GitHub42 or on the community tab of dataset page43

(the former being preferred over the latter). Any other
inquiry should be sent to ai2-info@allenai.org.

Will the dataset be updated? How often and by
whom? How will updates/revisions be documented
and communicated (e.g., mailing list, GitHub)? Is
there an erratum?

Dataset will be uploaded on a need-to basis by main-
tainers at the Allen Institute for AI. Newer version of
the dataset will be labeled accordingly. The latest ver-
sion of the dataset, as well as a changelog, will be made
available starting from the first revision.

If the dataset becomes obsolete how will this be com-
municated? Is there a repository to link to any/all
papers/systems that use this dataset?

Users should keep track of the version of the dataset
in use. Information about latest version of Dolma are
available on its release page on the Hugging Face Hub:
huggingface.co/datasets/allenai/dolma. Dolma
users should cite this manuscript when using this data.

42
github.com/allenai/dolma/issues

43
hf.co/datasets/allenai/dolma/discussions

If others want to extend/augment/build on this
dataset, is there a mechanism for them to do so?
If so, is there a process for tracking/assessing the
quality of those contributions. What is the process
for communicating/distributing these contributions
to users?

Creation and distribution of derivatives is described
above. In case contributors want to flow their improve-
ment back to future Dolma releases, they should contact
corresponding authors of this manuscript.

N.7 Legal & Ethical Considerations

If the dataset relates to people (e.g., their attributes)
or was generated by people, were they informed
about the data collection? (e.g., datasets that collect
writing, photos, interactions, transactions, etc.)

Subsets of Dolma derived from web data are likely
created by people or groups of people, however author-
ship information is often unavailable.

Authors were not directly informed about the data col-
lection. For encyclopedic and web content, logs of web
servers will contain records of spiders ran by Common
Crawl. For academic content, the pes2o subset (Sol-
daini and Lo, 2023) is derived from manuscripts that
are licensed for permissive distribution by their authors.
Reddit content was acquired through a public API ad-
herent to terms of service; individual authors of Reddit
posts were not contacted directly. Finally, the Allen
Institute for AI did not contact Project Gutenberg.

If it relates to other ethically protected subjects, have
appropriate obligations been met? (e.g., medical
data might include information collected from ani-
mals)

Due to the nature of and size of Dolma, it is impossi-
ble to determine which obligations, if any, are appropri-
ate.

If it relates to people, were there any ethical review
applications/reviews/approvals? (e.g. Institutional
Review Board applications) If it relates to people,
were they told what the dataset would be used for
and did they consent? What community norms exist
for data collected from human communications? If
consent was obtained, how? Were the people pro-
vided with any mechanism to revoke their consent in
the future or for certain uses?

The Dolma project includes Ethics committee com-
prised of internal and external members to the Allen
Institute for AI. Plans for the creation of Dolma were
reviewed with the committee, and we incorporated their
recommendations.

Following practices established in similar efforts, no
consent was collected from individuals who might be
represented in the dataset. We make available a form44

for individuals who wish to be removed from the dataset.

44
forms.gle/q4BNUUxUxKwKkfdT6
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If it relates to people, could this dataset expose people
to harm or legal action? (e.g., financial social or
otherwise) What was done to mitigate or reduce the
potential for harm?

Dolma contains text instances that have been derived
from web pages Common Crawl crawled from the web.
Content might contain sensitive information including
personal information, or financial information users of
the web chose to put publicly online. This data is taken
only from public places, so the same data is or has been
accessible via browsing the web. We have measured
a variety of types of personal information, and built
tools specifically to remove some types of sensitive
information, and through our license we restrict what
users can do with this data.

We recommend individuals to submit a request using
through our form44 if they wish their information to be
removed.

If it relates to people, does it unfairly advantage or
disadvantage a particular social group? In what
ways? How was this mitigated?

Dolma is not a representative sample of none of its
sources. It might underrepresent or overrepresent some
communities on the internet; further, papers in the peS2o
subset are skewed towards STEM disciplines; books
in the Gutenberg library are mostly from the public
domain (at the time of publication, books published
before 1927); finally, the English and Simple subset
of Wikipedia and Wikibooks might be biased towards
events and people from the global north.

We did not attempt to alter distribution of social
groups in Dolma. Large-scale interventions to correct
societal biases in large datasets remain challenging, and
are left to future work.

If it relates to people, were they provided with pri-
vacy guarantees? If so, what guarantees and how are
these ensured?

This datasets contains text that was derived from web
paged scraped by Common Crawl from the web. For
much of that data it’s not possible identify the authors.
In many instances, creators purposely choose to post
anonymously online, so aiming to infer authorship can
be ethically fraught. We provide access to our data, and
encourage any creators that would likely to have data
from or about them removed to reach out.

Does the dataset comply with the EU General Data
Protection Regulation (GDPR)? Does it comply with
any other standards, such as the US Equal Employ-
ment Opportunity Act?

We created this dataset in aggregate, not separately
identifying any individual’s content or information. We
took reasonable steps to remove types of personal infor-
mation that were possible to reliably detect. We restrict
who has access to the data, and we release this under
a license that prohibits uses that might be deemed dis-
criminatory. We also provide an avenue for any person

to contact us to have text from or about them removed
from our corpus44.

Does the dataset contain information that might be
considered sensitive or confidential? (e.g., personally
identifying information) Does the dataset contain
information that might be considered inappropriate
or offensive?

This datasets contains text that was derived from web
paged scraped by Common Crawl from the web. There-
fore, it can contain text posted on public websites by
creators on the internet. If an author publicly posted
personal information or offensive content, it could be
included in this dataset. We took reasonable steps to
remove types of personal information that were possi-
ble to reliably detect. We also removed documents that
contained sentences that were classified as being toxic.

O All Raw Ablation Results
O.1 Comparing Dolma With Other Corpora
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Figure 13: Perplexity results on Paloma (Magnusson
et al., 2023); subsets 4chan (Papasavva et al., 2020),
WikiText 103 (Merity et al., 2016), and Pile (Gao et al.,
2020) (Val)
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Figure 14: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 100 dom (Chronopoulou et al.,
2022), Penn Tree Bank (Marcus et al., 1994), and
Gab (Zannettou et al., 2018)
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Figure 15: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets ICE (Greenbaum, 1991),
M2D2 (Reid et al., 2022) (Wiki), and Twitter
AAE (Blodgett et al., 2016)
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Figure 16: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Manosphere (Ribeiro et al., 2021)
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Figure 17: Perplexity results on Paloma (Magnusson
et al., 2023); subsets mC4 (Xue et al., 2020) (English),
M2D2 (Reid et al., 2022) (S2ORC), and C4 (Raffel
et al., 2020; Dodge et al., 2021)
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Figure 18: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 19: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 20: Training Cross Entropy
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O.2 Deduping Strategy

0 50B 100B

20

30

40
Baseline

Paragraph Deduplication

4chan

Total Tokens

Pe
rp

le
xi

ty

0 50B 100B

20

30

Baseline

Paragraph Deduplication

Pile

Total Tokens

Pe
rp

le
xi

ty

0 50B 100B

20

30

40
Baseline

Paragraph Deduplication

C4 (100 Domains)

Total Tokens

Pe
rp

le
xi

ty

Figure 21: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 22: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 23: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 24: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 25: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 26: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 27: Training Cross Entropy
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O.3 Filtering of Personal Identifiable Information
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Figure 28: Perplexity results on Paloma (Magnusson
et al., 2023); subsets 4chan (Papasavva et al., 2020), C4
100 dom (Chronopoulou et al., 2022), and Gab (Zannet-
tou et al., 2018)
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Figure 29: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets ICE (Greenbaum, 1991),
M2D2 (Reid et al., 2022) (Wiki), and Twitter
AAE (Blodgett et al., 2016)
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Figure 30: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Manosphere (Ribeiro et al., 2021)
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Figure 31: Perplexity results on Paloma (Magnusson
et al., 2023); subsets mC4 (Xue et al., 2020) (English),
M2D2 (Reid et al., 2022) (S2ORC), and C4 (Raffel
et al., 2020; Dodge et al., 2021)
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Figure 32: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 33: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 34: Training Cross Entropy
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O.4 Comparing Quality Filters for Web Pipeline
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Figure 35: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 36: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 37: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 38: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 39: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 40: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 41: Training Cross Entropy
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O.5 Full Comparison of Web Pipeline
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Figure 42: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 43: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 44: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 45: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 46: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 47: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 48: Training Cross Entropy
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O.6 Toxicity Filtering in Web Pipeline
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Figure 49: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 50: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 51: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 52: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 53: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 54: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 55: Training Cross Entropy
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O.7 Comparing Code Processing Pipeline

0 10B 20B 30B 40B 50B

20

30
Dolma (RPJ rules)

Dolma (RPJ rules & StarCoder rules)

4chan

Total Tokens

Pe
rp

le
xi

ty

0 10B 20B 30B 40B 50B

20

30

40

50
Dolma (RPJ rules)

Dolma (RPJ rules & StarCoder rules)

Pile

Total Tokens

Pe
rp

le
xi

ty

0 10B 20B 30B 40B 50B

50

60

70

80

90 Dolma (RPJ rules)

Dolma (RPJ rules & StarCoder rules)

C4 (100 Domains)

Total Tokens

Pe
rp

le
xi

ty

Figure 56: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 57: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 58: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 59: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 60: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 61: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 62: Training Cross Entropy
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O.8 Studying Dolma Mixture
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Figure 63: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 64: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 65: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 66: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 67: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 68: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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O.9 Strategies to Format Conversational Forums
Pipeline
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Figure 69: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 70: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 71: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 72: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 73: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 74: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 75: Training Cross Entropy
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O.10 Evaluating Toxicity Filtering in
Conversational Forums Pipeline
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Figure 76: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets 4chan (Papasavva et al.,
2020), Pile (Gao et al., 2020) (Val), and C4 100
dom (Chronopoulou et al., 2022)
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Figure 77: Perplexity results on Paloma (Magnusson
et al., 2023); subsets C4 (Raffel et al., 2020; Dodge
et al., 2021) and Manosphere (Ribeiro et al., 2021)
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Figure 78: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Gab (Zannettou et al., 2018),
ICE (Greenbaum, 1991), and M2D2 (Reid et al., 2022)
(Wiki)
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Figure 79: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Twitter AAE (Blodgett et al., 2016),
mC4 (Xue et al., 2020) (English), and M2D2 (Reid et al.,
2022) (S2ORC)
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Figure 80: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 81: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 82: Training Cross Entropy
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O.11 Training OLMo-1B
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Figure 83: Perplexity results on Paloma (Magnusson
et al., 2023); subsets 4chan (Papasavva et al., 2020),
Dolma Reddit Subset, and Dolma Papers Subset
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Figure 84: Perplexity results on Paloma (Magnus-
son et al., 2023); subsets ICE (Greenbaum, 1991),
M2D2 (Reid et al., 2022) (Wiki), and Twitter
AAE (Blodgett et al., 2016)
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Figure 85: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Manosphere (Ribeiro et al., 2021)
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Figure 86: Perplexity results on Paloma (Magnusson
et al., 2023); subsets mC4 (Xue et al., 2020) (English),
M2D2 (Reid et al., 2022) (S2ORC), and C4 (Raffel
et al., 2020; Dodge et al., 2021)
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Figure 87: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Penn Tree Bank (Marcus et al.,
1994), Dolma Wikipedia Subset, and Gab (Zannettou
et al., 2018)
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Figure 88: Perplexity results on Paloma (Magnusson
et al., 2023); subsets Pile (Gao et al., 2020) (Val), Dolma
Books Subset, and C4 100 dom (Chronopoulou et al.,
2022)
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Figure 89: Perplexity results on Paloma (Magnusson
et al., 2023); subsets WikiText 103 (Merity et al., 2016),
Dolma Code Subset, and Dolma Web Subset
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Figure 90: Results downstream tasks Open-
BookQA (Mihaylov et al., 2018), ARC-E (Clark
et al., 2018), and WinoGrande (Sakaguchi et al., 2019)
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Figure 91: Results downstream tasks SciQ (Welbl et al.,
2017), HellaSwag (Zellers et al., 2019), and PIQA (Bisk
et al., 2019)
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Figure 92: Training Cross Entropy
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