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Abstract

Language models (LMs) have become ubiqui-
tous in both NLP research and in commercial
product offerings. As their commercial impor-
tance has surged, the most powerful models
have become closed off, gated behind propri-
etary interfaces, with important details of their
training data, architectures, and development
undisclosed. Given the importance of these
details in scientifically studying these models,
including their biases and potential risks, we
believe it is essential for the research commu-
nity to have access to powerful, truly open LMs.
To this end, we have built OLMo, a competi-
tive, truly Open Language Model, to enable
the scientific study of language models. Un-
like most prior efforts that have only released
model weights and inference code, we release
OLMo alongside open training data and train-
ing and evaluation code. We hope this release
will empower the open research community
and inspire a new wave of innovation.

1 Introduction

Language models have been at the center of NLP
technologies for many years (Rosenfeld, 2000; Ben-

gio et al., 2003; Mikolov et al., 2013; Peters et al.,
2018; Brown et al., 2020). Recently, due to large-
scale pretraining and human annotation for align-
ment, they have become commercially valuable
(OpenAI, 2023). However, as their commercial
value has increased, the largest models have be-
come gated behind proprietary interfaces, with im-
portant details left undisclosed.

We believe that full access to open language
models for the research community is critical to
the scientific study of these models, their strengths
and weaknesses, and their biases and risks. Ac-
cordingly, we introduce OLMo, a powerful, truly
open language model alongside open training data,
training and evaluation code, intermediate model
checkpoints, and training logs.

Recent LM releases have varied in their degree
of openness. For example, Mixtral 8x7B provided
model weights and a brief report (Jiang et al.,
2024), while LLaMA came with in-depth adap-
tation training instructions (Touvron et al., 2023b),
and Mosaic Pretrained Transformer came with
many details, including the dataset distribution,
though not the data itself (MosaicML NLP Team,
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2023). Falcon’s pretraining data was partially re-
leased (Almazrouei et al., 2023), and the most open
models—the Pythia suite (Biderman et al., 2023)
and BLOOM (BigScience et al., 2022)—released
training code, model checkpoints, data, and more.

With OLMo, we release the whole framework
from data to training to evaluation tools: multi-
ple training checkpoints across multiple hardware
types, training logs, and exact datasets used, with
a permissive license. We are not the only team to
do this; recent work from LLM360 targets similar
goals (Liu et al., 2023). OLMo narrows the gap
from their models to state-of-the-art capabilities of
models like Llama 2. This project has benefited
from lessons learned from all of these previous ef-
forts with their varying degrees of openness, and
we believe that a large, diverse population of open
models is the best hope for scientific progress on
understanding language models and engineering
progress on improving their utility.

The OLMo framework encompasses the tools
and resources required for building and research-
ing language models. For training and modeling,
it includes full model weights, training code, train-
ing logs, and inference code. The released model
includes four variants of our language model at the
7B scale corresponding to different architectures,
optimizers, and training hardware, and one model
at the 1B scale, all trained on at least 2T tokens. We
also release hundreds of intermediate checkpoints
available as revisions on HuggingFace. For dataset
building and analysis, the full training data used for
these models is openly available (Dolma; Soldaini
et al., 2024), including code that produces the train-
ing data, and tools for analyzing pretraining data
(Elazar et al., 2024). For evaluation, we build on
Catwalk (Groeneveld et al., 2023) for downstream
evaluation and Paloma (Magnusson et al., 2023)
for perplexity-based evaluation. For adaptation, we
use Open Instruct (Ivison et al., 2023; Wang et al.,
2023) to train with instruction and feedback data.
Finally, all code and weights are released under the
Apache 2.0 License.1

With this release, we hope to catalyze research
into as-yet poorly understood aspects of these mod-
els, for example, the relationship between pretrain-
ing data and model capabilities, the impact of de-
sign and hyperparameter choices, and various opti-
mization methods and their impact on model train-
ing. In addition, we report on the lessons learned

1
https://allenai.org/olmo

and important details necessary to successfully
train language models at this scale.

2 OLMo Framework

This section describes the OLMo framework, con-
sisting of the OLMo models (Section 2.1), our pre-
training dataset, Dolma (Section 2.2), and our eval-
uation framework (Section 2.4).

2.1 OLMo Model and Architecture

We adopt a decoder-only transformer architecture
based on (Vaswani et al., 2017), and deliver 1B
and 7B variants as described in Table 1. Our spe-
cific architecture includes several improvements
over the vanilla transformer from (Vaswani et al.,
2017) following other recent large language models
like PaLM (Chowdhery et al., 2022), the LLaMA
family (Touvron et al., 2023a,b), OpenLM (Guru-
rangan et al., 2023), and Falcon (Almazrouei et al.,
2023). See Table 5 in Appendix A for a compre-
hensive comparison of our 7B architecture to the
similarly-sized models from these other families.

We generally select hyperparameters by opti-
mizing for training throughput on our hardware
while minimizing the risk of loss spikes and slow
divergence. We ablate choices through our in-loop
evaluation setting, given available computational
sources (Section 2.4). Our main changes over the
vanilla transformer architecture can be summarized
as follows:

1. No biases. Following LLaMA, PaLM, and oth-
ers, we exclude all bias terms from our architec-
ture in order to improve training stability.

2. Non-parametric layer norm. We use the non-
parametric formulation of layer norm (Ba et al.,
2016) in which there is no affine transforma-
tion within the norm, i.e., no “adaptive gain"
(or bias). We believe this was the safest option
and it was also the fastest compared to the other
variants we considered: parametric layer norm
and RMSNorm (Zhang and Sennrich, 2019).

3. SwiGLU activation function. Like LLaMA,
PaLM, and others we use the SwiGLU activation
function (Shazeer, 2020) instead of ReLU, and
following LLaMA the activation hidden size is
approximately 8

3
d, but increased to the closest

multiple of 128 (e.g. 11,008 for our 7B model)
to improve throughput.2

2Since SwiGLU is a “gated" activation function, the output
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Size L D H Tokens Peak LR Warmup Weight Tying Batch size
1B 16 2048 16 2T 4.0E-4 2000 steps yes ∼4M
7B 32 4086 32 2.46T 3.0E-4 5000 steps no ∼4M

Table 1: OLMo model sizes, number of training tokens, and optimizer settings. In all runs, the optimizer was
AdamW, with betas of 0.9 and 0.95, and an epsilon of 1.0E-5. L is number of layers, D is hidden dimension, H is
number of attention heads, WD is weight decay.

4. Rotary positional embeddings (RoPE). Like
LLaMA, PaLM, and others we replace absolute
positional embeddings with rotary positional
embeddings (RoPE; Su et al., 2021).

5. Vocabulary. We use a modified version of
the BPE-based tokenizer from GPT-NeoX-20B
(Black et al., 2022) with additional tokens for
masking personal identifiable information (PII).
The final vocabulary size is 50,280. However, to
maximize training throughput we increase the
size of the corresponding embedding matrix in
our model to 50,304 to be a multiple of 128.

2.2 Pretraining Data: Dolma
Despite progress in access to model parameters,
pretraining datasets are still not as open. Pretrain-
ing data are often not released alongside open mod-
els (let alone closed models) and documentation
about such data is often lacking in detail that would
be needed to reproduce or fully understand the
work. This has made it difficult to support certain
threads of language model research, such as under-
standing how training data impacts model capabili-
ties and limitations. To facilitate open research on
language model pretraining, we built and released
our pretraining dataset, Dolma—a diverse, multi-
source corpus containing trillions of tokens across
billions of documents acquired from different data
sources that are (1) commonly seen in large-scale
language model pretraining and (2) accessible to
the general public (Soldaini et al., 2024). Table 2
provides a high-level overview of the amount of
data from each source.

Dolma is built using a pipeline of (1) language
filtering, (2) quality filtering, (3) content filtering,
(4) deduplication, (5) multi-source mixing, and (6)
tokenization. We refer the reader to the Dolma re-
port (Soldaini et al., 2024) for more details about
its design principles, details about its construction,
and a more detailed summary of its contents. The

is half the size of the input. So technically our inputs to
SwiGLU have a dimensionality of 2 × 11,008 = 22,016 for
our 7B model.

Source Type
UTF-8
bytes
(GB)

Docs
(millions)

Tokens
(billions)

Common Crawl web pages 9,812 3,734 2,180
GitHub code 1,043 210 342
Reddit social media 339 377 80
Semantic Scholar papers 268 38.8 57
Project Gutenberg books 20.4 0.056 5.2
Wikipedia encyclopedic 16.2 6.2 3.7

Total 11,519 4,367 2,668

Table 2: Composition of Dolma. Tokens counts are
based on the GPT-NeoX tokenizer.

report provides additional analyses and experimen-
tal results from training language models on inter-
mediate states of Dolma to share what we learned
about important data curation practices, including
the role of content or quality filters, deduplication,
and mixing data from multiple sources. We keep
documents from each source separate, both during
curation as well as in the final release. We open-
sourced our high-performance data curation tools;
this toolkit can be used to further experiment on
Dolma, reproduce our work, and enable fast and
easy curation of pretraining corpora. Finally, we
also open-sourced our WIMBD tool (Elazar et al.,
2024) to help with dataset analysis.

2.3 Adaptation

Pretrained models are not always used as-is, but
rather further finetuned to improve their perfor-
mance, safety, and usability. Often models are first
trained to follow instructions (Mishra et al., 2022;
Wei et al., 2022; Sanh et al., 2022), and then fur-
ther trained on human preferences (Ouyang et al.,
2022) to improve the quality of their generations.
We showcase the efficacy of using OLMo as a base
model for further fine-tuning by training OLMo to
be a general chat assistant following the TÜLU data
and training setup (Ivison et al., 2023). This in-
volves first performing instruction finetuning with
a mixture of distilled and human-written instruc-
tion data and then further aligning the model with
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distilled preference data using Direct Preference
Optimization (DPO) (Rafailov et al., 2023).

2.4 Evaluation

We perform base model evaluation at two stages:
online evaluation to make decisions for model
design and offline evaluation to evaluate model
checkpoints. For the offline stage, we use the
Catwalk framework (Groeneveld et al., 2023), a
publicly available evaluation tool with access to
a wide range of datasets and task formats, to per-
form downstream evaluation as well as intrinsic
language modeling evaluation on the perplexity
benchmark Paloma (Magnusson et al., 2023).

For both downstream and perplexity evaluation,
we use our fixed evaluation pipeline to compare
results against publicly available models. We also
report a separate evaluation of our adapted model.

In-Loop Training Ablations Throughout model
training, we perform downstream evaluations to
make decisions around model architecture, initial-
ization, optimizers, learning rate schedule, and data
mixtures. We call this our online evaluation as it
runs in-loop every 1000 training steps (or ∼4B
training tokens) and provides an early and continu-
ous signal on the quality of the model being trained.
These evaluations rely on many of the core tasks
and experiment settings used for our offline eval-
uation detailed in Section 4.1, which also mirrors
the task and evaluation structure of the EleutherAI
eval harness (Gao et al., 2023).

Downstream Evaluation Following much previ-
ous work (Brown et al., 2020; Black et al., 2022;
Touvron et al., 2023a,b, inter alia), we report zero-
shot performance on a set of downstream tasks.
Our evaluation suite consists of 8 core tasks cor-
responding closely to the commonsense reasoning
task set reported by Touvron et al. (2023a) and Tou-
vron et al. (2023b) (see Table 3 for a list of tasks).
Given the scale of the models being evaluated, such
tasks were selected at the beginning of model de-
velopment due to their naturalness (e.g., all can
formulated as text completion scoring tasks) and
ability to provide meaningful signals throughout
training (see Figure 1).

Intrinsic Language Modeling Evaluation To
measure how OLMo fits distributions of language
beyond held-out training data, we use Paloma
(Magnusson et al., 2023), a new perplexity bench-
mark that includes 585 different domains of text.

Domains range from nytimes.com to r/depression
on Reddit and are drawn from 18 separate data
sources, such as C4 (Raffel et al., 2020), in strati-
fied samples. This allows for more equal inclusion
of text domains that are under-represented in their
source corpora.

We aim not just to compare OLMo against other
models for best performance, but also to demon-
strate how it enables fuller and more controlled
scientific evaluations. OLMo-7B is the largest LM
with explicit decontamination for perplexity evalu-
ation. Following the approach described in Paloma,
we remove any pretraining document with para-
graphs leaked from Paloma evaluation data. With-
out decontamination, other models risk underesti-
mating perplexity (i.e., overestimating the model’s
out-of-sample fit). We also release intermediate
checkpoints, allowing richer comparisons with two
other models that release checkpoints, Pythia-6.9B
(Biderman et al., 2023) and RPJ-INCITE-7B (To-
gether Computer, 2023) (see Figure 2).

Adaptation Evaluation We also evaluate OLMo
after instruction fine-tuning and DPO training us-
ing the TÜLU evaluation suite proposed in Wang
et al. (2023); Ivison et al. (2023). We focus on eval-
uations around model chat capabilities and safety
in order to showcase the efficacy of using OLMo
as a base for further fine-tuning.

3 Training OLMo

This section describes our pretraining setup, in-
cluding our distributed training framework (Sec-
tion 3.1), optimizer (Section 3.2), data preparation
(Section 3.3), and hardware (Section 3.4).

3.1 Distributed Training Framework
We train our models using the ZeRO optimizer
strategy (Rajbhandari et al., 2019) via PyTorch’s
FSDP framework (Zhao et al., 2023), which re-
duces memory consumption by sharding the model
weights and their corresponding optimizer state
across GPUs. At the 7B scale, this enables training
with a micro-batch size of 4096 tokens per GPU
on our hardware (see Section 3.4). For OLMo-1B
and -7B models, we use a constant global batch
size of approximately 4M tokens (2048 instances,
each with a sequence length of 2048 tokens).

To improve throughput, we employ mixed-
precision training (Micikevicius et al., 2017)
through FSDP’s built-in settings and PyTorch’s amp
module. The latter ensures that certain operations
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like the softmax always run in full precision to im-
prove stability, while all other operations run in
half-precision with the bfloat16 format. Under
our specific settings, the sharded model weights
and optimizer state local to each GPU are kept in
full precision. The weights within each transformer
block are only cast to bfloat16 when the full-sized
parameters are materialized on each GPU during
the forward and backward passes. Gradients are
reduced across GPUs in full precision.

3.2 Optimizer

We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with the hyperparameters shown in Table
1. For all model sizes, we warm up the learning
rate over 5000 steps (∼21B tokens) and then decay
it linearly from there down to a tenth of the peak
learning rate over the remainder of training. After
the warm-up period, we clip gradients such that
the total l2-norm of the parameter gradients3 does
not exceed 1.0. Table 5 gives a comparison of our
optimizer settings at the 7B scale to those of other
recent LMs that also used AdamW.

3.3 Data

We built our training dataset out of a 2T-token sam-
ple from our open dataset, Dolma (Soldaini et al.,
2024), which we describe in Section 2.2. The to-
kens from every document are concatenated to-
gether after appending a special EOS token to the
end of each document, and then we group con-
secutive chunks of 2048 tokens to form training
instances. The training instances are shuffled in
the exact same way for each training run. The data
order and exact composition of each training batch
can be reconstructed from the artifacts we release.

All of our released models have been trained to
at least 2T tokens (a single epoch over our training
data), and some have been trained beyond that by
starting a second epoch over the data with a differ-
ent shuffling order. The impact of repeating this
small amount of data should be negligible accord-
ing to prior work (Muennighoff et al., 2023).

3.4 Hardware

In order to verify that our codebase could be used
on both NVIDIA and AMD GPUs without any loss

3During gradient clipping all of the model’s parameters
are treated as a single big vector (as if all parameters were
flattened and concatenated together), and we take the ℓ2-norm
over the corresponding single gradient vector. This is the
standard way to clip gradients in PyTorch.

in performance, we trained models on two different
clusters:

• LUMI: Provided by the LUMI supercomputer,4

we used up to 256 nodes on this cluster, where
each node consists of 4x AMD MI250X GPUs
with 128GB of memory5 and 800Gbps of inter-
connect.

• MosaicML: Provided by MosaicML6

(Databricks), we used 27 nodes on this cluster,
where each node consists of 8x NVIDIA A100
GPUs with 40GB of memory and 800Gbps
interconnect.

Despite minor differences in batch size to optimize
for training throughput, both runs resulted in nearly
identical performance on our evaluation suite by
2T tokens.

4 Results

The checkpoint used for evaluating OLMo-7B is
trained until 2.46T tokens on the Dolma (Soldaini
et al., 2024) dataset with a linear learning rate decay
schedule mentioned in Section 3.2. In our experi-
ments, we find that tuning this checkpoint further
on the Dolma dataset for 1000 steps with the learn-
ing rate linearly decayed to 0 boosts model perfor-
mance on perplexity and end-task evaluation suites
described in Section 2.4. We compare OLMo with
other publicly available models including LLaMA-
7B (Touvron et al., 2023a), Llama-2-7B (Touvron
et al., 2023b), MPT-7B (MosaicML NLP Team,
2023), Pythia-6.9B (Biderman et al., 2023), Falcon-
7B (Almazrouei et al., 2023) and RPJ-INCITE-7B
(Together Computer, 2023).

4.1 Downstream evaluation
Setup Our core downstream evaluation suite
(see Table 3) consists of: arc (both arc_easy and
arc_challenge) (Clark et al., 2018), boolq (Clark
et al., 2019), openbookqa (Mihaylov et al., 2018),
sciq (Welbl et al., 2017), hellaswag (Zellers et al.,
2019), piqa (Bisk et al., 2020), and winogrande
(Sakaguchi et al., 2021). In Appendix C, we also
report results on an additional set of auxiliary tasks
outside of our core evaluation set that we found to
have less stable performance trends (see Figure 4).

4
https://www.lumi-supercomputer.eu

5The MI250X is a dual-chip module, meaning in practice
that each physical device consists of two logical devices, so
each node has 8 logical GPU devices with 64GB of memory
each.

6
https://www.mosaicml.com
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Models arc
challenge

arc
easy boolq

hella-
swag

open
bookqa piqa sciq

wino-
grande avg.

StableLM 1.6B 43.8 63.7 76.6 68.2 45.8 74.0 94.7 64.9 66.5
Pythia 1B 33.1 50.2 61.8 44.7 37.8 69.1 86.0 53.3 54.5
TinyLlama 1.1B 34.8 53.2 64.6 58.7 43.6 71.1 90.5 58.9 59.4
OLMo-1B 34.5 58.1 60.7 62.5 46.4 73.7 88.1 58.9 60.4
Falcon-7B 47.5 70.4 74.6 75.9 53.0 78.5 93.9 68.9 70.3
LLaMA 7B 44.5 67.9 75.4 76.2 51.2 77.2 93.9 70.5 69.6
Llama 2 7B 48.5 69.5 80.2 76.8 48.4 76.7 94.5 69.4 70.5
MPT-7B 46.5 70.5 74.2 77.6 48.6 77.3 93.7 69.9 69.8
Pythia 6.9B 44.1 61.9 61.1 63.8 45.0 75.1 91.1 62.0 63.0
RPJ-INCITE-7B 42.8 68.4 68.6 70.3 49.4 76.0 92.9 64.7 66.6
OLMo-7B 48.5 65.4 73.4 76.4 50.4 78.4 93.8 67.9 69.3

Table 3: Zero-shot evaluation of OLMo-1B and OLMo-7B, with other publicly available comparable model
checkpoints on 8 core tasks from the downstream evaluation suite described in Section 2.4. For OLMo-7B, we
report results for the 2.46T token checkpoint.

In all cases, we perform zero-shot evaluation
using the rank classification approach popularized
by Brown et al. (2020). Under this approach, can-
didate text completions (e.g., different multiple-
choice options) are ranked by likelihood (usually
normalized by some normalization factor), and pre-
diction accuracy is reported. While Catwalk im-
plements several common likelihood normaliza-
tion strategies, including normalizing by number
of tokens (per-token normalization; Brown et al.,
2020; Liang et al., 2022), by number of characters
(per-character normalization; Gao et al., 2023), as
well as incorporating an answer’s unconditional
likelihood (Brown et al., 2020), we selected the
normalization strategies for each dataset separately.
Specifically, we used unconditional normalization
for arc and openbookqa, per-token normalization
for hellaswag, piqa, and winogrande and no nor-
malization for boolq, and sciq (i.e., tasks formu-
lated as single token prediction tasks).

Results Table 3 summarizes the result of zero-
shot evaluation of OLMo and compares against
other publicly available models of comparable size.
We report results on 8 core tasks from our evalua-
tion suite described in Section 2.4. On aggregate,
OLMo-7B is competitive against all the compa-
rable models. We include the comparison to Sta-
bleLM 1.6B , but note that it is significantly larger,
and was trained on unknown data.

In Figure 1 we plot the accuracy score progres-
sion of 8 core end-tasks. All tasks, except OBQA,
show an upward trend in accuracy numbers as

OLMo-7B is trained on more tokens. A sharp up-
ward tick in accuracy of many tasks between the
last and the second to last step shows us the ben-
efit of linearly reducing the LR to 0 over the final
1000 training steps. See Table 7 in Appendix C for
additional evaluation results and discussion.

4.2 Intrinsic language modeling evaluation

Setup For intrinsic evaluations, Paloma proposes
a range of analyses, from inspection of perfor-
mance in each domain separately to more sum-
marized results over combinations of domains. We
report results at two levels of granularity: the ag-
gregate performance over 11 of the 18 sources in
Paloma as in (Magnusson et al., 2023), as well as
more fine-grained results over each of these sources
individually. This particular subset of 11 sources
from Paloma excludes sources that are not publicly
available, involve fringe or toxic text, or consist of
code data not supported by Paloma’s decontamina-
tion approach. This leaves C4 (Raffel et al., 2020),
mC4-en (Chung et al., 2023), Wikitext 103 (Merity
et al., 2016), Penn Treebank (Marcus et al., 1999;
Nunes, 2020), RedPajama (Together Computer,
2023), Falcon-RefinedWeb (Penedo et al., 2023),
Dolma (Soldaini et al., 2024), M2D2 S2ORC (Reid
et al., 2022), M2D2 Wikipedia (Reid et al., 2022),
C4 100 domains (Chronopoulou et al., 2022), and
Dolma 100 Subreddits (Soldaini et al., 2024). To
allow for a fair comparison between models with
different vocabularies, we report bits per byte as
defined by Gao et al. (2020) over the test sets of
these sources.
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Figure 1: Accuracy score progression of OLMo-7B on 8 core end-tasks score from Catwalk evaluation suite
described in Section 2.4. We can see the benefit of decaying LR to 0 in the final 1000 steps of training on most tasks.

Results In the Sources Combined subplot of Fig-
ure 2, we show the performance of OLMo-7B
against 6 comparably-sized language models on
the combination of 11 data sources from Paloma.
Overall we find OLMo to have a competitive fit,
especially given its training data was explicitly de-
contaminated against Paloma. As seen through
the comparison of final models (see shapes) as
well intermediate checkpoints (see dashed lines),
the OLMo results follow similar scaling trends of
other models. Note that the performance of inter-
mediate checkpoints is influenced by where that
checkpoint occurs in the learning rate schedule. So
models trained for fewer steps will tend to have
steeper training curves without necessarily being
more sample efficient if training duration were
fixed across all models. MPT-7B, nevertheless,
stands out as improving ahead of the other mod-
els in this subplot. This could be due to a number
of factors, including pretraining data composition
and its match to the domains in Paloma (e.g., MPT
trains on 27% non-Common Crawl data rather than
18% for LLaMA, 12.2% for RedPajama, and 11.2%
for OLMo) as well as various data preprocessing
decisions (e.g., MPT’s use of semantic deduplica-
tion by Abbas et al., 2023, on C4).

The remaining subplots in Figure 2 provide more
fine-grained analysis by reporting bits per byte sep-
arately for each of the 11 data sources that are
combined in the aggregated Paloma metric. From
this we see greater variation in sample efficiency,

largely driven by the similarity of training and eval-
uation distributions. Notably, OLMo-7B fares well
on evaluations predominated by Common Crawl,
such as C4, though different ways of postprocess-
ing Common Crawl are best fit by models trained
with that specific data, such as Falcon-7B on Falcon
RefinedWeb. Meanwhile, OLMo-7B is less sample
efficient compared to other models on sources less
related to scraped web text, such as WikiText-103,
M2D2 S2ORC, and M2D2 Wikipedia. The RedPa-
jama evaluation shows a similar pattern, perhaps as
only 2 of its 7 domains are from Common Crawl,
and Paloma weights domains within each source
equally. Since heterogeneous data from curated
sources like Wikipedia and ArXiv papers is scarcer
than scraped web text, maintaining sample effi-
ciency for fit to these distributions of language will
be challenging as pretraining corpora are scaled.

4.3 Adaptation Evaluation

Setup We evaluate OLMo-7B before adaptation,
and after both the supervised fine-tuning and DPO
training stage, focusing on the safety and chat eval-
uations used by Wang et al. (2023). We addition-
ally compare to officially released instruction-tuned
variants of the models from Table 3. We finally also
compare to TÜLU 2 models to compare against
models trained using the same post-training data
mixes and procedures.

7Following Ivison et al. (2023), we do not report TÜLU 2
TruthfulQA scores due to test set contamination.
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Figure 2: Bits per byte on 11 evaluation data sources from Paloma and their combination (Magnusson et al., 2023),
decontaminated from OLMo’s pretraining data. While models follow a general data scaling trend, sample efficiency
is most favorable on in-distribution data. For example, OLMo-7B overtakes all other models on C4, perhaps from
having 88.8% Common Crawl pretraining data.

Model MMLU AlpacaEval ToxiGen TruthfulQA
0-shot ↑ %win ↑ % Toxic ↓%Info+True ↑

OLMo (base) 28.3 - 81.4 31.6
MPT Chat 33.8 46.8 0.1 42.7
Falcon Instruct 25.2 14.0 70.7 27.2
RPJ-INCITE Chat 27.0 38.0 46.4 53.0
Llama-2-Chat 46.8 87.3 0.0 26.3
TÜLU 2 50.4 73.9 7.0 51.7
TÜLU 2+DPO 50.7 85.1 0.5 -7

OLMo+SFT 47.3 57.0 14.4 41.2
OLMo+SFT+DPO 46.2 69.3 1.7 52.0

Table 4: Evaluation of various instruction-tuned 7B
models, including OLMo-7B and before and after adap-
tation training. Lower is better for ToxiGen and higher
is better for other metrics. We provide a detailed de-
scription of models and metrics in Appendix. E.

Results We find that instruction tuning consid-
erably improves the performance and safety of
OLMo-7B, increasing MMLU performance by a
wide margin and improving ToxiGen and Truth-
fulQA scores - especially after DPO training. Addi-
tionally, we find that OLMo-7B outperforms most
other chat variants after both initial instruction tun-
ing (OLMo+SFT) and additional preference align-
ment (OLMo+SFT+DPO), highlighting both the
strength of OLMo-7B as a base model and the

strength of the TÜLU mix used to perform adap-
tation training. However, we find there is still a
gap with TÜLU 2, which is trained by applying the
TÜLU mix on Llama 2. This gap may be due to
test set contamination in Llama 28 and because the
TÜLU mix was primarily designed for Llama mod-
els. Overall, we see that OLMo-7B greatly benefits
from additional tuning and serves as a strong base
model for downstream applications.

5 Artifacts Released

By sharing artifacts from all pipeline stages, we aim
to encourage open research and reduce duplicated,
often costly efforts, by academics and practitioners.
We release the following:

• Pretraining (§2.1)
1. The training and modeling code.
2. The trained model weights for the 7B

model, 7B-twin-2T, and the 1B model. For
all the models, we release not only the final
model weights but also 500+ intermediate
checkpoints at intervals of 1000 steps.

8Touvron et al. (2023b) report that Llama 2 was pretrained
on data contaminated with MMLU test data.
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3. The complete set of metrics logged to
Weights & Biases during training.

• Data (§2.2)
1. Our full pretraining corpus Dolma (Sol-

daini et al., 2024).
2. Tools to support reproduction of full train-

ing data order as well as inspection of
which training data was seen at each step
during training.

3. Tools for recreating our training data (Sol-
daini et al., 2024) and performing dataset
analysis (Elazar et al., 2024).

• Adaptation (§2.3)
1. The training code and data for adaptation.
2. The model weights for OLMo+SFT and

OLMo+SFT+DPO.
• Evaluation (§2.4)

1. The code and data in our evaluation
framework Catwalk (Groeneveld et al.,
2023) for offline evaluation on both down-
stream tasks and intrinsic language model-
ing (Magnusson et al., 2023).

2. The evaluation suite (Wang et al., 2023;
Ivison et al., 2023) for adapted models.

6 Conclusion and Future Work

This paper presents our first release of OLMo, a
state-of-the-art, truly open language model and its
framework to build and study the science of lan-
guage modeling. Unlike most prior efforts that have
only released model weights and inference code,
we release OLMo and the whole framework, in-
cluding training data, training and evaluation code,
and detailed metrics collected during the training
runs. Additionally, we released adapted models, as
well as all of our model adaptation code and data.

We intend to continuously support and extend
OLMo and its framework, and continue to push
the boundaries of open LMs to empower the open
research community. Since the original release
of OLMo described here, we improved our data
and training setup to significantly improve results.
For example, MMLU scores have improved by
24 points to 52%.9 We look forward to bringing
different model sizes, modalities, datasets, safety
measures, and evaluations into the OLMo family.
We hope this and future releases will empower
and strengthen the open research community and
inspire a new wave of innovation.

9
https://medium.com/p/92b43f7d269d

Limitations

We recognize building a large language model has
many limitations. In fact, each step of the process
of creating a language model, from the data to train-
ing to adaptation to evaluation each have their own
limitations, and so we’ve added sections for each
below. Of course we recognize that AI systems
today can have broad societal reach, and therefore
there are significant limitations beyond what we
are able to fit into this section.

Data Our work focuses on pretraining data in
English. We hope that our open framework en-
ables the development of future models in more
languages as well as multilingual models. The data
that models are trained on is what gives models
their capabilities, and at the scale of training a large
language model we recognize that the data likely
contains problematic content like toxic language,
personal information, and copyrighted text. We
mitigated this to the best of our ability but recog-
nize there are no perfect approaches today that can
completely remove such content.

Training Training a large language model is cur-
rently a challenging endeavor which is missing sig-
nificant support from the open source community.
With our limited page count we did not provide
extensive training logs documenting, for example,
training runs that diverged or failed to learn.

Adaptation Our pretrained models face the same
issues as existing pretrained LLMs, such as bias,
toxicity and, hallucinations. Our adapted models
are better at avoiding these generations, but they are
not perfect. Additionally, we note that we largely
adopt an existing data mixture designed for a dif-
ferent model family (TÜLU, designed for Llama
models), and OLMo may require different data
mixing to adjust for its unique strengths and weak-
nesses. The TÜLU mix itself also relies on data
distilled from a variety of models, and we hope to
reduce our reliance on such data in the future.

Evaluation While we’ve included comparisons
on a variety of datasets to other current language
models, many of the downstream tasks are not ac-
tually representative of how users interact with lan-
guage models (i.e., as a chatbot). In addition, lan-
guage model evaluations are currently very noisy;
we aimed to include only evaluations on datasets
that provided some signal as to which model per-
forms best, but recognize that there is no perfect
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automatic evaluation, and thus comparisons should
be taken with a grain of salt.

Ethics Statement

Through this work, we take the position that in-
creased openness of language models is essential
for scientific understanding of their abilities and
limitations and for broad participation in the contin-
ued development of such models. Training on open
data further enhances these benefits. In addition,
our open release enables practitioners to take our
models and build on them instead of having to train
their own from scratch, in which case they would
be repeating our work while consuming more re-
sources and leading to an increased environmental
impact. Of course, openness is not without risk; the
possibility remains that these models will be used
in unintended ways that cause harm. We believe
that research and development efforts to understand
and mitigate those potential harms will also be ac-
celerated by the openness of the models, allowing
a diversity of approaches and analyses. Over the
past year there have been a number of comparable
models released with very permissive licenses, so
using a more strict license for our work would not
remove the overall risk in the field. We believe this
trade-off on the side of being more open is the best
option.
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man Castagné, Alexandra Sasha Luccioni, François

15798

https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://arxiv.org/abs/2303.09540
https://api.semanticscholar.org/CorpusID:265466629
https://api.semanticscholar.org/CorpusID:265466629
https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all
https://api.semanticscholar.org/CorpusID:8236317
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
http://arxiv.org/abs/2204.05862
https://api.semanticscholar.org/CorpusID:221275765
https://api.semanticscholar.org/CorpusID:221275765
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html


Yvon, et al. 2022. Bloom: A 176b-parameter open-
access multilingual language model. arXiv preprint
arXiv:2211.05100.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Sid Black, Stella Biderman, Eric Hallahan, Quentin An-
thony, Leo Gao, Laurence Golding, Horace He, Con-
nor Leahy, Kyle McDonell, Jason Phang, Michael
Pieler, USVSN Sai Prashanth, Shivanshu Purohit,
Laria Reynolds, Jonathan Tow, Ben Wang, and
Samuel Weinbach. 2022. GPT-NeoX-20B: An open-
source autoregressive language model. In Proceed-
ings of the ACL Workshop on Challenges & Perspec-
tives in Creating Large Language Models.

Su Lin Blodgett, Lisa Green, and Brendan O’Connor.
2016. Demographic dialectal variation in social
media: A case study of African-American English.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1119–1130, Austin, Texas. Association for Computa-
tional Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,

Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Alexandra Chronopoulou, Matthew Peters, and Jesse
Dodge. 2022. Efficient hierarchical domain adapta-
tion for pretrained language models. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1336–1351,
Seattle, United States. Association for Computational
Linguistics.

Hyung Won Chung, Noah Constant, Xavier García,
Adam Roberts, Yi Tay, Sharan Narang, and Orhan
Firat. 2023. Unimax: Fairer and more effective lan-
guage sampling for large-scale multilingual pretrain-
ing. ArXiv, abs/2304.09151.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao,
Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. 2023. Ultrafeedback: Boosting lan-
guage models with high-quality feedback.

Jesse Dodge, Taylor Prewitt, Remi Tachet Des Combes,
Erika Odmark, Roy Schwartz, Emma Strubell,
Alexandra Sasha Luccioni, Noah A. Smith, Nicole
DeCario, and Will Buchanan. 2022. Measuring the
carbon intensity of ai in cloud instances.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In International Joint Conference on Natural Lan-
guage Processing.

Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson,
Abhilasha Ravichander, Dustin Schwenk, Alane Suhr,
Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini,
Sameer Singh, Hanna Hajishirzi, Noah A. Smith, and
Jesse Dodge. 2024. What’s in my big data? In
The Twelfth International Conference on Learning
Representations.

15799

https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://arxiv.org/abs/2204.06745
https://arxiv.org/abs/2204.06745
https://doi.org/10.18653/v1/D16-1120
https://doi.org/10.18653/v1/D16-1120
https://api.semanticscholar.org/CorpusID:218971783
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
https://doi.org/10.18653/v1/2022.naacl-main.96
https://doi.org/10.18653/v1/2022.naacl-main.96
https://api.semanticscholar.org/CorpusID:258187051
https://api.semanticscholar.org/CorpusID:258187051
https://api.semanticscholar.org/CorpusID:258187051
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
http://arxiv.org/abs/2310.01377
http://arxiv.org/abs/2310.01377
http://arxiv.org/abs/2206.05229
http://arxiv.org/abs/2206.05229
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://www.microsoft.com/en-us/research/publication/automatically-constructing-a-corpus-of-sentential-paraphrases/
https://openreview.net/forum?id=RvfPnOkPV4


Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Sidney Greenbaum and Gerald Nelson. 1996. The in-
ternational corpus of english (ICE) project. World
Englishes, 15(1):3–15.

Dirk Groeneveld, Anas Awadalla, Iz Beltagy, Akshita
Bhagia, Ian Magnusson, Hao Peng, Oyvind Tafjord,
Pete Walsh, Kyle Richardson, and Jesse Dodge.
2023. Catwalk: A unified language model evalu-
ation framework for many datasets. arXiv preprint
arXiv:2312.10253.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arxiv:2301.07597.

Suchin Gururangan, Mitchell Wortsman, Samir Yitzhak
Gadre, Achal Dave, Maciej Kilian, Weijia Shi,
Jean Mercat, Georgios Smyrnis, Gabriel Ilharco,
Matt Jordan, Reinhard Heckel, Alex Dimakis, Ali
Farhadi, Vaishaal Shankar, and Ludwig Schmidt.
2023. OpenLM: a minimal but performative lan-
guage modeling (lm) repository. GitHub repository.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022.
TOXIGEN: Controlling Language Models to Gener-
ate Implied and Adversarial Toxicity. In ACL.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing lm adaptation with tulu
2.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Minh Nguyen, Oliver
Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Alexandrovich Glushkov, Arnav Varma Dan-
tuluri, Andrew Maguire, Christoph Schuhmann, Huu
Nguyen, and Alexander Julian Mattick. 2023. Ope-
nassistant conversations - democratizing large lan-
guage model alignment. In Thirty-seventh Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
Github repository.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. CoRR, abs/2007.08124.

Zhengzhong Liu, Aurick Qiao, Willie Neiswanger,
Hongyi Wang, Bowen Tan, Tianhua Tao, Junbo Li,
Yuqi Wang, Suqi Sun, Omkar Pangarkar, et al. 2023.
Llm360: Towards fully transparent open-source llms.
arXiv preprint arXiv:2312.06550.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-
Laure Ligozat. 2022. Estimating the carbon footprint
of bloom, a 176b parameter language model.

Ian Magnusson, Akshita Bhagia, Valentin Hofmann,
Luca Soldaini, Ananya Harsh Jha, Oyvind Tafjord,
Dustin Schwenk, Evan Pete Walsh, Yanai Elazar,
Kyle Lo, et al. 2023. Paloma: A benchmark
for evaluating language model fit. arXiv preprint
arXiv:2312.10523.

Mitchell P. Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-
3.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. ArXiv, abs/1609.07843.

15800

https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.1111/j.1467-971x.1996.tb00088.x
https://doi.org/10.1111/j.1467-971x.1996.tb00088.x
https://arxiv.org/abs/2312.10253
https://arxiv.org/abs/2312.10253
https://github.com/mlfoundations/open_lm/
https://github.com/mlfoundations/open_lm/
https://arxiv.org/abs/2203.09509
https://arxiv.org/abs/2203.09509
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
http://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2401.04088
https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
https://openreview.net/forum?id=VSJotgbPHF
https://github.com/tatsu-lab/alpaca_eval
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2211.09110
https://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2007.08124
http://arxiv.org/abs/2007.08124
http://arxiv.org/abs/2007.08124
https://arxiv.org/abs/2312.06550
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://arxiv.org/abs/2211.02001
http://arxiv.org/abs/2211.02001
https://doi.org/10.35111/GQ1X-J780
https://doi.org/10.35111/GQ1X-J780
https://api.semanticscholar.org/CorpusID:16299141
https://api.semanticscholar.org/CorpusID:16299141


Paulius Micikevicius, Sharan Narang, Jonah Alben, Gre-
gory Frederick Diamos, Erich Elsen, David García,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2017. Mixed preci-
sion training. ArXiv, abs/1710.03740.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Neural Information Processing Systems.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable
llms. Accessed: 2023-05-05.

Niklas Muennighoff, Alexander M Rush, Boaz Barak,
Teven Le Scao, Aleksandra Piktus, Nouamane Tazi,
Sampo Pyysalo, Thomas Wolf, and Colin Raffel.
2023. Scaling data-constrained language models.
arXiv preprint arXiv:2305.16264.

Davide Nunes. 2020. Preprocessed penn tree bank.

OpenAI. 2023. Gpt-4 technical report. ArXiv,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Antonis Papasavva, Savvas Zannettou, Emiliano De
Cristofaro, Gianluca Stringhini, and Jeremy Black-
burn. 2020. Raiders of the lost kek: 3.5 years of
augmented 4chan posts from the politically incor-
rect board. Proceedings of the International AAAI
Conference on Web and Social Media, 14:885–894.

David Patterson, Joseph Gonzalez, Quoc Le, Chen
Liang, Lluis-Miquel Munguia, Daniel Rothchild,
David So, Maud Texier, and Jeff Dean. 2021. Carbon
emissions and large neural network training.

Guilherme Penedo, Quentin Malartic, Daniel Hess-
low, Ruxandra-Aimée Cojocaru, Alessandro Cap-
pelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam

Almazrouei, and Julien Launay. 2023. The refined-
web dataset for falcon llm: Outperforming curated
corpora with web data, and web data only. ArXiv,
abs/2306.01116.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. ArXiv, abs/1802.05365.

Mohammad Taher Pilehvar and José Camacho-Collados.
2018. Wic: 10, 000 example pairs for eval-
uating context-sensitive representations. CoRR,
abs/1808.09121.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,
Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scaling
language models: Methods, analysis & insights from
training gopher.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2019. Zero: Memory optimizations
toward training trillion parameter models. SC20: In-
ternational Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16.

15801

https://api.semanticscholar.org/CorpusID:3297437
https://api.semanticscholar.org/CorpusID:3297437
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://api.semanticscholar.org/CorpusID:16447573
https://api.semanticscholar.org/CorpusID:16447573
https://api.semanticscholar.org/CorpusID:16447573
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://www.mosaicml.com/blog/mpt-7b
https://doi.org/10.5281/ZENODO.3910021
https://api.semanticscholar.org/CorpusID:257532815
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1609/icwsm.v14i1.7354
https://doi.org/10.1609/icwsm.v14i1.7354
https://doi.org/10.1609/icwsm.v14i1.7354
http://arxiv.org/abs/2104.10350
http://arxiv.org/abs/2104.10350
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:259063761
https://api.semanticscholar.org/CorpusID:3626819
https://api.semanticscholar.org/CorpusID:3626819
http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
http://arxiv.org/abs/2112.11446
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://api.semanticscholar.org/CorpusID:203736482
https://api.semanticscholar.org/CorpusID:203736482


Machel Reid, Victor Zhong, Suchin Gururangan, and
Luke Zettlemoyer. 2022. M2D2: A massively multi-
domain language modeling dataset. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 964–975, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Manoel Horta Ribeiro, Jeremy Blackburn, Barry Brad-
lyn, Emiliano De Cristofaro, Gianluca Stringhini,
Summer Long, Stephanie Greenberg, and Savvas
Zannettou. 2021. The evolution of the manosphere
across the web. Proceedings of the International
AAAI Conference on Web and Social Media, 15:196–
207.

Ronald Rosenfeld. 2000. Two decades of statistical
language modeling: Where do we go from here?
Proceedings of the IEEE, 88(8):1270–1278.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Victor Sanh, Albert Webson, Colin Raffel, Stephen
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Fevry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In International Conference on Learning
Representations.

Noam M. Shazeer. 2020. Glu variants improve trans-
former. ArXiv, abs/2002.05202.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar,
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar,
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson,
Jacob Morrison, Niklas Muennighoff, Aakanksha
Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma
Strubell, Nishant Subramani, Oyvind Tafjord, Pete
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. 2024. Dolma: an Open Corpus of Three
Trillion Tokens for Language Model Pretraining Re-
search. arXiv preprint.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 3645–3650, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng
Liu. 2021. Roformer: Enhanced transformer with
rotary position embedding. ArXiv, abs/2104.09864.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Teknium1. 2023. Gpteacher. https://github.com/
teknium1/GPTeacher.

Together Computer. 2023. RedPajama: An Open
Source Recipe to Reproduce LLaMA training
dataset.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. ArXiv,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models.

María Ubierna, Cristina Díez Santos, and Sara Mercier-
Blais. 2022. Water Security and Climate Change:
Hydropower Reservoir Greenhouse Gas Emissions,
pages 69–94. Springer Singapore, Singapore.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

David Vilares and Carlos Gómez-Rodríguez. 2019.
HEAD-QA: A healthcare dataset for complex reason-
ing. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
960–966, Florence, Italy. Association for Computa-
tional Linguistics.

15802

https://aclanthology.org/2022.emnlp-main.63
https://aclanthology.org/2022.emnlp-main.63
https://doi.org/10.1609/icwsm.v15i1.18053
https://doi.org/10.1609/icwsm.v15i1.18053
https://dl.acm.org/doi/abs/10.1145/3474381
https://dl.acm.org/doi/abs/10.1145/3474381
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://api.semanticscholar.org/CorpusID:211096588
https://api.semanticscholar.org/CorpusID:211096588
https://doi.org/10.18653/v1/P19-1355
https://doi.org/10.18653/v1/P19-1355
https://api.semanticscholar.org/CorpusID:233307138
https://api.semanticscholar.org/CorpusID:233307138
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/teknium1/GPTeacher
https://github.com/teknium1/GPTeacher
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://api.semanticscholar.org/CorpusID:257219404
https://api.semanticscholar.org/CorpusID:257219404
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.1007/978-981-16-5493-0_5
https://doi.org/10.1007/978-981-16-5493-0_5
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P19-1092
https://doi.org/10.18653/v1/P19-1092


Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. ArXiv,
abs/1804.07461.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023. How
far can camels go? exploring the state of instruction
tuning on open resources.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta,
Bilge Acun, Newsha Ardalani, Kiwan Maeng, Glo-
ria Chang, Fiona Aga Behram, James Huang,
Charles Bai, Michael Gschwind, Anurag Gupta,
Myle Ott, Anastasia Melnikov, Salvatore Candido,
David Brooks, Geeta Chauhan, Benjamin Lee, Hsien-
Hsin S. Lee, Bugra Akyildiz, Maximilian Balandat,
Joe Spisak, Ravi Jain, Mike Rabbat, and Kim Hazel-
wood. 2022. Sustainable ai: Environmental implica-
tions, challenges and opportunities.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley.
2023. Baize: An open-source chat model with
parameter-efficient tuning on self-chat data. arXiv
preprint arXiv:2304.01196.

Savvas Zannettou, Barry Bradlyn, Emiliano De Cristo-
faro, Haewoon Kwak, Michael Sirivianos, Gianluca
Stringini, and Jeremy Blackburn. 2018. What is gab:
A bastion of free speech or an alt-right echo chamber.
In Companion Proceedings of the The Web Confer-
ence 2018, WWW ’18, page 1007–1014, Republic
and Canton of Geneva, CHE. International World
Wide Web Conferences Steering Committee.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. ArXiv, abs/1910.07467.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel

Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo,
Chien chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmai-
son, Can Balioglu, Bernard Nguyen, Geeta Chauhan,
Yuchen Hao, and Shen Li. 2023. Pytorch fsdp: Expe-
riences on scaling fully sharded data parallel. Proc.
VLDB Endow., 16:3848–3860.

15803

https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751
http://arxiv.org/abs/2306.04751
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://arxiv.org/abs/1707.06209
http://arxiv.org/abs/2111.00364
http://arxiv.org/abs/2111.00364
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.1145/3184558.3191531
https://doi.org/10.1145/3184558.3191531
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://api.semanticscholar.org/CorpusID:113405151
https://api.semanticscholar.org/CorpusID:113405151
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://api.semanticscholar.org/CorpusID:258297871
https://api.semanticscholar.org/CorpusID:258297871


A Training Settings

Table 5 summarizes the model architecture and
the optimizer parameters of OLMo-7B as well as
recent similar-sized models.

B Power Consumption and Carbon
Footprint

Following previous literature (Strubell et al., 2019;
Patterson et al., 2021; Wu et al., 2022; Dodge et al.,
2022), we estimate the total energy consumed and
carbon released while pretraining our models by
calculating the total power consumption required
for training, and then multiplying it by the car-
bon emission intensity of the power grid where
the model was trained. While reporting these op-
erational emissions is standard practice, it does
not account for other sources of emissions such
as the embodied emissions due to the manufac-
turing, transportation, and disposal of hardware
and datacenter infrastructure, lifetime operational
emissions due to use, rebound effects, or other en-
vironmental impacts such as water consumption or
mining. Thus our estimates should be viewed as
lower bounds.

We calculate the total power consumption for
our models by measuring the power consumption
of a single node every 25ms, calculating an average
across the entire training run, and multiplying by
the total number of nodes. We then account for the
energy efficiency of the data center by multiplying
the previous total by a power usage effectiveness
(PUE) factor, which we set to 1.1, representing a
conservative 10% energy consumption overhead
typical of energy efficient datacenters.1011 We esti-
mate that pretraining our 7B models consumed 239
MWh of energy.

To calculate carbon emissions, we multiply the
total power consumption by a carbon intensity fac-
tor, measured in kg CO2 emitted per KWh, based
on the physical location of the data center where
each model was trained. The model trained on
A100-40GB GPUs was trained in Australia, so we
assume a carbon intensity factor of 0.610, the na-
tional average for Australia in 2022.12 The model
trained on MI250X GPUs was trained in the LUMI

10
https://www.nrel.gov/computational-science/

measuring-efficiency-pue.html
11
https://www.google.com/about/datacenters/

efficiency/
12
https://www.cleanenergyregulator.

gov.au/Infohub/Markets/Pages/qcmr/
december-quarter-2022/Emissions-Reduction.aspx

supercomputer, which runs on 100% renewable,
carbon-neutral energy, so we assume a carbon in-
tensity factor of 0. LUMI is powered entirely by
hydroelectric power and some sources (Ubierna
et al., 2022) measure the carbon intensity factor
of hydroelectric power to be 0.024, which would
imply total carbon emissions of 3.54 tCO2eq.13

However, we rely on the official LUMI data for our
calculations, and thus we estimate total pretrain-
ing emissions of 69.78 tCO2eq.14 In Table 6 we
compare our models with other previously released
models based on publicly available information.

We hope that openly releasing our models can
reduce future emissions by allowing others to avoid
the need to pretrain models from scratch, and give
insights into the true cost of developing state of the
art models. We also highlight that our estimates are
lower bounds, because they do not include other
critical pieces of development such as debugging,
hyperparameter tuning, and downtime.

C Additional Evaluation

Additional perplexity results In Figure 3 we
provide results for each of the 7 data sources in
Paloma (Magnusson et al., 2023) that are excluded
from the combined metric in Figure 2. Some of
these sources such as Pile (Gao et al., 2020) and
ICE (Greenbaum and Nelson, 1996) are not pub-
licly available at this time. Dolma 100 Program-
ming Languages (Soldaini et al., 2024) consists of
code data that is not supported by the decontamina-
tion approach used in Paloma. TwitterAAE (Blod-
gett et al., 2016), along with ICE, are datasets for
targeted analyses of disparities in performance be-
tween different dialects and as such should be eval-
uated separately. And finally, the Manosphere, Gab,
and 4chan corpora (Ribeiro et al., 2021; Zannettou
et al., 2018; Papasavva et al., 2020) are intended
to examine model fit to language from fringe on-
line communities that are studied for prevalent hate
speech and toxicity. Thus minimizing perplexity
on these fringe corpora is not always desirable.

One notable result here is that OLMo-7B is much
farther ahead of the other models on Dolma 100
Programming Languages (100 PLs). Note that this
effect may be due in part to underestimation from
contamination, as decontaminating code data is be-
yond the scope of the method in Paloma. At the

13
https://www.lumi-supercomputer.eu

14These metrics were in part collected using Carbonara’s
AI agent and monitoring platform. Learn more at: https:
//trycarbonara.com
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OLMo-7B LLaMA2-7B OpenLM-7B Falcon-7B PaLM-8B
Dimension 4096 4096 4096 4544 4096
Num heads 32 32 32 71 16
Num layers 32 32 32 32 32
MLP ratio ∼8/3 ∼8/3 ∼8/3 4 4
Layer norm type non-parametric RMSNorm parametric parametric parametric
Positional embeddings RoPE RoPE RoPE RoPE RoPE
Attention variant full GQA full MQA MQA
Biases none none in LN only in LN only none
Block type sequential sequential sequential parallel parallel
Activation SwiGLU SwiGLU SwiGLU GeLU SwiGLU
Sequence length 2048 4096 2048 2048 2048
Batch size (instances) 2160 1024 2048 2304 512
Batch size (tokens) ∼4M ∼4M ∼4M ∼4M ∼1M
Weight tying no no no no yes
Warmup steps 5000 2000 2000 1000
Peak LR 3.0E-04 3.0E-04 3.0E-04 6.0E-04
Minimum LR 3.0E-05 3.0E-05 3.0E-05 1.2E-05
Weight decay 0.1 0.1 0.1 0.1
Beta1 0.9 0.9 0.9 0.99
Beta2 0.95 0.95 0.95 0.999
Epsilon 1.0E-05 1.0E-05 1.0E-05 1.0E-05
LR schedule linear cosine cosine cosine
Gradient clipping global 1.0 global 1.0 global 1.0 global 1.0
Gradient reduce dtype FP32 FP32 FP32 BF16
Optimizer state dtype FP32 most likely FP32 FP32 FP32

Table 5: LM architecture and optimizer comparison at the 7–8B scale. In the “layer norm type" row, “parametric" and
“non-parametric" refer to the usual layer norm implementation with and without adaptive gain and bias, respectively.
All models are trained using AdamW.

same time other models that are trained on code
data from GitHub such as RPJ-INCITE-7B, that
are just as likely to have contamination, fair much
worse. Another factor then is that OLMo-7B trains
on code data with exactly the same post-processing
as that in 100 PLs while the code data in other mod-
els will have been processed differently. Similarly,
Pile evaluation demonstrates these in-distribution
and potential contamination effects as Pythia-6.9B
achieves top performance despite being trained on
almost an order of magnitude fewer tokens than
OLMo-7B.

The results on the remaining 5 targeted sources
should be interpreted with care, as Paloma often
finds that perplexity on these sources is dominated
by superficial features such as low average doc-
ument length rather than fit to that which would
actually be salient to members of these speech com-
munities. TwitterAAE and Gab have among the
shortest documents in Paloma contributing to un-
usually high bits per byte in this figure. Other
than these two, the models are notably very closely
grouped in a data scaling trend in ICE, Manosphere,
and 4chan.

Additional end-task results Next, in Table 7,
we provide results from zero-shot evaluation of

OLMo-7B on 6 additional end-tasks apart from
the 8 in our core evaluation suite. These tasks are
headqa_en (Vilares and Gómez-Rodríguez, 2019),
logiqa (Liu et al., 2020), mrpc (Dolan and Brock-
ett, 2005), qnli (Wang et al., 2018), wic (Pilehvar
and Camacho-Collados, 2018), and wnli (Wang
et al., 2018).

We note, however, that in contrast to our core
evaluation set described in Section 4.1, we found
these additional end-tasks to have less stable perfor-
mance during model development, and to provide a
limited signal. This is illustrated in Figure 4, where
we see the progress of task performance throughout
training to be more random (compare with the more
stable upward trends in Figure 1). While tasks such
as mrpc and wic appear more stable, they offered
additional difficulties related to performance being
tied to random chance (e.g., wic) or the tendency of
models to make spurious predictions (e.g., always
predicting a single label) that either inflate or de-
flate performance due to dataset class imbalances
(e.g., mrpc). We therefore caution against relying
too heavily on these tasks when measuring model
performance throughout training and comparing
models.
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GPU Type
GPU Power

Consumption
(MWh)

Power
Usage

Effectiveness

Carbon
Intensity

(kg CO2e/KWh)

Carbon
Emissions
(tCO2eq)

Gopher-280B TPU v3 1,066 1.08 0.330 380
BLOOM-176B A100-80GB 433 1.2 0.057 30
OPT-175B A100-80GB 324 1.1 0.231 82
T5-11B TPU v3 77 1.12 0.545 47
LLaMA-7B A100-80GB 33 1.1 0.385 14
LLaMA2-7B A100-80GB 74 1.1 0.385 31
OLMo-7B MI250X 135 1.1 0.000* 0*
OLMo-7B A100-40GB 104 1.1 0.610 70

Table 6: CO2 emissions during pretraining. We estimate the total carbon emissions for various models using
publicly available data on PUE, carbon intensity of local power grid, and reported power consumption. Numbers for
Gopher-280B (Rae et al., 2022), BLOOM-176B (Luccioni et al., 2022), OPT-175B (Zhang et al., 2022), T5-11B
(Patterson et al., 2021), LLaMA (Touvron et al., 2023a), and LLaMA2 (Touvron et al., 2023b) are taken from their
respective papers. See Section B for details on how tCO2eq was calculated.
* LUMI runs entirely on hydroelectric power13and some estimates (Ubierna et al., 2022) measure the intensity factor
of hydroelectric power to be 0.024, implying total emissions of 3.54 tCO2eq.

headqa_en logiqa mrpc qnli wic wnli avg.
Falcon-7B 38.6 23.7 62.8 49.8 49.5 47.9 45.4

LLaMA-7B 38.7 19.5 68.6 50.1 49.1 52.1 46.4
LLaMA2-7B 39.5 26.1 69.1 49.4 49.8 45.1 46.5

MPT-7B 37.4 22.9 67.7 52.1 48.1 47.9 46.0
Pythia-6.9B 40.1 21.5 65.4 53.8 55.0 38.0 45.6

RPJ-INCITE-7B 36.9 27.8 58.8 53.8 48.9 57.8 47.3
OLMo-7B 37.3 23.4 68.4 49.1 50.2 56.3 47.5

Table 7: Zero-shot evaluation of OLMo-7B on 6 additional end-tasks apart from the 8 present in our core evaluation
suite. Once again, we compare OLMo-7B to 6 other model checkpoints which are publicly available. We find that
OLMo-7B outperforms the other models on aggregate taken over 6 additional end-tasks from this table, however
these tasks were also found to provide limited signal during training (see Figure 4).

D Adaptation Training Details

We use the following hyperparameters when in-
struction tuning OLMo. These were chosen
through small pilot experiments.

• Learning rate: 2 × 10
−6

• Epochs: 3

• Warmup: Linear warmup for the first 3% of
total training time, and then linear cooldown
to a learning rate of 0 over the remaining steps.

• Weight decay: 0

• Gradient clipping: 0

• Maximum sequence length: 2048

• Data: TÜLU V2 SFT mix, resplit such that
long conversations are split into 2048-token
chunks and replacing the hardcoded split with

data about OLMo. Data is publically avail-
able.14

After instruction finetuning, we then use the fol-
lowing hyperparameters for DPO training, follow-
ing Ivison et al. (2023):

• Learning rate: 5 × 10
−7

• β: 0.1

• Epochs: 3

• Warmup: Linear warmup for the first 10% of
total training time, and then linear cooldown
to a learning rate of 0 over the remaining steps.

• Weight decay: 0

• Gradient clipping: 0
14
https://huggingface.co/datasets/allenai/

tulu-v2-sft-mixture-olmo-2048
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Figure 3: Bits per byte for each of the 7 remaining Paloma data sources not aggregated in Figure 2.
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Figure 4: Accuracy score progression of OLMo-7B on 6 additional end-tasks. The performance of these additional
end-tasks was unstable and provided limited signal during model development.

• Maximum sequence length: 2048

• Data: A modified form of UltraFeedback (Cui
et al., 2023), with TruthfulQA prompts re-
moved. We used the ‘fixed’ variant released
by Argilla, which uses the average of GPT-
generated aspect-based scores to determine

chosen and rejected pairs.15

15
https://huggingface.co/datasets/argilla/

ultrafeedback-binarized-preferences-cleaned
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E Adaptation Evaluation and Model
details

We choose the models in Table 4 by choosing
the ‘canonical’ best versions (that is, the best
instruction-tuned or otherwise adapted models re-
leased by the same organisation) of the base models
we compare against in Table 3. We additionally
compare to TÜLU 2 to show the current best mod-
els trained using the TÜLU mix used to finetune
OLMo. We display evaluations on MMLU, Al-
pacaEval, ToxiGen, and Truthfulness to focus on
displaying how instruction tuning can generally
help capabilities (MMLU), how the models per-
form in an open-ended chat setting (AlpacaEval),
and to test how instruction tuning aids in model
safety and truthfulness (AlpacaEval, ToxiGen). We
additionally report OLMo’s performance over the
entire TÜLU evaluation suite in Table 8.

We provide a brief description of each model
evaluated in Table 4 below. For all models, we use
the provided chat template for prompt formatting
when available.

• MPT Chat: A version of MPT 7B fine-
tuned on the ShareGPT-Vicuna (Chiang
et al., 2023), HC3 (Guo et al., 2023), Al-
paca (Taori et al., 2023), HH-RLHF (Bai
et al., 2022), and Evol-Instruct (Xu et al.,
2024) datasets. Retrieved from https:
//huggingface.co/mosaicml/mpt-7b-chat.

• Falcon Instruct: A version of Falcon
7B finetuned on the Baize (Xu et al.,
2023), GPT4All (Anand et al., 2023),
GPTeacher (Teknium1, 2023), and Refined-Web
English (Penedo et al., 2023) datasets. Retrieved
from https://huggingface.co/tiiuae/
falcon-7b-instruct.

• RPJ-INCITE Chat: A version of RPJ-INCITE
7B finetuned on the OASST1 (Köpf et al.,
2023) and Dolly V2 (Conover et al.,
2023) datasets. Retrieved from https:
//huggingface.co/togethercomputer/
RedPajama-INCITE-7B-Chat.

• Llama-2 Chat: A version of Llama 2 7B fine-
tuned on a mixture of instruction datasets and
further trained with RLHF. We refer the reader
to Touvron et al. (2023b) for further details.

• TÜLU 2: A version of Llama 2 7B finetuned on a
mixture of instruction datasets (the TÜLU 2 mix).

We refer the reader to Ivison et al. (2023) for
further details.

• TÜLU 2+DPO: TÜLU 2 further trained with DPO
on the UltraFeedback dataset (Cui et al., 2023).
We refer the reader to Ivison et al. (2023) for
further details.

• OLMo+SFT: A version of OLMo 7B fintuned on
the same data as TÜLU 2.

• OLMo+SFT+DPO: OLMo+SFT further trained
with DPO on the UltraFeedback dataset (Cui
et al., 2023).

We additionally provide a brief description of
each evaluation setting from Table 4:

• MMLU: We use the official MMLU (Hendrycks
et al., 2021) evaluation script and prompts
available at https://github.com/hendrycks/
test, with modifications to allow for batch pro-
cessing. We evaluate using 0 few-shot examples,
following the original setup of MMLU. We report
average accuracy across test examples.

• ToxiGen: We follow the setup in Touvron et al.
(2023b), but use the original set of prompts from
Hartvigsen et al. (2022), which are designed
to elicit toxic generations for certain groups.
We take only the prompts designed to produce
toxic language (‘hateful’ prompts) and use 500
prompts per group to reduce evaluation costs.
For base language models, we pass in the orig-
inal ToxiGen prompts unchanged and greedily
decode up to the first new line (or a maximum
of 512 tokens). For instruction-tuned models,
we place the prompt in the corresponding tem-
plate, and ask the model to complete the prompt,
until the model generates a stop token (or a max-
imum of 512 tokens). We pass the generated
text into a roberta-large model trained to detect
toxic content finetuned as part of Hartvigsen et al.
(2022).16 We then report the percentage of gen-
erations deemed toxic by the classifier.

• TruthfulQA: Following Touvron et al. (2023b),
we mainly use the generation setting of Truth-
fulQA (Lin et al., 2022). The TruthfulQA dataset
contains 818 questions, which are used to prompt
the tested model to generate answers. We use the
default QA prompt format with 6 in-context QA

16
https://huggingface.co/tomh/toxigen_roberta
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Model MMLU GSM8k BBH TydiQA Codex-Eval AlpacaEval ToxiGen TruthfulQA
0-shot 8-shot CoT 3-shot CoT 1-shot Pass@10 %win % Toxic % Info + True

OLMo-7B 28.3 8.5 31.7 32.3 21.4 - 81.4 31.6
+SFT 47.3 15.5 36.9 35.2 28.6 57.0 14.4 41.2
+SFT+DPO 46.1 11.0 35.8 21.7 27.8 69.3 1.7 52.0

Table 8: Evaluation of OLMo-7B models before and after instruction finetuning and DPO training on the full TÜLU
evaluation suite. Lower is better for ToxiGen and higher is better for other metrics.

examples. We follow the official script in their of-
ficial implemention17 to do greedy decoding and
answer postprocessing. We train two LLaMA 2-
based classifiers for judging the truthfulness and
informativeness of the model response, due to the
deprecation of GPT-3 making exact replication
of the original TruthfulQA evaluation infeasible.
We find that the LLaMA 2 judges are generally
able to match the performance of the original
GPT-3-based judges used by Lin et al. (2022).
We report the rate of the responses being truth-
ful and informative (% Informative and Truthful)
following Touvron et al. (2023b). We only report
the % Informative and Truthful as our primary
metric.

• AlpacaEval: We use the package provided by Li
et al. (2023), following the default setup which
asks the evaluated model to generate responses
for 805 prompts and employ GPT-4 to compare
the response with Davinci-003. We employ the
“alpaca_eval_gpt4” annotator. We allow the eval-
uated model to generate up to 2048 tokens, with-
out specifying special stop sequences. The re-
ported win-rate is the percentage of model gener-
ations that GPT-4 reports as being preferred over
the generations from Davinci-003.

17
https://github.com/sylinrl/TruthfulQA/
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