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Abstract
Annually, at the Conference of Machine Trans-
lation (WMT), the Metrics Shared Task orga-
nizers conduct the meta-evaluation of Machine
Translation (MT) metrics, ranking them ac-
cording to their correlation with human judg-
ments. Their results guide researchers toward
enhancing the next generation of metrics and
MT systems. With the recent introduction
of neural metrics, the field has witnessed no-
table advancements. Nevertheless, the inher-
ent opacity of these metrics has posed substan-
tial challenges to the meta-evaluation process.
This work highlights two issues with the meta-
evaluation framework currently employed in
WMT, and assesses their impact on the metrics
rankings. To do this, we introduce the con-
cept of sentinel metrics, which are designed
explicitly to scrutinize the meta-evaluation pro-
cess’s accuracy, robustness, and fairness. By
employing sentinel metrics, we aim to validate
our findings, and shed light on and monitor
the potential biases or inconsistencies in the
rankings. We discover that the present meta-
evaluation framework favors two categories of
metrics: i) those explicitly trained to mimic
human quality assessments, and ii) continuous
metrics. Finally, we raise concerns regarding
the evaluation capabilities of state-of-the-art
metrics, emphasizing that they might be bas-
ing their assessments on spurious correlations
found in their training data.

1 Introduction

Over the past few years, the Machine Transla-
tion (MT) field has witnessed significant advance-
ments, largely driven by the advent of neural ar-
chitectures, with the Transformer (Vaswani et al.,
2017) being the most notable. Modern MT sys-
tems deliver mostly fluent and accurate translations,
posing a challenge for their quality evaluation –
even when conducted by human annotators, espe-
cially those who lack professional training (Freitag

*Equal contribution.

et al., 2021a). Under these circumstances, shal-
low overlap-based metrics are gradually being re-
placed by neural-based metrics, which demonstrate
a better correlation with human judgments (Freitag
et al., 2022). However, a significant limitation is
that most neural-based metrics are black-box sys-
tems trained to predict human judgments in the
form of scalar scores, and typically do not pro-
vide justifications for their assessments. Besides
rendering them challenging to interpret, such opac-
ity also complicates their meta-evaluation. In this
respect, we found that certain strategies for the as-
sessment of MT metrics’ capabilities – which have
recently been employed in the context of the Met-
rics Shared Task at the Conference on Machine
Translation (WMT)1 – favor specific metric cate-
gories and potentially encourage undesirable met-
rics behavior. To demonstrate these problems, we
introduce the concept of sentinel metrics, i.e., a
suite of metrics serving as a probe to identify pit-
falls in the meta-evaluation process. Sentinel met-
rics are either trained with incomplete information
– which makes them inherently unable to evaluate
the quality of machine-translated text properly – or
consist of variations of existing metrics – which
have been devised to expose specific issues in the
meta-evaluation.

As an example, in Table 1, we present the
segment-level ranking of WMT23 with the in-
clusion of a sentinel metric. As can be
seen, SENTINELCAND ranks in the upper half.
SENTINELCAND is a sentinel metric designed to as-
sess the quality of a candidate translation based
solely on the translation itself, without accessing
its source sentence or any reference translation. Ar-
guably, such a metric should only be capable of
evaluating a translation’s fluency, but not its ad-

1With its first edition in 2006 (Koehn and Monz, 2006),
"WMT is the main event for machine translation and ma-
chine translation research." (https://machinetranslate.
org/wmt).
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Metric Avg. corr

XCOMET-Ensemble 1 0.697
MetricX-23 2 0.682
XCOMET-QE-Ensemble* 3 0.681
MetricX-23-QE* 4 0.681
mbr-metricx-qe* 5 0.652
GEMBA-MQM* 6 0.639
MaTESe 7 0.636
CometKiwi* 8 0.632
sescoreX 9 0.628
SENTINELCAND* 10 0.626
cometoid22-wmt22* 11 0.625
KG-BERTScore* 12 0.624
COMET 13 0.622
BLEURT-20 14 0.622
Calibri-COMET22-QE* 15 0.603
Calibri-COMET22 16 0.603
YiSi-1 17 0.600
docWMT22CometDA 18 0.598
docWMT22CometKiwiDA* 19 0.598
prismRef 20 0.593
MS-COMET-QE-22* 21 0.588
BERTscore 22 0.582
mre-score-labse-regular 23 0.558
XLsim 24 0.544
f200spBLEU 25 0.540
MEE4 26 0.539
tokengram_F 27 0.537
chrF 28 0.537
BLEU 29 0.533
prismSrc* 30 0.530
embed_llama 31 0.529
eBLEU 32 0.491
Random-sysname* 33 0.463

Table 1: Segment-level ranking of the primary submis-
sions to the WMT 2023 Metrics Shared Task, with the
inclusion of sentinel metrics. The values in the column
“Avg. corr” are obtained by averaging the correlations
of the 6 segment-level tasks of WMT 2023. Starred
metrics are reference-free, underlined metrics are base-
lines, and highlighted metrics are sentinels. Ranks rep-
resent clusters of statistical significance and are com-
puted following Freitag et al. (2023), which leverage the
PERM-BOTH hypothesis test introduced by Deutsch
et al. (2021). In Table 3 in Appendix A, we report the
metrics’ performance in terms of rank and correlation
in all the 6 tasks that contribute to this ranking. All the
rankings present in this work have been computed using
the official shared task library (https://github.com/
google-research/mt-metrics-eval).

equacy in conveying the original message, and a
fair assessment should rank it at lower positions.
Notably, SENTINELCAND is above strong baselines
such as COMET (Rei et al., 2020) and BLEURT-
20 (Sellam et al., 2020), suggesting that there
might be some issues with the segment-level meta-
evaluation methods used in WMT23.

In this work, we: i) illustrate the issues that af-
fect the segment-level meta-evaluation measures

used in WMT23, demonstrating their impact ex-
perimentally with the help of sentinel metrics; ii)
propose solutions for addressing these issues; iii)
raise concerns regarding the reliability of state-of-
the-art MT metrics. We publish the code to re-
produce our work and the weights of the sentinel
metrics at https://github.com/SapienzaNLP/
guardians-mt-eval.

2 The Meta-evaluation of MT Metrics

Yearly, the WMT Metrics Shared Task organizes a
competition among metrics, including participants’
submissions and baselines, to identify the metric
that most closely aligns with human judgments.
Historically, the organizers have employed corre-
lation with human judgment as a meta-evaluation
strategy. Recently, significant efforts have been
made to refine the meta-evaluation process, en-
compassing the adoption of new measures, such as
those proposed by Kocmi et al. (2021) and Deutsch
et al. (2023), and the introduction of the challenge
sets sub-task (Freitag et al., 2021b, 2022), among
other initiatives. In this section, we provide an
overview of WMT’s official meta-evaluation set-
ting.

First, multiple MT systems are employed to
translate source segments found in one or more
test datasets.2 Consequently, test datasets contain
several translations of the same source segment.
Second, a manual evaluation campaign is carried
out to assess the quality of all translations. Finally,
metrics’ capabilities are assessed based on their
alignment with human judgments, which are in the
form of scalar scores. Such alignment is typically
estimated using correlation and accuracy measures.
Specifically, metrics are evaluated at two granular-
ity levels:

• at the segment level, metrics assign a score to
every translation, and they are ranked accord-
ing to their ability to discern between higher-
and lower-quality translations;

• at the system level, metrics assign a score to
each MT system,3 and they are ranked accord-
ing to their ability to discern between superior
and inferior systems.

2A segment typically refers to a single sentence, but can
also include multiple sentences. For instance, at WMT23, a
segment represents an entire paragraph rather than a single
sentence for the English-to-German translation direction.

3Typically, the score of a system is calculated as the mean
of the scores given to its translations.
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At both granularity levels, metrics can be evalu-
ated using several statistical methods, such as the
Kendall τ and Pearson ρ correlation coefficients,
which have traditionally been applied at the seg-
ment and system levels, respectively. A final met-
rics ranking is derived by aggregating results from
all the chosen statistics. For example, at WMT23,
the final ranking was computed from the following
three statistics:

1. System-level pairwise ranking accuracy
(Kocmi et al., 2021), which evaluates metrics
based on their ability to rank systems in the
same order as human judgments.

2. System- and segment-level Pearson correla-
tion, which measures the degree to which met-
ric scores and human scores are correlated
linearly.

3. Segment-level pairwise ranking accuracy with
tie calibration (Deutsch et al., 2023), which
evaluates metrics based on their ability to rank
segments in the same order as human judg-
ments, or their ability to predict ties correctly.

In this work, we identify two critical issues related
to the second and third statistics, and provide the
following recommendations to address them:

• Translations should be grouped by their
source segment before calculating segment-
level correlations (Section 3).

• Tie calibration should not be conducted on
the test set (Section 4).

In the following two sections, we provide an
overview of some of the aforementioned statistics,
illustrate their flaws, and demonstrate their impact
by leveraging our sentinel metrics.

3 To Group or Not to Group?

At early editions of the WMT Metrics Shared Task
(Macháček and Bojar, 2013, 2014; Stanojević et al.,
2015; Bojar et al., 2016), human assessments were
collected in the form of Relative Rankings (RR).
Specifically, the annotators were tasked to rank
up to 5 translations of the same source sentence,
produced by different MT systems. From each
ranking, up to 10 pairwise comparisons were ex-
tracted. Despite metrics assessments being scalar
scores – which theoretically enabled the compari-
son of all pairs of translated segments – correlation

was measured only on those pairs of translations
for which RR annotations were available. There-
fore, only translations of the same source sentence
were compared. Later on, at subsequent editions
of WMT, new techniques for human evaluation
were adopted: first, Direct Assessments (Graham
et al., 2013, DA) – where annotators rate individ-
ual translations on a scale from 0 to 100 – then,
Multidimensional Quality Metrics (Lommel et al.,
2014, MQM) – where annotators tag the spans of a
translation that contain errors, specifying their cat-
egory and severity. With both the new annotation
schemas, each translated segment was assigned
a scalar quality score independently of the other
translations,4 which made it possible to compare all
translations, not only those of the same source sen-
tence. This new possibility raised doubts regarding
the best way to compute the correlation between
metrics and human assessments. Indeed, it could
be computed using all translations at once – No
Grouping – or by first grouping translations based
on either their source segment – Segment Grouping
– or the system that produced them – System Group-
ing – and then returning the average correlation of
these groups.

At the WMT21 Metrics Shared Task, Freitag
et al. (2021b) chose the No Grouping strategy, ar-
guing that the other options would provide only a
partial view of the overall picture. At WMT22, all
three grouping strategies were used (Freitag et al.,
2022), and later at WMT23, Freitag et al. (2023)
chose No Grouping again. Although No Grouping
is the only strategy that assesses the MT metrics’
ability to discern between higher- and lower-quality
translations in absolute terms, irrespective of the
source segment or MT system, we show that both
No Grouping and System Grouping may introduce
unfairness and favor trained metrics over the rest.

3.1 The Relation Between Spurious
Correlations and Grouping Strategies

Most neural-based metrics are trained with a regres-
sion objective to approximate human judgments.
They are expected to infer by pattern-matching
the relation between human judgments and vari-
ous phenomena, such as omissions, additions, or
other translation errors. However, this mechanism
might inadvertently lead to the detection of patterns
that are not in a causal relation with the concept of

4In MQM, a final score is obtained by applying a specific
weighting to each combination of the detected spans’ category
and severity.
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translation quality, but are instead spurious correla-
tions, e.g., the length of a translation, or the number
of named entities in it, among others. Arguably,
the meta-evaluation should not reward metrics for
basing their assessments on spurious correlations
between the features of the source, translation, or
reference, and the human judgments. However, our
intuition is that No Grouping and System Grouping
strategies might be doing so by allowing the com-
parison of translations from different sources. To
simplify, consider a metric that unfairly penalizes a
translation solely because it contains many named
entities. Using No Grouping or System Grouping,
such a metric might have a non-negative correlation
with human judgments if, on average, translating
sentences containing many named entities is more
challenging than translating other sentences, be-
cause MT systems would be making more mistakes
in translating them. Therefore, exploiting such a
pattern might be beneficial even though it is not
causally related to the quality of a translation. In
contrast, when using Segment Grouping, such a
pattern would be ineffective, as different transla-
tions of the same source sentence should contain
the same amount of named entities. More gener-
ally, we would expect Segment Grouping to lessen
the impact of most spurious correlations derived
from features shared by a source sentence and its
translations.

To assess the extent of this issue, we incorpo-
rate three sentinel metrics into the current meta-
evaluation framework and re-compute the metrics’
rankings using all grouping strategies. Crucially,
we find that the impact of spurious correlations
when No Grouping and System Grouping strategies
are employed is substantial – favoring trained met-
rics over the rest5 – and is significantly reduced
with Segment Grouping.

3.2 The Sentinel Metrics

This section describes the three sentinel metrics
employed to measure the impact of grouping strate-
gies on the meta-evaluation process:

1. SENTINELCAND, which assesses the quality of
a translation without taking its source or refer-
ence as input.

5Indeed, overlap-based metrics such as BLEU (Papineni
et al., 2002) and chrF (Popović, 2015), or LLM-based metrics
such as GEMBA-MQM (Kocmi and Federmann, 2023), were
not trained to mimic human assessments and should not be
able to leverage spurious correlations.

2. SENTINELSRC, which predicts the quality of a
translation solely based on its source.

3. SENTINELREF, which predicts the quality of a
translation solely based on its reference.

Having no information regarding the translation to
evaluate, SENTINELSRC and SENTINELREF can only
learn spurious correlations between the features of
the source and reference sentences, respectively,
and the human judgments. SENTINELCAND, instead,
is a metric with partial information. Indeed, it
is possible to evaluate a translation’s fluency and
grammatical correctness without comparing it with
its source or reference sentences, but not its ade-
quacy. Nonetheless, we expect SENTINELCAND to
base its assessments on spurious correlations also.

3.3 Experimental Setup

Sentinel metrics employ XLM-RoBERTa large
(Conneau et al., 2020) as their backbone model,
with a multi-layer fully-connected neural network
on top of the [CLS] token, which is used to output
predictions in the form of scalar scores. We train
sentinel metrics to minimize the Mean Squared
Error (MSE) between their predicted scores and hu-
man judgments. Our dataset comprises a selection
of data from WMT spanning 2017 to 2022, incor-
porating Direct Assessments (DA) and Multidimen-
sional Quality Metrics (MQM) scores. Following
Rei et al. (2022a), we train sentinel metrics for a
single epoch using DA from 2017 to 2020 and fine-
tune them for a further epoch using MQM data.
Additional details regarding the training process
are reported in Appendix B.

3.4 Results

In Table 2, we report the ranking derived from
the segment-level Pearson correlation of the pri-
mary submissions to the Metrics Shared Task of
WMT23, with the inclusion of sentinel metrics, in
the language direction ZH → EN, and with all three
grouping strategies. We report in Appendix C the
rankings alongside the correlation values for all the
official translation directions of the Metrics Shared
Task, i.e., ZH → EN, EN → DE and HE → EN.
As can be seen, SENTINELSRC ranks fourth and
third when the grouping strategies are No Group-
ing and System Grouping, respectively, surpass-
ing strong baselines like COMET or BLEURT-
20, and even state-of-the-art metrics like GEMBA-
MQM. The only metrics that are not surpassed are
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large regression-based systems such as XCOMET-
Ensemble (Guerreiro et al., 2023) and MetricX-23
(Juraska et al., 2023), which might have learned the
same spurious correlations leveraged by the sen-
tinel metrics, in addition to non-spurious patterns
(cf. Section 3.4.1). Conversely, when grouping by
segment, SENTINELSRC and SENTINELREF are cor-
rectly positioned at the bottom of the ranking,6 and
SENTINELCAND ranks 11th, compared to 3rd and
2nd with No Grouping and System Grouping, re-
spectively. A notable difference between the group-
ing strategies is the positioning of GEMBA-MQM,
which is ranked 7th and 9th with No Grouping and
System Grouping, respectively, and becomes first
with Segment Grouping. We hypothesize that this
is due to GEMBA-MQM being based on GPT-4,
which has not been explicitly fine-tuned on human
assessments and is less likely to leverage spurious
correlations such as those described in Section 3.1.
Interestingly, with grouping strategies other than
Segment Grouping, GEMBA-MQM is surpassed
by all the sentinel metrics.

SENTINELCAND is the only sentinel metric that
does not rank at the very bottom with Segment
Grouping, outperforming prismSrc (Thompson and
Post, 2020) and embed_llama (Dreano et al., 2023),
and positioning itself within the same cluster of sta-
tistical significance as BLEU. This suggests that fo-
cusing solely on the candidate translation – specif-
ically, its fluency and grammatical correctness –
may be sufficient to exceed the performance of
some less effective metrics, at least in terms of
Pearson correlation with human judgments. Fur-
thermore, we highlight that our results may pro-
vide an answer to the open question left at WMT23
regarding the inconsistency of segment-level and
system-level correlations for prismSrc. Freitag et al.
(2023) noticed that, despite displaying a moder-
ate correlation at the segment level, prismSrc was
showing negative correlation values at the system
level. As can be seen from Table 2, prismSrc ranks
15th out of 24 with No Grouping but 13th out of
14 with Segment Grouping (i.e., it is in the second
to last significance cluster, close to the sentinel
metrics). This result is consistent with prismSrc’s
negative correlation at the system level.

In Appendix C, we also report the rankings and
correlations obtained using the Kendall τ correla-
tion coefficient for each grouping strategy, to show

6This had to be expected, given that both these metrics
return the same assessment for all translations of the same
source segment.

Grouping
Metric No Seg Sys

XCOMET-Ensemble 1 2 1
MetricX-23-QE* 1 4 1
XCOMET-QE-Ensemble* 1 3 1
MetricX-23 2 3 2
SENTINELCAND* 3 11 2
SENTINELSRC* 4 14 3
sescoreX 4 7 5
MaTESe 5 6 6
SENTINELREF 5 14 4
mbr-metricx-qe* 6 1 7
cometoid22-wmt22* 6 4 6
GEMBA-MQM* 7 1 9
Calibri-COMET22-QE* 7 5 8
CometKiwi* 7 3 9
KG-BERTScore* 8 4 10
COMET 9 4 12
Calibri-COMET22 9 7 11
docWMT22CometKiwiDA* 10 6 13
BLEURT-20 10 4 13
MS-COMET-QE-22* 11 7 14
docWMT22CometDA 12 6 15
YiSi-1 13 6 16
BERTscore 14 7 17
prismSrc* 15 13 16
prismRef 16 6 18
embed_llama 17 12 18
mre-score-labse-regular 18 8 19
BLEU 19 11 20
XLsim 19 10 21
f200spBLEU 20 10 21
MEE4 20 9 21
chrF 21 8 22
tokengram_F 22 8 23
Random-sysname* 23 14 23
eBLEU 24 10 24

Table 2: Rankings obtained from the segment-level Pear-
son correlation for the primary submissions to the WMT
2023 Metrics Shared Task, with sentinel metrics. The
language direction is ZH → EN. Ranks represent clus-
ters of statistical significance. Additional information
can be found in Appendix C.

that our findings are independent of the correlation
measure, at least among those typically employed
at WMT, i.e., Pearson ρ and Kendall τ .

3.4.1 Are MT metrics learning from spurious
correlations?

We hypothesize that some of the trained met-
rics may be basing their assessments on the
same spurious correlations as those leveraged by
the sentinel metrics. To delve deeper into this,
we measure their segment-level Pearson correla-
tion with the sentinel metrics using No Group-
ing. Surprisingly, XCOMET-Ensemble, XCOMET-
QE-Ensemble, MetricX-23, and MetricX-23-QE,
which are the only metrics that surpass the sen-
tinels in Table 2, display a high correlation with
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all three sentinel metrics. Interestingly, their cor-
relation with SENTINELSRC is 0.750, 0.736, 0.690,
and 0.712 (Figure 4), respectively, while their cor-
relation with human judgment is 0.650, 0.647,
0.625, and 0.647, respectively (Table 5). We rec-
ognize that these metrics share many similarities
with our sentinels, as both are neural transformer-
based systems and both were trained with the same
regression-based objective, using largely the same
data. This similarity likely contributes to the high
correlation values observed. However, with access
limited to only the source segment, SENTINELSRC

relies exclusively on spurious correlations to con-
duct the evaluation. For this reason, we argue that
these results raise concerns about the reliability of
state-of-the-art MT metrics, which may be learn-
ing to exploit spurious correlations to minimize the
Mean Squared Error with human judgments during
training. To further support our hypothesis, we plot
in Figure 1 the relation between the assessments of
XCOMET-Ensemble and translation length, which
serves as a simple spurious correlate of translation
quality.7 We also plot the distribution of MQM hu-
man judgments over translation length. As we can
see from the figure, XCOMET-Ensemble scores de-
crease at increasing candidate lengths, with the met-
ric almost never assigning scores higher than 0.9 to
translations longer than 400 characters. However,
the distribution of human judgments shows that hu-
man annotators rated many of those translations as
perfect or near-perfect, indicating that XCOMET-
Ensemble might be biased to assign lower scores
to longer translations, irrespective of their qual-
ity. Furthermore, the least-squares regression lines
show that, on average, and as expected, longer
translations contain more errors than shorter ones,
and therefore are assigned lower scores by human
annotators. This suggests that detecting biases of
this type might be particularly complex without
datasets crafted specifically for it.

We leave the investigation of these phenomena
to future work and, for further details, we direct
readers to Appendix D, where we report the pair-
wise correlation between most of the considered
metrics and sentinel metrics, and to appendix E,
where we report the relation between such metrics’
assessments and translation length.

7We expect that longer sentences are, on average, more
challenging to translate. Therefore, we anticipate that MT
metrics might have learned to assign lower scores to longer
translations, despite the length and quality of translations not
being causally related.
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Figure 1: We show XCOMET-Ensemble assessments
and MQM-based human judgments in the top and bot-
tom figures, respectively, over the length of the can-
didate translation (in characters). The red line repre-
sents the linear least-squares regression. MQM human
judgments smaller than −25 have been removed for im-
proved clarity. The language pair is ZH → EN.

4 The Evaluation of Ties

In this Section, we focus on the third statistic
among those described in Section 2, i.e., the
segment-level pairwise ranking accuracy with tie
calibration, dubbed acceq by Deutsch et al. (2023).
Prior to WMT23, the organizers of the Metrics
Shared Task used to employ the Kendall τ coef-
ficient – which is a statistic used to estimate the
rank-based agreement between two sets of mea-
surements (Kendall, 1945) – to measure the corre-
lation between metrics and human judgments at the
segment level. Deutsch et al. (2023) pointed out
that the Kendall τ coefficient does not account for
metrics correctly predicting ties,8 and introduced
acceq to address this issue. Unfortunately, our anal-
ysis indicates that acceq inadvertently compromises
evaluation fairness in order to accommodate ties,
ultimately biasing the results in favor of continuous
metrics9 over discrete ones.

8Given a pair of translations whose quality has been as-
sessed by human annotators, the pair is tied if both translations
were assigned with the same score.

9By continuous, we refer to those metrics whose assess-
ments can take on any value within a given range, as opposed
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4.1 The Kendall τ
In this section, we define the Kendall τ coeffi-
cient as employed by the organizers of the Met-
rics Shared Task of WMT21 and WMT22.10 Let
m,h be the vectors of metric and human assess-
ments, respectively. Concordant pairs are the pairs
of metric assessments that have been ranked in the
same order by humans; discordant pairs are those
ranked in a different order. We define C and D
as the number of concordant and discordant pairs,
respectively. We also define Th as the number of
pairs only tied in the gold scores, Tm as the number
of pairs only tied in the metric scores, and Thm as
the number of pairs tied both in gold and metric
scores, i.e., the number of correctly predicted ties.
The Kendall τ correlation coefficient is defined as
follows (Kendall, 1945):

τ =
C −D√

(C +D + Th)(C +D + Tm)
. (1)

4.2 The acceq

As noted by Deutsch et al. (2023), Kendall τ penal-
izes the prediction of ties, but never rewards them,
as Tm and Th are in the denominator, and Thm is
not used. This issue was not prominent in the ear-
liest editions of the Metrics Shared Task, where
ties in human scores were disregarded, and older
metrics rarely produced ties. Currently, instead, it
is essential to consider the prediction of ties, es-
pecially since human MQM annotations contain a
lot of them,11 and some recently-proposed metrics
are designed to output evaluation assessments that
resemble MQM (Perrella et al., 2022; Kocmi and
Federmann, 2023). For this reason, Deutsch et al.
(2023) proposed a measure that mimics the τ coef-
ficient in the way it is computed, but also accounts
for correctly predicting ties:

acceq =
C + Thm

C +D + Th + Tm + Thm
. (2)

Differently from Kendall τ , acceq includes Thm in
the numerator, and the denominator encompasses
the total number of pairs. Notably, discordant pairs

to discrete metrics, which can take on a limited set of values.
Metrics from the COMET family such as COMET, XCOMET-
Ensemble, and CometKiwi (Rei et al., 2022b) are continuous,
whereas GEMBA-MQM (Kocmi and Federmann, 2023) and
MaTESe (Perrella et al., 2022) are examples of discrete met-
rics.

10This is τb in Deutsch et al. (2023).
11This is also due to the increasing quality of automatic

translation, as perfect translations are assigned the same maxi-
mum score.

are not subtracted from the numerator, rendering
this metric a measure of accuracy, with scores rang-
ing between 0 and 1. In Appendix F, we provide
a numerical example of the computation of both
Kendall τ and acceq from the vectors m and h.

The acceq measure, as it stands, would unfairly
disadvantage continuous metrics. Indeed, it is ex-
tremely infrequent for such metrics to assign the
same score to two different translations, meaning
that they never predict ties. To address this issue,
Deutsch et al. (2023) propose the tie calibration
algorithm. In the following section, we briefly il-
lustrate this algorithm and explain why it should
not be conducted on the same test set used for the
meta-evaluation.

4.3 Tie Calibration
The tie calibration algorithm determines, for each
metric, a threshold ϵ such that, given two metric
assessments m1 and m2, they are tied if |m1 −
m2| ≤ ϵ. Deutsch et al. (2023) propose selecting
the ϵ that maximizes acceq on the same test set used
for the metrics meta-evaluation, enabling metrics
to output the number of tied scores that best fits
the distribution of human ties in the considered test
set. This distribution is not stable across test sets
(Table 11), and Deutsch et al. (2023) show that
ϵ values are not stable either. Nonetheless, they
argue that this would not impact the fairness of
the evaluation. Unfortunately, our analysis shows
that this is not the case. Specifically, despite all
metrics’ ϵ values being selected on the same test
data, we demonstrate that continuous metrics are
more flexible to best fit the underlying distribution
of human ties, compared to discrete ones, leading
to unfairly higher acceq values.

4.4 Two New Sentinel Metrics
To demonstrate the impact of this phenomenon,
we introduce two additional sentinel metrics, i.e.,
SENTINELGEMBA and SENTINELMATESE. GEMBA-
MQM (Kocmi and Federmann, 2023) and MaTESe
(Perrella et al., 2022) are MT metrics that out-
put discrete scores in the form of MQM qual-
ity assessments and participated in WMT23.
SENTINELGEMBA and SENTINELMATESE are per-
turbed versions of GEMBA-MQM and MaTESe,
respectively, obtained by adding Gaussian noise
– N (0, 0.0001) – to their predictions. By mak-
ing their output continuous in the neighborhood
of discrete values, we partially fill their gap with
continuous metrics, while preventing any two dif-
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Figure 2: acceq (left) and optimal ϵ (right) of the considered metrics for varying percentages of human ties in the
test dataset, where 0.24 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0. ϵ
values have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0%
of human ties, and the maximum is the optimal ϵ at 100%. The language direction is ZH → EN. Results concerning
all language directions can be found in Appendix G. For each percentage of human ties, we use 5 different seeds to
sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric and percentage of ties, are averaged
across 5 different runs.

ferent discrete assessments from inverting their or-
dering. That is, if two GEMBA-MQM’s assess-
ments m1,m2 are such that m1 > m2, this relation
is preserved by SENTINELGEMBA. In general, we
expect a fair meta-evaluation to rank these sen-
tinels on par or below their discrete counterparts.
Furthermore, we wish to remark that this solution
is sub-optimal compared to metrics that are con-
tinuous by design. Indeed, due to the addition of
Gaussian noise, the ordering of all SENTINELGEMBA

and SENTINELMATESE’s assessments in the neigh-
borhood of discrete values is randomized.

To demonstrate that SENTINELGEMBA and
SENTINELMATESE can better fit the distribution of
human ties compared to their discrete counter-
parts, we modify such a distribution in the test
data. Specifically, we repeatedly sub-sample the
test data, such that for each pair of tied human as-
sessments we remove that pair from the test data
with a certain probability pt, and do the same for
non-tied pairs, which are removed with probability
pn. We extract 13 samples by assigning various
values to pt and pn and report the chosen values in
Table 12 in Appendix G. As a consequence, each
pair (pt, pn) represents a different sub-sample of
test data, with a different percentage of tied human
pairs. Then, for each metric, we select the best ϵ
and compute acceq on each of these samples.

4.5 Results

In Figure 2 (left), we present the acceq results
for a subset of continuous metrics, together with
GEMBA-MQM, MaTESe, SENTINELGEMBA, and
SENTINELMATESE. We discuss our results on the
WMT23 ZH → EN test set, and report results
concerning the other language directions, i.e.,
EN → DE and HE → EN, in Appendix G. At
first glance, it is evident that discrete metrics ex-
hibit a distinct acceq pattern compared to con-
tinuous and sentinel metrics. Notably, at lower
percentages of tied human pairs, SENTINELGEMBA

and SENTINELMATESE significantly outperform
GEMBA-MQM and MaTESe.12 This discrepancy
arises because the tie calibration algorithm selects
very small ϵ values, close to 0 for every metric, al-
lowing the number of ties predicted by continuous
metrics to potentially drop to 0. Conversely, met-
rics that yield discrete scores inherently produce
a certain number of ties, placing them at a disad-
vantage, and thus ranking conceptually identical
metrics like SENTINELGEMBA and GEMBA-MQM
at significantly different positions. Interestingly, in
the hypothetical scenario in which there are no tied

12It is important to highlight that the range of human tie
percentages explored in our analysis is similar to that found
in the WMT test sets. Indeed, as shown in Table 11, such
percentages range from a minimum of 15.14% to a maximum
of 53.35%, observed in the WMT22 EN → DE test set.
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human pairs in the dataset, SENTINELGEMBA would
rank second (despite several of its assessments hav-
ing a random ordering), whereas GEMBA-MQM
would be second to last. At increasing percentages
of gold ties, instead, the acceq values obtained by
SENTINELGEMBA and SENTINELMATESE converge to
those of their discrete counterparts. However, this
is a limitation of these sentinels’ design and does
not imply that the evaluation is fair at higher per-
centages of human ties.

To better investigate the source of unfairness, in
Figure 2 (right) we show how the optimal ϵ changes
at varying percentages of human ties. As can be
seen, continuous metrics’ ϵ is dynamically adjusted
with heightened sensitivity, contrary to what hap-
pens for discrete metrics. Specifically, their ϵ is
exactly 0 until the percentage of human ties over
all pairs is 39%. Additionally, for MaTESe, it re-
mains constant between 44% and 56%, and be-
tween 61% and 68%, and the same happens for
GEMBA-MQM between 47% and 51% and be-
tween 56% and 68%. In contrast, the values change
for all the other metrics in the same intervals, en-
abling them to better fit the distribution of gold ties
found in the test set.

4.5.1 Can we use a held-out set for tie
calibration?

We have demonstrated that conducting the tie cal-
ibration on the same test set used for the evalua-
tion favors continuous metrics over discrete ones.
Nonetheless, this does not necessarily mean us-
ing a held-out dataset would ensure a fair meta-
evaluation. Indeed, our experiments show that un-
fairness stems from the different levels of adapt-
ability between continuous and discrete metrics to
the distribution of human ties found in the dataset
used for tie calibration. Therefore, we expect that
using a held-out dataset would still advantage con-
tinuous metrics if the distribution of human ties in
the held-out resembled that of the test set, and dis-
advantage them if such a distribution differed from
that of the test set. In both cases, continuous met-
rics’ increased adaptability compared to discrete
metrics would impair the fairness of the evaluation.
To investigate this further, we compute a 80-20
split of the test set to obtain an evaluation set for
tie calibration. Then, we repeatedly sub-sample
such an evaluation set to modify its distribution of
human ties and compute acceq on the new test set.
The results are shown in Figure 3. We observe that
the ranking is unstable at varying percentages of
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Figure 3: acceq of the considered metrics when tie cal-
ibration is conducted on a held-out set, derived as a
20% split of the test set, and repeatedly sub-sampled
to modify its percentage of tied human scores. The x-
axis represents the percentage of ties in the held-out set,
while the y-axis represents the acceq, as computed on
the remaining 80% of the test set. The language direc-
tion is ZH → EN, and results concerning all language
directions can be found in Appendix G. The percentage
of human ties in the 80% split of the test set is 24%.

human ties, putting continuous metrics at a disad-
vantage if the proportion of ties in the evaluation
set deviates significantly from that in the test set.

5 Conclusion

In this work, we identified two issues with the cur-
rent meta-evaluation of Machine Translation, as
conducted at the Metrics Shared Task of the Con-
ference on Machine Translation. We proposed a
suite of sentinel metrics designed to highlight these
issues and demonstrate their impact on the metrics
rankings, revealing that certain metric categories
are unfairly advantaged. Indeed, the None Group-
ing and System Grouping strategies favor trained
metrics over overlap- and LLM-based ones and
the algorithm of tie calibration favors continuous
metrics over discrete ones, or vice versa, depend-
ing on the percentage of tied assessments in the
dataset used for it. Specifically, continuous metrics
are favored if the tie calibration is conducted on
the same test set used for the evaluation. Finally,
we observed a notably high correlation between
sentinel metrics and state-of-the-art metrics, rais-
ing concerns about their reliability and suggesting
that their assessments might be based on spurious
correlations present in the training data.
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Limitations

Our analysis recommends grouping translations by
their source segment before computing segment-
level correlations with human judgments, showing
that the rankings derived from the No Grouping
and System Grouping strategies favor certain met-
ric categories and potentially reward metrics for
leveraging spurious correlations. However, we rec-
ognize that the Segment Grouping strategy does
not evaluate the ability of metrics to distinguish be-
tween higher- and lower-quality translations in ab-
solute terms, that is, independently of their source
sentence. We believe this aspect should play a role
in the meta-evaluation process, and leave to fu-
ture work the development of fairer methods to fill
this gap. Furthermore, we acknowledge that, due
to Segment Grouping, each correlation measure is
computed on a limited number of data points, i.e.,
as many as the MT systems that translated each
source segment. In this respect, we argue that it
would be necessary to investigate the metrics’ rank-
ing stability with varying numbers of MT systems,
similar to the work of Riley et al. (2024), where
they explored MT systems’ ranking stability in de-
signing human evaluation studies.

Finally, we acknowledge that we did not provide
a clear recommendation regarding a fair option
for conducting the tie calibration algorithm. We
demonstrated that continuous metrics are favored
if selecting the optimal ϵ on the same test set used
for the meta-evaluation and that using a held-out
dataset would not be fair either. Nonetheless, using
a held-out set would at least prevent the distribu-
tion of human ties used for tie calibration from
being identical to that of the test set, and therefore
it should be preferred. In general, we believe that

a promising approach might involve studying the
meaning of the score deltas of continuous metrics
(akin to the work of Kocmi et al. (2024) regard-
ing system-level assessments) and treating as tied
all assessments within pre-defined score ranges de-
rived from such deltas. This approach would also
enhance the interpretability of MT metrics’ assess-
ments.
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Miloš Stanojević, Amir Kamran, Philipp Koehn, and
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A Official Ranking

In Table 3, we report the official segment-level
ranking of WMT23 Metrics Shared Task, including
sentinel metrics.

B Training the Sentinel Metrics

The input for the sentinel metrics consists of either
the source text (SENTINELSRC), candidate trans-
lation (SENTINELCAND), or reference translation
(SENTINELREF). Each sentence is tokenized and
passed to the XLM-RoBERTa large model, which
serves as a feature extractor. Then, we pass the
embedding of the [CLS] token to a multi-layer,
fully-connected neural network, which outputs the
final scalar score. More formally, considering t as

the input text for a sentinel metric:

et = XLM-R(t)

h
(1)
t = Dropout

(
Tanh

(
W

(1)
h et + b

(1)
h

))

h
(2)
t = Dropout

(
Tanh

(
W

(2)
h h

(1)
t + b

(2)
h

))

st = Woh
(2)
t + bo

Where:

• t is the tokenized input sentence.

• et is the [CLS] token embedding at the output
of XLM-RoBERTa large.

• h
(i)
t represents the output of the ith layer of

the fully-connected neural network. Each
layer consists of a linear transformation, us-
ing weight matrix W

(i)
h and bias vector b(i)h ,

followed by a Tanh activation function and a
dropout layer.

• Wo and bo are the output layer’s weight matrix
and bias vector, respectively.

• st is the output scalar score assigned to sen-
tence t.

Both training phases (i.e., the first, using DA-based
human judgments, and the second, using MQM-
based ones) employ the same set of hyperparame-
ters, detailed in Table 4.

C Grouping Strategies

In Tables 5, 6, 7, we report the complete set of
rankings and Pearson correlations, at the segment
level, of the primary submissions to the WMT23
Metrics Shared Task, with sentinel metrics. Sen-
tinel metrics are consistently ranked lower with
Segment Grouping. Furthermore, in Tables 8, 9, 10,
we report the complete set of rankings and Kendall
τ correlation coefficients, at the segment level, of
the primary submissions to the WMT23 Metrics
Shared Task, with sentinel metrics. With Kendall τ
as well, sentinel metrics rank lower when Segment
Grouping is employed. We wish to note that Seg-
ment Grouping requires the estimation of multiple
correlation coefficients, which are then averaged.
Consequently, each correlation is measured on a
substantially smaller number of data points, com-
pared to No Grouping and System Grouping. As
a result, the number of clusters of statistical sig-
nificance is reduced. Therefore, one should not
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EN → DE HE → EN ZH → EN
Metric Avg. corr Pearson acceq Pearson acceq Pearson acceq

XCOMET-Ensemble 1 0.697 1 0.695 1 0.604 1 0.556 1 0.586 1 0.650 1 0.543
MetricX-23 2 0.682 4 0.585 1 0.603 1 0.548 2 0.577 2 0.625 3 0.531
XCOMET-QE-Ensemble* 3 0.681 2 0.679 3 0.588 3 0.498 4 0.554 1 0.647 3 0.533
MetricX-23-QE* 4 0.681 3 0.626 2 0.596 2 0.520 3 0.564 1 0.647 4 0.527
mbr-metricx-qe* 5 0.652 4 0.571 3 0.584 5 0.411 4 0.553 6 0.489 2 0.537
GEMBA-MQM* 6 0.639 6 0.502 5 0.572 5 0.401 3 0.564 7 0.449 5 0.522
MaTESe 7 0.636 5 0.554 9 0.528 4 0.459 5 0.550 5 0.511 12 0.479
CometKiwi* 8 0.632 7 0.475 5 0.569 7 0.387 6 0.544 7 0.442 4 0.525
sescoreX 9 0.628 6 0.519 6 0.563 7 0.385 16 0.484 4 0.536 9 0.499
SENTINELCAND* 10 0.626 5 0.561 6 0.562 10 0.339 16 0.483 3 0.580 14 0.473
cometoid22-wmt22* 11 0.625 8 0.441 4 0.578 9 0.365 12 0.515 6 0.479 7 0.515
KG-BERTScore* 12 0.624 8 0.451 7 0.556 8 0.382 7 0.537 8 0.430 6 0.516
COMET 13 0.622 9 0.432 4 0.574 5 0.401 8 0.532 9 0.396 7 0.514
BLEURT-20 14 0.622 7 0.484 5 0.572 8 0.382 11 0.519 10 0.378 6 0.518
Calibri-COMET22-QE* 15 0.603 9 0.441 12 0.483 6 0.395 13 0.506 7 0.443 10 0.491
Calibri-COMET22 16 0.603 10 0.413 10 0.522 5 0.401 12 0.515 9 0.396 14 0.474
YiSi-1 17 0.600 12 0.366 8 0.542 6 0.395 8 0.529 12 0.290 8 0.504
docWMT22CometDA 18 0.598 11 0.394 7 0.559 10 0.339 14 0.497 11 0.353 10 0.493
docWMT22CometKiwiDA* 19 0.598 8 0.444 8 0.547 12 0.286 15 0.489 9 0.387 10 0.493
prismRef 20 0.593 6 0.516 10 0.518 11 0.319 9 0.528 14 0.183 8 0.504
MS-COMET-QE-22* 21 0.588 13 0.310 8 0.546 12 0.295 14 0.498 10 0.367 9 0.498
BERTscore 22 0.582 13 0.325 9 0.528 10 0.335 12 0.515 13 0.236 9 0.499
mre-score-labse-regular 23 0.558 18 0.111 9 0.530 8 0.378 10 0.522 16 0.145 12 0.481
XLsim 24 0.544 14 0.239 9 0.527 14 0.233 17 0.480 17 0.111 15 0.464
f200spBLEU 25 0.540 14 0.237 9 0.526 14 0.230 19 0.447 18 0.108 13 0.476
MEE4 26 0.539 17 0.202 9 0.529 13 0.256 20 0.441 18 0.105 12 0.480
tokengram_F 27 0.537 16 0.227 10 0.520 14 0.226 18 0.461 20 0.060 11 0.485
chrF 28 0.537 15 0.232 10 0.519 15 0.221 18 0.460 19 0.063 11 0.485
BLEU 29 0.533 17 0.192 10 0.520 15 0.220 20 0.442 17 0.119 14 0.472
prismSrc* 30 0.530 9 0.425 13 0.426 16 0.140 20 0.441 13 0.223 17 0.421
embed_llama 31 0.529 14 0.250 12 0.483 15 0.215 21 0.430 15 0.161 16 0.447
SENTINELSRC* 32 0.512 7 0.469 15 0.231 10 0.334 21 0.428 4 0.540 19 0.240
SENTINELREF 33 0.506 8 0.464 15 0.231 11 0.301 21 0.428 5 0.506 19 0.240
eBLEU 34 0.491 20 −0.011 11 0.512 16 0.131 19 0.445 22 −0.084 14 0.473
Random-sysname* 35 0.463 19 0.064 14 0.409 17 0.041 21 0.428 21 0.018 18 0.381

Table 3: Complete segment-level results for the primary submissions to the WMT 2023 Metrics Shared Task, with
sentinel metrics.

Hyperparameter Value

Optimizer RAdam (Liu et al., 2020)
Learning Rate 1e-6
Number of Epochs 1
Batch Size 8
Accumulation Steps 2
Dropout 0.1
Dimension of h(1)

t 512
Dimension of h(2)

t 128

Table 4: Hyperparameters used for both training phases
of the sentinel metrics.

focus on the absolute values of the ranks but on
their value relative to that of the other metrics. For
instance, in Table 9, SENTINELCAND is ranked 5th
out of 19 with No Grouping, and 4th out of 11 with

Segment Grouping. While the absolute value of the
rank is lower, in terms of correlation it has moved
from the 8th to the 17th position.

D Metrics Pairwise Correlations

In Figures 4, 5, 6, we report the pairwise correlation
between a subset of the primary submissions and
baselines of WMT23, with the inclusion of sentinel
metrics. We use Pearson correlation coefficient
with No Grouping. State-of-the-art regression-
based metrics display a notably high correlation
with sentinels. Specifically, the highest correlations
are reported by XCOMET-Ensemble, MetricX-23,
and their reference-less counterparts. Moderate
correlation is also reported between sentinels and
baseline metrics such as CometKiwi, COMET, and
BLEURT-20. As expected, instead, lexical-based
metrics such as BLEU and chrF display close to
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Metric No Segment System

XCOMET-Ensemble 1 0.650 2 0.421 1 0.610
MetricX-23-QE* 1 0.647 4 0.359 1 0.610
XCOMET-QE-Ensemble* 1 0.647 3 0.380 1 0.612
MetricX-23 2 0.625 3 0.373 2 0.580
SENTINELCAND* 3 0.580 11 0.201 2 0.578
SENTINELSRC* 4 0.540 14 0.000 3 0.561
sescoreX 4 0.536 7 0.295 5 0.505
MaTESe 5 0.511 6 0.325 6 0.441
SENTINELREF 5 0.506 14 0.000 4 0.525
mbr-metricx-qe* 6 0.489 1 0.436 7 0.431
cometoid22-wmt22* 6 0.479 4 0.357 6 0.446
GEMBA-MQM* 7 0.449 1 0.434 9 0.378
Calibri-COMET22-QE* 7 0.443 5 0.355 8 0.411
CometKiwi* 7 0.442 3 0.388 9 0.388
KG-BERTScore* 8 0.430 4 0.369 10 0.374
COMET 9 0.396 4 0.364 12 0.345
Calibri-COMET22 9 0.396 7 0.311 11 0.360
docWMT22CometKiwiDA* 10 0.387 6 0.340 13 0.320
BLEURT-20 10 0.378 4 0.371 13 0.330
MS-COMET-QE-22* 11 0.367 7 0.306 14 0.313
docWMT22CometDA 12 0.353 6 0.327 15 0.291
YiSi-1 13 0.290 6 0.329 16 0.237
BERTscore 14 0.236 7 0.309 17 0.186
prismSrc* 15 0.223 13 0.078 16 0.243
prismRef 16 0.183 6 0.332 18 0.135
embed_llama 17 0.161 12 0.138 18 0.139
mre-score-labse-regular 18 0.145 8 0.251 19 0.123
BLEU 19 0.119 11 0.208 20 0.093
XLsim 19 0.111 10 0.218 21 0.069
f200spBLEU 20 0.108 10 0.220 21 0.077
MEE4 20 0.105 9 0.236 21 0.070
chrF 21 0.063 8 0.263 22 0.020
tokengram_F 22 0.060 8 0.262 23 0.015
Random-sysname* 23 0.018 14 0.019 23 0.002
eBLEU 24 −0.084 10 0.219 24 −0.115

Table 5: Segment-level Pearson correlation for the primary submissions to the WMT23 Metrics Shared Task, with
sentinel metrics. The language direction is ZH → EN. Starred metrics are reference-free, underlined metrics are
baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance and are computed
following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).

no correlation with sentinels. Similarly, GEMBA-
MQM, a state-of-the-art LLM-based metric that has
not been fine-tuned on human assessments, shows
lower levels of correlation with the sentinel metrics,
compared to the other state-of-the-art metrics.

E Length Bias

In Figures 7,8 we report the relation between met-
rics assessments and the length of the candidate
translation. We concatenate the data from all the
three language directions used in the MQM-based
evaluation of WMT23, i.e., ZH → EN, EN → DE,
and HE → EN. We wish to remind the reader that
the meta-evaluation of WMT23 was conducted at
the paragraph level for EN → DE, and therefore,
the reported candidate lengths are much larger than
those in Figure 1, which comprises only ZH → EN.
As we can see from the figures, most regression-

based metrics, sentinels included, almost never as-
sign very high scores to long translations, even
if they are correct. This is in marked contrast to
metrics trained with different objectives, such as
MaTESe, or not fine-tuned to mimic the human
judgment, such as GEMBA-MQM. Indeed, both
these metrics assign their highest score to several
translations longer than 1200 characters. Notably,
there are several metrics whose assessments con-
verge to a very narrow range of values as length in-
creases. For example, BLEURT-20’s assessments
seem to be confined between approximately 0.4
and 0.8 for translations longer than 1000 charac-
ters, and a similar pattern is observed for COMET.
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Figure 4: Pairwise correlation between a part of the primary submissions and baselines of WMT23, and sentinel
metrics. Correlation is Pearson with No Grouping, and the language direction is ZH → EN.
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Figure 5: Pairwise correlation between a part of the primary submissions and baselines of WMT23, and sentinel
metrics. Correlation is Pearson with No Grouping, and the language direction is EN → DE.
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Figure 6: Pairwise correlation between a part of the primary submissions and baselines of WMT23, and sentinel
metrics. Correlation is Pearson with No Grouping, and the language direction is HE → EN.
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Metric No Segment System

XCOMET-Ensemble 1 0.695 1 0.538 1 0.676
XCOMET-QE-Ensemble* 2 0.679 2 0.507 2 0.658
MetricX-23-QE* 3 0.626 2 0.511 3 0.564
MetricX-23 4 0.585 2 0.507 4 0.547
mbr-metricx-qe* 4 0.571 1 0.543 3 0.551
SENTINELCAND* 5 0.561 6 0.396 5 0.522
MaTESe 5 0.554 8 0.330 4 0.526
sescoreX 6 0.519 3 0.459 6 0.502
prismRef 6 0.516 7 0.349 4 0.528
GEMBA-MQM* 6 0.502 3 0.482 7 0.446
BLEURT-20 7 0.484 2 0.492 7 0.455
CometKiwi* 7 0.475 3 0.463 7 0.451
SENTINELSRC* 8 0.469 12 0.000 6 0.502
SENTINELREF 8 0.464 12 0.000 6 0.492
KG-BERTScore* 8 0.451 4 0.456 8 0.421
docWMT22CometKiwiDA* 9 0.444 5 0.426 9 0.404
cometoid22-wmt22* 9 0.441 2 0.499 9 0.385
Calibri-COMET22-QE* 9 0.441 5 0.432 8 0.414
COMET 9 0.432 2 0.508 10 0.363
prismSrc* 9 0.425 11 0.102 6 0.487
Calibri-COMET22 10 0.413 3 0.477 10 0.370
docWMT22CometDA 11 0.394 3 0.484 11 0.310
YiSi-1 12 0.366 5 0.404 12 0.284
BERTscore 13 0.325 7 0.355 13 0.250
MS-COMET-QE-22* 13 0.310 6 0.400 13 0.241
embed_llama 14 0.250 10 0.242 14 0.180
XLsim 14 0.239 6 0.372 16 0.151
f200spBLEU 14 0.237 7 0.343 14 0.178
chrF 15 0.232 8 0.336 15 0.157
tokengram_F 16 0.227 8 0.340 16 0.153
MEE4 17 0.202 7 0.360 16 0.145
BLEU 17 0.192 9 0.310 17 0.140
mre-score-labse-regular 18 0.111 6 0.376 18 0.087
Random-sysname* 19 0.064 11 0.124 19 −0.015
eBLEU 20 −0.011 8 0.317 19 −0.030

Table 6: Segment-level Pearson correlation for the primary submissions to the WMT23 Metrics Shared Task, with
sentinel metrics. The language direction is EN → DE. Starred metrics are reference-free, underlined metrics are
baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance and are computed
following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).

F Kendall τ and acceq Computation
Example

In this section, we provide an example of the com-
putation of Kendall τ and acceq from two vectors
of human and metric scores, i.e., h and m in the
following table:

m 0.6 0.5 0.4 0.4
h 5 3 5 5

For each vector, there are six pairs of assess-
ments. In particular, the pairs of metric assessments
are (m1,m2), (m1,m3), (m1,m4), (m2,m3),
(m2,m4), (m3,m4).

In Equations 1 and 2, C = 1, since the only
concordant pair is (m1,m2). Indeed, m1 >
m2 and h1 > h2. D = 2, since the pairs
(m2,m3), (m2,m4) are discordant. Tm = 0, since

there are no pairs tied only in the metric scores.
Th = 2, since the pairs (h1, h3), (h1, h4) are tied
only in the human scores. Thm = 1, since the re-
maining pair, i.e., (m3,m4), is tied in both human
and metric scores. In this example, τ = −0.258
and acceq = 0.333.

G Ties

In Table 11, we report the percentage of tied hu-
man pairs in the datasets used in recent editions of
WMT.

In Tables 12, 13, 14, we report the values of pt
and pn used to sub-sample the ZH → EN, EN →
DE, and HE → EN test sets, respectively, to conduct
the experiment described in Section 4.4. We also
report the corresponding percentage of human ties
and total number of pairs, for each sample.

In Figures 9, 10, 11, we report the acceq and

16233



Metric No Segment System

XCOMET-Ensemble 1 0.556 1 0.479 1 0.515
MetricX-23 1 0.548 2 0.441 1 0.509
MetricX-23-QE* 2 0.520 5 0.387 2 0.480
XCOMET-QE-Ensemble* 3 0.498 4 0.397 3 0.458
MaTESe 4 0.459 5 0.373 4 0.408
mbr-metricx-qe* 5 0.411 2 0.448 5 0.362
GEMBA-MQM* 5 0.401 2 0.431 6 0.354
COMET 5 0.401 3 0.421 5 0.367
Calibri-COMET22 5 0.401 4 0.397 5 0.371
YiSi-1 6 0.395 2 0.439 6 0.348
Calibri-COMET22-QE* 6 0.395 6 0.354 5 0.369
CometKiwi* 7 0.387 5 0.375 6 0.353
sescoreX 7 0.385 5 0.370 6 0.352
KG-BERTScore* 8 0.382 5 0.375 7 0.347
BLEURT-20 8 0.382 3 0.418 7 0.344
mre-score-labse-regular 8 0.378 4 0.407 8 0.335
cometoid22-wmt22* 9 0.365 7 0.309 7 0.346
docWMT22CometDA 10 0.339 5 0.379 9 0.294
SENTINELCAND* 10 0.339 11 0.104 7 0.343
BERTscore 10 0.335 4 0.412 9 0.293
SENTINELSRC* 10 0.334 13 0.000 7 0.336
prismRef 11 0.319 3 0.428 10 0.276
SENTINELREF 11 0.301 13 0.000 9 0.299
MS-COMET-QE-22* 12 0.295 9 0.252 10 0.274
docWMT22CometKiwiDA* 12 0.286 7 0.324 11 0.234
MEE4 13 0.256 8 0.291 11 0.222
XLsim 14 0.233 7 0.314 12 0.198
f200spBLEU 14 0.230 8 0.287 12 0.195
tokengram_F 14 0.226 7 0.311 13 0.184
chrF 15 0.221 7 0.308 14 0.179
BLEU 15 0.220 9 0.260 13 0.189
embed_llama 15 0.215 10 0.188 13 0.187
prismSrc* 16 0.140 11 0.100 15 0.150
eBLEU 16 0.131 8 0.280 16 0.104
Random-sysname* 17 0.041 12 0.057 17 0.001

Table 7: Segment-level Pearson correlation for the primary submissions to the WMT23 Metrics Shared Task, with
sentinel metrics. The language direction is HE → EN. Starred metrics are reference-free, underlined metrics are
baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance and are computed
following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by Deutsch et al. (2021).

optimal ϵ for each considered metric, in all three
language directions considered at WMT 2023.

In Figure 12, we report the acceq values of the
considered metrics, as computed on a 80% split of
the test set. ϵ values have been estimated using a
held-out set derived as a 20% split of the entire test
set. The held-out set is repeatedly sub-sampled to
vary its percentage of tied human scores. Different
percentage values are reported on the x-axis.
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Metric No Segment System

XCOMET-Ensemble 1 0.473 2 0.299 1 0.456
XCOMET-QE-Ensemble* 2 0.467 3 0.273 2 0.451
MetricX-23-QE* 3 0.461 4 0.252 2 0.448
GEMBA-MQM* 3 0.457 1 0.365 4 0.416
MetricX-23 4 0.449 3 0.269 3 0.434
mbr-metricx-qe* 5 0.427 2 0.301 5 0.403
cometoid22-wmt22* 5 0.423 4 0.252 4 0.408
SENTINELCAND* 6 0.404 9 0.148 4 0.410
SENTINELSRC* 7 0.397 14 0.000 4 0.411
CometKiwi* 7 0.391 3 0.263 6 0.368
Calibri-COMET22-QE* 8 0.386 4 0.241 6 0.366
sescoreX 9 0.375 6 0.217 6 0.367
MaTESe 9 0.371 3 0.271 7 0.345
KG-BERTScore* 10 0.361 4 0.248 8 0.337
SENTINELREF 11 0.340 14 0.000 7 0.353
COMET 11 0.333 4 0.248 9 0.311
MS-COMET-QE-22* 11 0.332 6 0.213 9 0.311
Calibri-COMET22 12 0.330 6 0.217 9 0.310
BLEURT-20 13 0.310 3 0.261 10 0.288
docWMT22CometKiwiDA* 14 0.299 5 0.234 11 0.265
docWMT22CometDA 15 0.276 5 0.231 12 0.248
prismSrc* 16 0.234 12 0.044 12 0.251
YiSi-1 17 0.220 5 0.231 13 0.196
BERTscore 18 0.180 6 0.216 14 0.156
mre-score-labse-regular 18 0.178 7 0.176 14 0.165
prismRef 19 0.165 5 0.232 15 0.140
embed_llama 20 0.109 11 0.096 16 0.093
XLsim 20 0.101 10 0.140 17 0.080
MEE4 21 0.091 8 0.172 18 0.064
BLEU 21 0.085 9 0.154 18 0.062
f200spBLEU 22 0.068 8 0.165 19 0.042
chrF 23 0.045 7 0.187 20 0.017
tokengram_F 24 0.042 7 0.187 21 0.012
Random-sysname* 25 0.015 13 0.025 22 −0.005
eBLEU 26 −0.041 9 0.156 23 −0.064

Table 8: Segment-level Kendall τ correlation coefficient for the primary submissions to the WMT23 Metrics Shared
Task, with sentinel metrics. The language direction is ZH → EN. Starred metrics are reference-free, underlined
metrics are baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance
and are computed following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by
Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.546 1 0.380 1 0.530
XCOMET-QE-Ensemble* 2 0.532 2 0.360 2 0.516
MetricX-23-QE* 3 0.509 2 0.357 3 0.487
MetricX-23 3 0.506 2 0.368 3 0.485
sescoreX 4 0.493 3 0.343 4 0.476
mbr-metricx-qe* 4 0.490 1 0.397 4 0.467
GEMBA-MQM* 4 0.482 1 0.399 5 0.449
SENTINELCAND* 5 0.463 4 0.290 5 0.456
MaTESe 5 0.462 5 0.286 6 0.447
BLEURT-20 6 0.452 2 0.366 7 0.426
SENTINELSRC* 6 0.443 11 0.000 5 0.462
cometoid22-wmt22* 7 0.422 2 0.362 8 0.398
SENTINELREF 7 0.418 11 0.000 6 0.437
COMET 7 0.418 2 0.366 9 0.387
Calibri-COMET22 7 0.417 3 0.342 9 0.387
CometKiwi* 8 0.408 3 0.330 9 0.379
Calibri-COMET22-QE* 8 0.406 5 0.279 9 0.379
MS-COMET-QE-22* 9 0.391 5 0.280 10 0.363
KG-BERTScore* 10 0.361 4 0.310 11 0.329
docWMT22CometKiwiDA* 10 0.358 4 0.316 11 0.329
prismRef 11 0.345 6 0.247 11 0.332
docWMT22CometDA 11 0.337 2 0.360 12 0.296
YiSi-1 12 0.280 4 0.297 13 0.250
prismSrc* 12 0.267 10 0.039 12 0.284
BERTscore 13 0.253 5 0.260 14 0.224
MEE4 14 0.225 5 0.271 15 0.190
XLsim 14 0.217 6 0.257 15 0.180
f200spBLEU 15 0.187 6 0.255 16 0.151
chrF 15 0.186 6 0.241 16 0.152
tokengram_F 16 0.183 6 0.245 17 0.149
embed_llama 16 0.182 8 0.163 16 0.150
BLEU 17 0.137 7 0.231 18 0.103
eBLEU 18 0.096 7 0.230 19 0.070
mre-score-labse-regular 18 0.084 5 0.269 19 0.066
Random-sysname* 19 0.033 9 0.081 20 −0.018

Table 9: Segment-level Kendall τ correlation coefficient for the primary submissions to the WMT23 Metrics Shared
Task, with sentinel metrics. The language direction is EN → DE. Starred metrics are reference-free, underlined
metrics are baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance
and are computed following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by
Deutsch et al. (2021).
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Metric No Segment System

XCOMET-Ensemble 1 0.415 2 0.323 1 0.395
MetricX-23 2 0.401 3 0.302 2 0.382
GEMBA-MQM* 2 0.399 1 0.369 3 0.367
XCOMET-QE-Ensemble* 3 0.374 5 0.276 3 0.358
MetricX-23-QE* 3 0.370 6 0.251 3 0.355
mbr-metricx-qe* 3 0.366 2 0.316 4 0.339
MaTESe 4 0.361 3 0.302 4 0.341
COMET 5 0.350 3 0.309 5 0.327
Calibri-COMET22 6 0.348 4 0.284 6 0.324
BLEURT-20 6 0.344 4 0.295 6 0.320
sescoreX 6 0.342 4 0.285 6 0.320
CometKiwi* 7 0.338 6 0.238 6 0.323
Calibri-COMET22-QE* 7 0.336 7 0.230 6 0.322
YiSi-1 7 0.333 2 0.325 7 0.303
mre-score-labse-regular 7 0.328 4 0.284 7 0.300
KG-BERTScore* 8 0.322 6 0.242 7 0.304
cometoid22-wmt22* 9 0.310 7 0.216 7 0.301
prismRef 9 0.302 3 0.309 8 0.273
BERTscore 10 0.295 4 0.298 9 0.266
docWMT22CometDA 11 0.278 5 0.270 10 0.249
MS-COMET-QE-22* 12 0.261 9 0.174 10 0.249
SENTINELSRC* 13 0.243 12 0.000 10 0.247
SENTINELCAND* 13 0.243 11 0.049 10 0.249
XLsim 13 0.233 7 0.228 11 0.211
MEE4 13 0.231 7 0.221 11 0.202
docWMT22CometKiwiDA* 14 0.227 7 0.229 12 0.192
SENTINELREF 15 0.210 12 0.000 11 0.214
tokengram_F 15 0.207 7 0.228 13 0.175
chrF 16 0.204 7 0.224 14 0.171
f200spBLEU 17 0.193 7 0.219 15 0.162
BLEU 18 0.184 8 0.205 16 0.157
embed_llama 18 0.174 10 0.147 16 0.151
eBLEU 19 0.166 8 0.209 17 0.141
prismSrc* 19 0.164 11 0.043 14 0.169
Random-sysname* 20 0.027 11 0.033 18 0.002

Table 10: Segment-level Kendall τ correlation coefficient for the primary submissions to the WMT23 Metrics Shared
Task, with sentinel metrics. The language direction is HE → EN. Starred metrics are reference-free, underlined
metrics are baselines, and highlighted metrics are sentinels. Ranks represent clusters of statistical significance
and are computed following Freitag et al. (2023), which leverage the PERM-BOTH hypothesis test introduced by
Deutsch et al. (2021).
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Figure 7: Metric assessments over translation length for a subset of the metrics that participated in WMT23. The
red line represents the least-squares regression.
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Figure 8: Metric assessments over translation length for a subset of the metrics that participated in WMT23, together
with sentinel metrics. The red line represents the least-squares regression.
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Figure 9: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.24 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is ZH → EN. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric
and percentage of ties, are averaged across 5 different runs.
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Figure 10: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.23 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is EN → DE. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric
and percentage of ties, are averaged across 5 different runs.
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Figure 11: acceq (a) and optimal ϵ (b) of the considered metrics for varying percentages of human ties in the test
dataset (0.43 is the percentage of human ties in the entire dataset, obtained when pt and pn are both 0). ϵ values
have been scaled using min-max scaling. Specifically, for each metric, the minimum ϵ is the optimal ϵ at 0% of
human ties, and the maximum is the optimal ϵ at 100%. The language direction is HE → EN. For each percentage of
human ties, we use 5 different seeds to sub-sample the test data. Therefore, the shown acceq and ϵ, for each metric
and percentage of ties, are averaged across 5 different runs.
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(a) The language pair is ZH → EN. The percentage of
human ties in the 80% split of the test set is 24%.
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(b) The language pair is EN → DE. The percentage of
human ties in the 80% split of the test set is 23%.
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(c) The language pair is HE → EN. The percentage of
human ties in the 80% split of the test set is 42%.

Figure 12: acceq of the considered metrics when tie calibration is conducted on a held-out set, derived as a 20%
split of the test set, and repeatedly sub-sampled to modify its percentage of tied scores. The x-axis represents the
percentage of ties in the held-out set, while the y-axis represents the acceq, as computed on the remaining 80% of
the test set. For each percentage of human ties, we use 5 different seeds to sub-sample the held-out set. Therefore,
the shown acceq for each metric and percentage of ties is averaged over 5 different runs.
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2020 2021 2022 2023

EN → DE 15.14 44.62 53.35 23.11
ZH → EN 17.01 30.31 41.55 24.03
EN → RU – 53.24 44.42 –
HE → EN – – – 42.84

Table 11: Percentage of tied pairs in the MQM data
released over different years at the Metrics Shared Task
(or by Freitag et al. (2021a), for 2020), and regarding
different translation directions.
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pt 1.00 0.65 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pn 0.00 0.00 0.00 0.00 0.20 0.40 0.50 0.60 0.65 0.70 0.75 0.80 0.85
% 0 10 18 24 28 35 39 44 47 51 56 61 68
# 93890 104304 114664 123585 104888 85969 76522 67237 62624 57948 53110 48491 43730

Table 12: pt is the probability of removing a tied human pair, and pn is that of removing a non-tied human pair.
The considered test set is WMT23 ZH → EN. Each column, i.e., each pair (pt, pn), represents a sub-sample of the
test set, in which tied and non-tied pairs have been removed with such probabilities. The third row contains the
percentage of tied human pairs over all pairs, as a result of the sub-sampling. The last row contains the total number
of pairs remaining in the test set after the sub-sampling.

pt 1.00 0.65 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pn 0.00 0.00 0.00 0.00 0.20 0.40 0.50 0.60 0.65 0.7 0.75 0.80 0.85
% 0 10 17 23 27 33 38 43 46 50 54 60 67
# 23343 25803 28236 30360 25694 21021 18689 16353 15184 14014 12899 11698 10493

Table 13: pt is the probability of removing a tied human pair, and pn is that of removing a non-tied human pair.
The considered test set is WMT23 EN → DE. Each column, i.e., each pair (pt, pn), represents a sub-sample of the
test set, in which tied and non-tied pairs have been removed with such probabilities. The third row contains the
percentage of tied human pairs over all pairs, as a result of the sub-sampling. The last row contains the total number
of pairs remaining in the test set after the sub-sampling.

pt 1.0 0.90 0.80 0.65 0.50 0.35 0.20 0.00 0.00 0.00 0.00 0.00 0.00
pn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.40 0.55 0.65 0.75
% 0 7 13 21 27 33 38 43 48 56 62 68 75
# 36561 39254 42038 46202 50272 54435 58516 63960 56679 49315 43918 40145 36530

Table 14: pt is the probability of removing a tied human pair, and pn is that of removing a non-tied human pair.
The considered test set is WMT23 HE → EN. Each column, i.e., each pair (pt, pn), represents a sub-sample of the
test set, in which tied and non-tied pairs have been removed with such probabilities. The third row contains the
percentage of tied human pairs over all pairs, as a result of the sub-sampling. The last row contains the total number
of pairs remaining in the test set after the sub-sampling.
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