
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1620–1634
August 11-16, 2024 ©2024 Association for Computational Linguistics

Language Model Adaption for Reinforcement Learning with
Natural Language Action Space

Jiangxing Wang1 Jiachen Li1 Xiao Han1 Deheng Ye2 Zongqing Lu1,3†
1School of Computer Science, Peking University

2Tencent Inc.
3BAAI

{jiangxiw,lijiachen,hanx}@stu.pku.edu.cn dericye@tencent.com
zongqing.lu@pku.edu.cn

Abstract

Reinforcement learning with natural language
action space often suffers from the curse of
dimensionality due to the combinatorial na-
ture of the natural language. Previous research
leverages pretrained language models to cap-
ture action semantics and reduce the size of
the action space. However, since pretrained
models are typically trained on general cor-
pora, there can be an unpredictable mismatch
between the priors encoded in pretrained mod-
els and the characteristics of the specific RL
environment. To address this issue, we propose
Mutual-Information Regularized Policy Opti-
mization, MIPO. MIPO enables implicit and
dynamic reduction of the action space. Starting
from the prior provided by the pretrained lan-
guage model, our method dynamically adjusts
the prior during the learning process based on
the guidance of mutual information regulariza-
tion. Theoretically, we demonstrate that this
policy optimization process leads to the mono-
tonic improvement on the mutual-information
regularized RL objective. Empirically, we con-
duct experiments in various environments and
demonstrate the effectiveness of MIPO.

1 Introduction

Deep reinforcement learning (RL) has gained great
success from mastering the game of Go (Silver
et al., 2017) to training state-of-the-art large lan-
guage models (Ouyang et al., 2022). Despite its
success in various domains, the low sample effi-
ciency of RL has consistently hindered its wide
adoption in real-world applications where the cost
of interaction is not negligible (Li, 2017). Further-
more, as suggested in Azar et al. (2017), the sample
complexity of RL algorithms will be inevitably in-
fluenced by the size of the action space. This issue
becomes even more pronounced in scenarios with
enormous action spaces, such as multi-agent rein-

†Corresponding author.

forcement learning (Zhang et al., 2021) and open-
world reinforcement learning (Yuan et al., 2023a),
exacerbating the problem of sample efficiency.

One natural solution to tackle the challenges of
large action space is to eliminate irrelevant actions
accordingly to avoid the exploration of unneces-
sary state-action pairs. While a general principle
of action space reduction is hard to find, for rein-
forcement learning problems with natural language
action space (He et al., 2016), leveraging action
semantics provides a means to infer the potential
usefulness of actions. Previous work has explored
the use of pretrained language models for action
space reduction (Martin et al., 2022). Despite being
a viable solution, pretrained models encode prior
knowledge derived from general corpora, which
may differ from the specifics of the actual environ-
ment. To alleviate such a mismatch, some stud-
ies (Yao et al., 2020; Xu et al., 2022) utilize the
domain-specific dataset to finetune the pretrained
model for better adaptation. Others (Zahavy et al.,
2018; Ammanabrolu and Hausknecht, 2019; Jain
et al., 2020) assume the feedback of action admis-
sibility from the environment, which assesses the
relevance of each action to the current task, and use
it to prune the action space. However, neither the
domain-specific dataset nor the admissibility sig-
nal is always available. This leads to the question
of whether it is possible to adjust the prior knowl-
edge without incurring additional costs or making
assumptions.

To address this challenge, we propose Mutual-
Information Regularized Policy Optimization,
namely MIPO. Unlike previous work where the
hard action mask is used to prune the action space,
we use the pretrained language model to generate
a prior policy over the action space of the agent.
The agent is subsequently trained to optimize the
environmental reward as well as being close to this
prior. Then, based on the marginalization of the
agent’s policy, we dynamically adjust the general

1620

prior provided by the pretrained language model
to adapt to the specific environment. Such a learn-
ing process can be unified as a mutual-information
(MI) regularized reinforcement learning problem,
where the standard RL objective is augmented with
the mutual information between the agent’s pol-
icy and non-text state information. In theory, we
prove that MIPO achieves the monotonic improve-
ment on the MI-regularized objective. To validate
our method in practice, we perform a series of ex-
periments on text-based games. The experimental
results show that MIPO outperforms baselines in
terms of training speed and final performance.

Our contribution can be summarized as follows.
First, we propose MIPO, an MI-regularized pol-
icy optimization method that achieves implicit dy-
namic action space reduction without requiring ad-
ditional datasets or assumptions. Then, we prove
that our method achieves monotonic improvement
in the MI-regularized objective. Finally, we em-
pirically validate our method and demonstrate its
effectiveness.

2 Related Work

2.1 RL in Text-Based Games

In text-based games (Côté et al., 2019), the environ-
ment takes an action described in natural language
and returns the natural language description of the
current state. Many studies have focused on solving
text-based games using only text input. While early
work among them mostly focuses on the network
structure (Narasimhan et al., 2015; He et al., 2016),
recent studies incorporate techniques such as hier-
archical structure (Adolphs and Hofmann, 2020;
Zhu et al., 2023), multi-passage reading compre-
hension (Guo et al., 2020), and well-designed ex-
ploitation and exploration mechanism (Tuyls et al.,
2022) to achieve better performance.

Other than using pure text input, another line
of research combines the knowledge graph into
the learning algorithm to achieve better state repre-
sentation. For example, Ammanabrolu and Riedl
(2019); Ammanabrolu and Hausknecht (2019); Ad-
hikari et al. (2020) consider different GNN struc-
tures for the representation of knowledge graph, Xu
et al. (2020, 2021) introduce a hierarchical struc-
ture for the state representation and the decision-
making process, and Atzeni et al. (2021) combine
case-based reasoning with knowledge graph for the
better exploration strategy.

Technically, our algorithm can be combined with

any of the above methods. However, we choose to
combine the knowledge graph into our algorithm,
as it is a more general setting where the state does
not contain only text information.

2.2 Action Space Reduction
The sample complexity of the RL algorithm gener-
ally grows with the size of the action space. This
becomes a problem for text-based games due to
its combinatorial nature on the action space. How-
ever, as natural language actions can be understood
by humans and language models, various methods
have been proposed to reduce the size of the action
space using its semantic nature. In Ammanabrolu
and Riedl (2019), a rule-based method is used to
extract information from the knowledge graph and
perform subsequent action selection. While this
method requires domain knowledge about the envi-
ronment and the corresponding knowledge graph,
some other methods (Zahavy et al., 2018; Am-
manabrolu and Hausknecht, 2019; Jain et al., 2020)
assume the feedback of action admissibility from
the environment and use it to prune the action space.
To remove the assumption about the environment
or the requirement of domain knowledge, Martin
et al. (2022) utilize the power of pretrained lan-
guage models to perform the action space reduc-
tion. However, as prior knowledge of the pretrained
language model is generally derived from general
corpora, it may exhibit a certain level of mismatch
of the actual environment. To alleviate such a mis-
match, domain-specific dataset (Yao et al., 2020;
Xu et al., 2022) is collected to further tune the pre-
trained language models for better adaption.

Unlike these works, our method makes no as-
sumption on the domain knowledge, the admis-
sibility feedback, or the domain-specific dataset.
The adaption of the pretrained language model is
guided by the policy of the agent, which is derived
from the mutual-information regularized objective.
To the best of our knowledge, only Shi et al. (2023)
uses the same setting of our paper, where the pre-
trained language model is tuned via self-supervised
learning. We take it as a baseline in our experi-
ments.

2.3 Regularization in RL
The goal of RL algorithms is to learn a policy that
optimizes a single objective, the cumulative dis-
counted reward. However, in practice, we may
want to also incorporate other features into the
learned policy. This is usually achieved via in-

1621

corporating a regularization term into the policy
optimization process. For example, SQL (Haarnoja
et al., 2017) and SAC (Haarnoja et al., 2018a) use
the entropy of policy as a regularization term to
encourage exploration. The entropy term can be
considered as the KL divergence between the pol-
icy and a uniform prior policy, therefore we can
change the uniform prior to other fixed prior to
achieve different purposes. For example, in offline
RL (Levine et al., 2020), BRAC (Wu et al., 2019)
and CQL (Kumar et al., 2020) use the KL to con-
trol the distance between the learned policy and the
behavior policy to mitigate the instability arising
from previously unseen actions. Such a regulariza-
tion is also used in PPO (Schulman et al., 2017)
and is further used for the optimization of large
language models (Ouyang et al., 2022; Rafailov
et al., 2023). While previous methods consider a
fixed prior, Grau-Moya et al. (2018) and Leibfried
and Grau-Moya (2020) consider a dynamic prior
learned along the policy optimization process as
an improvement of SAC (Haarnoja et al., 2018a).
Unlike these methods, we consider the case where
the state information can be decomposed into tex-
tual and non-textual components, we then use a
pretrained language model as the prior to handle
the textual components and adapt this language
model dynamically during the policy optimization
process.

2.4 Foundation Models for RL

Foundation models (Yang et al., 2023) pretrained
on diverse and large-scale datasets contain valuable
prior knowledge, providing useful insight on the
downstream tasks. Given the success of foundation
models, using foundation models to achieve a bet-
ter decision-making process has become a popular
research topic. Except from the action space re-
duction, foundation models have also been used in
many different perspectives to enhance the perfor-
mance of RL algorithms. For example, it can serve
as a reward model (Kwon et al., 2022), dynamic
model (Zhong et al., 2022), or affordance func-
tion (Ahn et al., 2022). It can also be used to gener-
ate intrinsic reward (Du et al., 2023) to encourage
exploration. For long-horizon tasks, foundation
models have been used for different hierarchical
methods (Nottingham et al., 2023; Wang et al.,
2023; Yuan et al., 2023b) to generate sub-goals. It
can also be used to parameterize the agent’s policy
directly (Carta et al., 2023). Unlike these methods,
we focus on using pretrained language model to

reduce the action space.

3 Background

Reinforcement Learning Problem. We often for-
mulate the RL problem as a Markov Decision Pro-
cess (MDP) (Bellman, 1957). An MDP can be
defined by a tuple ⟨S,A, P,R, ρ0, γ⟩. At each
state s ∈ S, the agent can choose one of the ac-
tions a ∈ A to execute and receive a reward signal
r(s, a) from reward function R(s, a) : S ×A →
R. The state will then transition from the current
state s to the next state s′, governed by transition
function P (s′|s, a) : S ×A×S → [0, 1]. In this
problem, the goal of the agent is to properly select
action following policy π(a|s) at each state to max-
imize the expected cumulative discounted reward
Eρ0,π,P [

∑∞
t=0 γ

tr(st, at)], where the expectation
is over initial state distribution ρ0, agent policy π
and transition function P , γ ∈ (0, 1) is the discount
factor, and t denotes timestep.

The RL objective can also be represented by the
reward function and the state marginal distribution
as follows:

(1− γ)Eρ0,π,P
[∞∑

t=0

γtr(st, at)
]
= Eρπ(s) Eπ(a|s)

[
r(s, a)

]
,

where ρπ(s) = (1− γ)∑∞
t=0 γ

tP π
t (s), and P π

t (s)
denotes the probability that policy π visits state s
at timestep t.
RL with Natural Language Action Space. For
RL with natural language action space, each ac-
tion a is paired with the corresponding semantic
and therefore can be encoded into the action rep-
resentation ha using pretrained language models.
Without loss of generality, we further assume each
state can be decomposed into two components,
s = {stext, snon-text}, where stext represents the
state information that can be aligned with action
semantics and snon-text represents the state informa-
tion that cannot be aligned with action semantics.
We choose pretrained language models (Sun et al.,
2022) for the state-action semantic alignment, as in
our experiment scenario, the state information can
be decomposed into knowledge graph information
and text information.
GATA. Our implementation is based on GATA (Ad-
hikari et al., 2020), which also serves as an impor-
tant baseline in our experiments. In GATA, the
state information is assumed to be decomposed
into knowledge graph information sgraph and text
information stext. Each component of the state in-
formation is encoded separately and subsequently

1622

concatenated to form the joint representation of
the state hs = [hsgraph , hstext]. The state represen-
tation hs and the action representation ha will be
then utilized as inputs of state-action value func-
tion Q(s, a), and this function will be updated via
the following DQN (Silver et al., 2017) update
rule to get the optimal state-action value function
Q∗(s, a):

Q(s, a) = r(s, a) + γ EP (·|s,a)
[
argmaxa′ Q(s′, a′)

]
.

4 Method

In this section, we present Mutual-Information Reg-
ularized Policy Optimization (MIPO). MIPO lever-
ages a pretrained language model conditioned on
the state variable stext to generate a prior policy
πprior(a| stext). Then in Section 4.1, we incorpo-
rate the KL divergence between the current pol-
icy π(a|s) and the prior policy into the policy it-
eration process. In this way, we encourage the
policy to optimize the environmental reward, as
well as being close to the prior policy. Inspired
by the mutual-information (MI) regularization, we
exploit the marginalization of the agent’s policy
to adapt the prior policy to the environment. As
shown in Section 4.2, this alternative optimization
process yields a monotonic improvement on the
MI-regularized RL objective. Finally, in Section
4.3, we show how to implement this optimization
process in practice.

4.1 KL-Regularized RL for Fixed Prior
Taking stext and the semantics of each action
as inputs, a pretrained language model is able
to produce a prior policy on the action space
πprior(a| stext). Instead of directly using it as a
hard mask for explicit action space reduction, we
aim to learn a policy that can maximize the envi-
ronmental reward as well as minimize the distance
between the agent’s policy and the prior policy,
which serves as implicit action space reduction.

We choose the KL divergence to measure the
distance such that the policy evaluation operator
can be defined as follows:

Q(s, a) = r(s, a)

+ γ EP,π
[
Q(s′, a′)− α log

π(a′|s′)
πprior(a′| stext′)

]
,

(1)

where the expectation is over P (·|s, a) and π(·|s′),
and α is the coefficient for the trade-off between the
actual return and the KL term. Note that if we take

π(·|s′) inside the expectation, the log term becomes
DKL(π∥πprior). Then, the following optimization
problem is used to achieve the policy improvement:

π(·|s) = argmaxπ′ Eπ′
[
Q(s, ·)− α log

π′(·|s)
πprior(·| stext)

]
.

(2)

As shown in Su and Lu (2022), by repeatedly ap-
plying Equation (1) and (2), the policy converges
to the optimal policy in terms of the following the
KL-regularized RL objective:

Eρ0,π,P
[∞∑

t=0

γt
(
r(st, at)− α log

π(at|st)
πprior(at| stext,t)

)]
,

which can alternatively be represented as:

Eρπ(s) Eπ
[
r(s, a)− α log

π(a|s)
πprior(a| stext)

]
.

The first term is for the reward maximization and
the second term is for the KL distance minimiza-
tion. It is worth noting that the regularization terms
in Equation (1) and (2) are not duplicated, as we
need to consider the effect of regularization in both
the policy evaluation process and the policy im-
provement process to ensure the improvement over
the regularized RL objective.

4.2 MI-Regularized RL for Dynamic Prior
In the previous section, we discuss incorporating
the KL divergence between the policy and the prior
into the RL objective. However, as the encoded
knowledge in pretrained language models often
stems from general corpora, there is a possibility
that the prior provided by the pretrained language
model does not align well with specific environ-
ments. Consequently, rigidly constraining the pol-
icy to be close to the prior may be suboptimal.
To solve this problem, a mechanism is needed to
dynamically adjust the prior to comprehend the
environment.

As we make no assumption on the environmen-
tal feedback, the agent’s policy emerges as the sole
teacher within this environment. Fortunately, it
serves as a good one as it is designed to optimize
the environmental reward, which contains enough
information to differentiate between good and bad
actions. Considering that the agent’s policy in-
corporates more inputs compared to the prior pol-
icy, we use the conditional marginalization of the
agent’s policy to adapt the prior policy as follows:

πprior(a| stext)
=Eρπ(snon-text | stext)

[
π(a| stext, snon-text)

]
,

(3)

1623

Graph
Encoder

Text
Encoder

Knowledge
Graph

Text
State

Text
Encoder

slice white onion
with knife
Action

Semantic

Value
Function

Agent
Policy

Embedding

Prior
Policy

Text
State

slice white onion
with knife
Action

Semantic

Language
Model

MIPO

Prior
Adaptation

Policy
Evaluation

Policy
Improvement Attention

BlockAttention
BlockAttention

BlockAttention
BlockAttention

Block

Figure 1: The MIPO Framework. Embeddings produced by different encoders are concatenated into a single one
and then fed into the policy and the value network. MIPO iteratively applies policy evaluation, policy improvement,
and prior adaptation to achieve the monotonic improvement on the MI-regularized RL objective.

where ρπ(s) = ρπ(stext)ρπ(snon-text | stext) is the
conditional factorization of the state marginal dis-
tribution of policy π. Such an association with the
agent’s policy indicates that the adaptation of the
prior policy should be performed on the states that
are currently visited by the agent’s policy, which
is crucial from a theoretical perspective as shown
later.

Incorporating this prior adaptation process into
the policy iteration framework leads to an alter-
nating optimization process of (π, πprior). In the
following theorem, we prove that this alternating
optimization can be unified as the optimization of
MI-regularized RL objective and ensures the mono-
tonic improvement on this objective.

Theorem 1. If a sequence (πk, π
prior
k)∞k=0 is ob-

tained by iteratively applying Equation (1),(2)
and (3), then it exhibits the monotonic improve-
ment property on the MI-regularized RL objective,
J(πk+1, π

prior
k+1) ≥ J(πk, π

prior
k). Here, the MI-

regularized RL objective J(π, πprior) is defined as:

J(π, πprior) = Eρπ(s) Eπ
[
r(s, a)− α log

π(a|s)
πprior(a| stext)

]
.

Proof. See Appendix A.1.

In this theorem, we first treat the prior policy as
a fixed one and prove that, by applying Equations
(1) and (2), the policy iteration with a fixed prior
leads to the improvement on the MI-regularized RL
objective, J(πk+1, π

prior
k) ≥ J(πk, π

prior
k). Then,

we fix the agent’s policy and perform the prior
policy adaption by applying Equation (3), which
also leads to the improvement on the objective,
J(πk+1, π

prior
k+1) ≥ J(πk+1, π

prior
k). Put them to-

gether, we can have the monotonic improvement
J(πk+1, π

prior
k+1) ≥ J(πk, π

prior
k).

In contrast to the policy iteration that optimizes
the KL-regularized RL objective, we now have two

variables π and πprior. Therefore, the augmented
term does not simply stand for the KL divergence
between π and an arbitrary πprior, but it now stands
for the mutual information between a and snon-text,
MI(a; snon-text | stext).

From an information theoretical perspective, this
objective implies that among policies sharing the
same RL objective, we favor those with lower de-
pendency on snon-text when stext is given. Such
policies are easier to learn by the prior, as the prior
takes only stext as the input.

4.3 MIPO framework
In Section 4.1 and 4.2, we glance at our algorithm
from a theoretical perspective. In this section, we
discuss the practical implementation of our algo-
rithm using neural networks.

In MIPO, the agent is equipped with three differ-
ent network modules. One critic networkQ(s, a; θ)
takes the knowledge graph, text information, and
the semantics of actions as input and outputs the
state-action value for each action. One policy net-
work π(a|s;ψ) also takes the knowledge graph,
text information, and the semantics of actions as
input and outputs the probability for each action.
One prior network πprior(a| stext;ϕ) takes only the
text information and the semantics of actions and
outputs the prior probability for each action. The
framework of MIPO is illustrated in Figure 1.

For the update of Q(s, a; θ), we follow Equation
(1), and update it by minimizing the following TD
error:

L(θ) = ED

[(
Q(s, a; θ)−

[
r(s, a) + γ

(
Q̂(s′, a′)

− α log
π(a′|s′)

π̂prior(a′| stext′)
)])2]

,

(4)

whereD denotes the replay buffer, and Q̂ and π̂prior

are respectively the target critic and the target prior

1624

policy. These target networks are used to stabi-
lize the training of Q(s, a; θ) and periodically up-
dated via copying the parameters of Q(s, a; θ) and
πprior(a| stext;ϕ).

To update π(a|s;ψ), we follow Equation (2),
and update it via minimizing the following objec-
tive:

L(ψ) = ED

[
Eπ(a|s;ψ)

[
α log

π(a|s;ψ)
π̂prior(a| stext)

−Q(s, a)
]]
,

(5)

where, again, the target prior π̂prior is used to stabi-
lize the training of π(a|s;ψ).

Following Equation (3), we update the prior pol-
icy πprior(a| stext;ϕ) via the the maximum likeli-
hood estimation as follows:

L(ϕ) = ED̃

[
Eπ(a|s)

[
log πprior(a| stext;ϕ)

]]
, (6)

where D̃ is another replay buffer much smaller than
D, such that it stores only the recent transitions and
properly approximates the state marginal distribu-
tion ρπ(s). The overall learning algorithm of MIPO
is summarized in Appendix A.2.

5 Experiments

5.1 Experiment Settings
We conduct two sets of experiments on cook-
ing games provided in TextWorld (Côté et al.,
2019) and house-holding tasks based on Virtual-
Home (Puig et al., 2018).

For the TextWorld environment, all tasks are
generated using the code provided in GATA (Ad-
hikari et al., 2020) and follow the same task setup
as described in GATA. In this experiment, agents
will receive recipes described in natural language
including ingredients and directions. It will also
receive a knowledge graph including triplets like
[white onion, fridge, in] describing the current state
of the environment. Based on this information,
agents will take natural language actions like "take
white onion from fridge" to finish the given recipes.
There are four difficulty levels, each containing 100
different tasks for training and 20 different tasks
for test. In each task, the goal of the agent is to
collect different ingredients and cook them based
on the recipe.

We make the following modifications to make
tasks more challenging. First, we remove the recipe
information from the knowledge graph. Therefore,
the agent has to use both the information from the

0 10 20 30 40 50
episodes

1.0

1.5

2.0

2.5

3.0

3.5

tra
in

 g
am

e
po

in
ts

Difficulty_1
MIPO
GATA
GATA-TrufLL
GATA-CSM

0 10 20 30 40 50
episodes

1.4

1.5

1.6

1.7

1.8

1.9

tra
in

 g
am

e
po

in
ts

Difficulty_2
MIPO
GATA
GATA-TrufLL
GATA-CSM

0 10 20 30 40 50
episodes

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

tra
in

 g
am

e
po

in
ts

Difficulty_3
MIPO
GATA
GATA-TrufLL
GATA-CSM

0 10 20 30 40 50
episodes

1.8

2.0

2.2

2.4

2.6

2.8

3.0

tra
in

 g
am

e
po

in
ts

Difficulty_4
MIPO
GATA
GATA-TrufLL
GATA-CSM

Figure 2: Learning curves of all the methods in
TextWorld cooking games.

knowledge graph and the information from texts
to make proper decisions. Second, some actions
are filtered in a hard-code manner in GATA, we
recover these actions and result in a larger action
space. Third, the text information contains only
recipe information. With the above modifications,
our setting is much harder than the original set-
ting in GATA. More details about experiments and
hyperparameters are included in Appendix A.3.

For the VirtualHome environment, we customize
a set of house-holding tasks where agents are sup-
posed to follow the given natural language in-
structions to tidy the room. For example, agents
will receive natural language instructions like
"put waterglass-283 into / on kitchencabinet-238",
and a knowledge graph including triplets like
[waterglass-283, kitchentable-232, on]. Based on
these information, agents will take natural language
actions like "walktowards waterglass-283" to finish
the given instructions. In difficulty 1, agents will
be given one instruction, and in difficulty 2, agents
will be given two instructions. For the knowledge
graph used in the VirtualHome environment, we
use a rule-based filter to remove task-irrelevant
objects in the scenarios (for example, floor, wall,
ceiling) and only keep task-relevant objects. We
then consider task-relevant objects in the scenar-
ios and their relations as edges. The relations we
considered in the knowledge graph of VirtualHome
include "inside", "on", "facing", "close", "is", and
"holds".

5.2 Baselines

We consider the following three baselines com-
pared against our method in the experiments.

GATA (Adhikari et al., 2020): a knowledge-

1625

D1 D2 D3 D4

MIPO 3.53±0.20 1.94±0.01 2.57±0.12 2.95±0.16
GATA 3.29±0.13 1.85±0.07 1.68±0.18 2.46±0.11

GATA-TrufLL 2.94±0.18 1.77±0.15 0.99±0.00 2.59±0.19
GATA-CSM 2.95±0.53 1.79±0.11 1.99±0.26 2.43±0.33

GATA-SayCan 0.08±0.02 0.11±0.00 0.05±0.00 0.10±0.02

Table 1: Train game points in TextWorld cooking games.
D1 is short for difficulty 1, the same for others.

graph based method, where the relational graph
convolution network (Schlichtkrull et al., 2018) is
used to process the information of knowledge graph
and a transformer (Vaswani et al., 2017) encoder
is used to process the text information of both the
state and the action. Putting them together, we
can have the representation of each state-action
pair and then use it as the input of Q(s, a). The
agent interacts with the environment using an ϵ-
greedy policy and is trained via DQN (Silver et al.,
2017). More specifically, we use the GATA-GTF
variant for our experiment, as the construction of
the knowledge graph is beyond the scope of this
paper.

GATA-TrufLL (Martin et al., 2022): a reinforce-
ment learning method paired with action space
reduction using pretrained language models. As
TrufLL was originally proposed for the language
generation tasks, we re-implement TrufLL based
on the framework of GATA. For the action space
reduction, we use the probability threshold method
as the truncation function. The truncation function
is shown as follows:

gpth(α)(a| stext) = 1fLM(a| stext)>λ,

which keeps actions with a probability
fLM(a| stext) greater than λ. We use a fixed
language model to perform action space reduction,
and the agent is trained as GATA with the reduced
action space.

GATA-CSM (Shi et al., 2023): a reinforcement
learning method paired with action space reduction
using pretrained language models. To adapt the
pretrained model to the current task, CSM collects
trajectories with good performance using a heap-
based replay buffer and adapts the pretrained model
based on this replay buffer. As CSM was originally
proposed for the action generation setting, we re-
implement CSM based on the framework of GATA.
We use the same action space reduction method and
training method as GATA-TrufLL for CSM, except
the language model is not fixed, but dynamically
adjusted based on the collected trajectories.

0 10 20 30 40 50
episodes

1.0

1.5

2.0

2.5

3.0

3.5

tra
in

 g
am

e
po

in
ts

Difficulty_1
MIPO
GATA-KL

0 10 20 30 40 50
episodes

1.3

1.4

1.5

1.6

1.7

1.8

1.9

tra
in

 g
am

e
po

in
ts

Difficulty_2
MIPO
GATA-KL

0 10 20 30 40 50
episodes

0.5

1.0

1.5

2.0

2.5

tra
in

 g
am

e
po

in
ts

Difficulty_3
MIPO
GATA-KL

0 10 20 30 40 50
episodes

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

tra
in

 g
am

e
po

in
ts

Difficulty_4
MIPO
GATA-KL

Figure 3: Learning curves of MIPO and GATA-KL in
TextWorld cooking games.

GATA-SayCan (Shi et al., 2023): a post-
processing method to utilize the knowledge in the
pretrained language model. In SayCan, we assume
a learned state-action value function. When exe-
cuted in the environment, the action is chosen based
on not just the state-action value function, but also
taking the probability provided by the language
model into consideration as follows:

Qcombined(s, a) = Q(s, a)× fLM(a| stext).

The state-action value function used for SayCan is
trained via GATA.

MIPO: the proposed method in this paper. We
implement our algorithm based on GATA with min-
imum changes to adapt to the policy iteration. For
the prior policy πprior, we use the output of the lan-
guage model as the logit, and get the prior policy
as follows:

πprior(a| stext) = exp(fLM(a| stext)/β)∑
a∈A exp(fLM(a| stext)/β)

.

5.3 Implementation Details
We use DistilBERT (Sanh et al., 2019) for meth-
ods paired with a language model. To compute
fLM(a| stext), we first get the last hidden state from
the language model for both the text state informa-
tion and the action semantic as the representation of
the state and action. Then these representations are
used to compute the cosine similarity, which serves
as the probability fLM(a| stext). For methods that
adjust the language model, we fix all previous trans-
former blocks and only train the last one.

5.4 TextWorld
Main Result. We plot the learning curves of all
methods in Figure 2 and present all final results in

1626

D1 D2 D3 D4

MIPO 3.12±0.20 1.94±0.04 2.16±0.04 2.64±0.21
GATA 2.73±0.26 1.77±0.16 1.47±0.05 2.25±0.33

GATA-TrufLL 2.52±0.24 1.72±0.09 0.9±0.0 2.15±0.57
GATA-CSM 2.58±0.48 1.78±0.10 1.75±0.18 2.47±0.33

GATA-SayCan 0.08±0.02 0.08±0.02 0.1±0.07 0.05±0.0

Table 2: Test game points of final models in TextWorld
cooking games.

Table 1. MIPO obtains the best performance in all
four difficulty levels. It achieves the improvement
of 7.3%, 4.9%, 29.1% and 13.9% respectively in
four different levels compared to the best baseline.

Except for the fourth difficulty level, GATA-
TrufLL achieves a worse result compared to GATA,
which indicates that the prior knowledge encoded
in the language model deviates from the fact in the
environment at least in some cases. As the language
model is fixed in GATA-TrufLL, it has no chance to
correct the mistake. For GATA-CSM, as it dynami-
cally adjusts the language model based on the inter-
action with the environment, it always outperforms
or achieves the same level of performance com-
pared to GATA-TrufLL. However, it cannot con-
sistently achieve better performance than GATA.
One potential reason is that GATA-CSM uses a
heap-based replay buffer to collect trajectories for
language model adaption. Though this mechanism
certainly collects high-quality data, those trajec-
tories may be largely off-policy. Therefore, the
language model may have known the fact of some
high-quality states, but the agent may be not able to
reach those states, which reduces the effectiveness
of the action space reduction. On the other hand,
our method collects trajectories from ρπ(s), which
leads to an on-policy language model adaption. As
the adaption is performed on-policy, it alleviates the
mismatch on those states that are currently visited
by the agent, therefore achieving effective action
space reduction and outperforming all other base-
lines in all four difficulty levels. As we can see
from Table 1, GATA-SayCan fails hard in all diffi-
culty levels and is outperformed by its base policy
GATA, which indicates that a mismatched language
model can make things even worse when not prop-
erly used and further demonstrates the importance
of the language model adaption.
Generalization. We present the generalization abil-
ity of each algorithm in Table 2 (the performance
on the test set for all difficulty levels). As we can
see, MIPO outperforms all baselines in the four
difficulty levels, though we do not make any claim
about MIPO having the advantage in terms of gen-

eralization ability. This improvement in the test set
may be simply the result of MIPO’s better learn-
ing in the training set. Note that GATA-CSM and
GATA-TrufLL still rely on the language model for
execution, making it challenging to deploy them
on devices with limited computational resources.
In contrast, MIPO distills the knowledge from the
language model into the policy, resulting in signif-
icantly reduced computational requirements com-
pared to GATA-TrufLL and GATA-CSM. This ad-
vantage of our algorithm highlights its suitability
for environments with constrained computation re-
sources.
Ablation Study. To further verify our method,
we perform an ablation study in this section. We
propose an ablation baseline, GATA-KL. In GATA-
KL, all other perspectives are the same as MIPO,
except the language model is fixed and will not
be trained. As we can see from Figure 3, MIPO
outperforms GATA-KL in all four difficulty lev-
els, indicating that the performance improvement
is indeed achieved by the dynamic adaption of the
language model. As we can see, MIPO achieves
the largest gap against GATA-KL in Difficulty 3.
This is because the prior policy resulting from the
language model has a relatively low performance
on Difficulty 3 (it achieves 0.47 in Difficulty 3,
1.02, 1.45, and 2.15 in Difficulty 1, 2, and 4 respec-
tively). Therefore the necessity of language model
adaptation is demonstrated best in this difficulty
level.

5.5 VirtualHome
We further evaluate our method in the VirtualHome
environment. All final results are presented in
Table 3. As we can see, the comparison among
GATA, GATA-TrufLL, and GATA-CSM is sim-
ilar to the TextWorld experiment, where GATA-
TrufLL achieves a worse result compared to GATA
and GATA-CSM outperforms or achieves the same
level of performance compared to GATA-TrufLL
but can not consistently outperform GATA. Such a
similar result strengthens the conclusion we made
in the TextWorld experiment and again highlights
not only the necessity of the language model adap-
tion but also the necessity of adapting the language
model in the right way.

Different from the TextWorld experiment,
GATA-SayCan achieves a much better result here.
This is because that the language instruction in
this experiment is more direct and clear, so the
performance of the language model becomes bet-

1627

D1 D2

MIPO 18.52±6.35 19.36±1.86
GATA 5.05±3.89 9.66±0.22

GATA-TrufLL 3.09±3.35 10.86±0.23
GATA-CSM 3.15±4.18 9.8±0.54

GATA-SayCan 11.23±4.42 10.46±0.32

Table 3: Train game points per episode in VirtualHome
house-holding tasks.

ter than the previous experiments and can there-
fore improve the performance of its base model
(GATA). However, we notice that GATA-TrufLL
and GATA-CSM do not enjoy the same benefits.
This is because it is challenging to set a proper
threshold for the truncation function. For exam-
ple, when we take "put waterglass-283 into / on
kitchencabinet-238" as the instruction, for actions
"walktowards kitchencabinet-235", "walktowards
kitchencabinet-236", "walktowards kitchencabinet-
237" and "walktowards kitchencabinet-238", they
all have a high probability with the given instruc-
tion (0.90 for "walktowards kitchencabinet-238"
and 0.89 for others). But for another necessary
action "walktowards waterglass-283", it only has
a probability of 0.80. Therefore, to make sure we
retain all necessary actions, we have to set a rela-
tively low threshold (0.75) in this experiment, such
that the truncated action space is still very large.
For GATA-TrufLL and GATA-CSM, as they need
to learn from scratch, it is still very challenging
for them to achieve good performance with such
a large action space. For GATA-SayCan, it only
needs to make sure the probability of "walktowards
kitchencabinet-238" is greater than other "walk-
towards kitchencabinet" actions (0.90 > 0.89),
therefore it can fully enjoy the benefit of improved
performance of the language model.

As for our method, it achieves the best perfor-
mance in both difficulties, which matches the result
in TextWorld experiments, and again demonstrates
the effectiveness of MIPO.

6 Conclusion

In this paper, we propose MIPO, which achieves dy-
namic language model adaption and implicit action
space reduction for reinforcement learning with
natural language action space. We show the prob-
lem can be formulated as the optimization of the
MI-regularized RL objective, and we theoretically
prove that MIPO achieves monotonic improvement
on the MI-regularized RL objective. We perform
experiments on text-based games, and our MIPO
outperforms all baselines, which justifies its effec-

tiveness.

Limitations and Potential Risks

One limitation of this work is the convergence in
terms of policy. As suggested by the theory, we
can only guarantee the monotonic improvement on
the objective, but the policy may oscillate between
several equivalent points. Although we do not ob-
serve any significant impact in our experiment, it
is still less satisfying and will be addressed in our
future work. One another limitation of our work
is the value of α, which is currently set heuris-
tically. Although we find it easy to tune in our
experiment, a fully automatic method, like the one
used in SAC (Haarnoja et al., 2018b), to set α will
be more welcomed and will be included in our fu-
ture work. To the best of our knowledge, there is
no obvious risk to our work.

Acknowledgements

This work was supported in part by NSF China
under grant 62250068.

References
Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté,

Mikuláš Zelinka, Marc-Antoine Rondeau, Romain
Laroche, Pascal Poupart, Jian Tang, Adam Trischler,
and William L Hamilton. 2020. Learning dynamic
belief graphs to generalize on text-based games. In
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Leonard Adolphs and Thomas Hofmann. 2020.
Ledeepchef deep reinforcement learning agent for
families of text-based games. In Conference on Arti-
ficial Intelligence (AAAI).

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Prithviraj Ammanabrolu and Matthew Hausknecht.
2019. Graph constrained reinforcement learning for
natural language action spaces. In International Con-
ference on Learning Representations (ICLR).

Prithviraj Ammanabrolu and Mark Riedl. 2019. Play-
ing text-adventure games with graph-based deep re-
inforcement learning. In Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT).

1628

Mattia Atzeni, Shehzaad Zuzar Dhuliawala, Keerthi-
ram Murugesan, and Mrinmaya Sachan. 2021. Case-
based reasoning for better generalization in textual
reinforcement learning. In International Conference
on Learning Representations (ICLR).

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi
Munos. 2017. Minimax regret bounds for reinforce-
ment learning. In International Conference on Ma-
chine Learning (ICML).

Richard Bellman. 1957. A markovian decision process.
Journal of mathematics and mechanics, pages 679–
684.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding large language models in interac-
tive environments with online reinforcement learning.
arXiv preprint arXiv:2302.02662.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In Computer Games: 7th
Workshop at CGW 2018.

Thomas M Cover. 1999. Elements of information theory.
John Wiley & Sons.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Co-
las, Trevor Darrell, Pieter Abbeel, Abhishek Gupta,
and Jacob Andreas. 2023. Guiding pretraining in
reinforcement learning with large language models.
arXiv preprint arXiv:2302.06692.

Jordi Grau-Moya, Felix Leibfried, and Peter Vrancx.
2018. Soft q-learning with mutual-information regu-
larization. In International Conference on Learning
Representations (ICLR).

Xiaoxiao Guo, Mo Yu, Yupeng Gao, Chuang Gan, Mur-
ray Campbell, and Shiyu Chang. 2020. Interactive
fiction game playing as multi-paragraph reading com-
prehension with reinforcement learning. In Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP).

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and
Sergey Levine. 2017. Reinforcement learning with
deep energy-based policies. In International confer-
ence on machine learning (ICML). PMLR.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and
Sergey Levine. 2018a. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on
machine learning (ICML).

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen,
George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al.
2018b. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
reinforcement learning with a natural language ac-
tion space. In Annual Meeting of the Association for
Computational Linguistics (ACL).

Vishal Jain, William Fedus, Hugo Larochelle, Doina
Precup, and Marc G Bellemare. 2020. Algorithmic
improvements for deep reinforcement learning ap-
plied to interactive fiction. In Conference on Artifi-
cial Intelligence (AAAI).

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. 2020. Conservative q-learning for offline
reinforcement learning. In Conference on Neural
Information Processing Systems (NeurIPS).

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2022. Reward design with language
models. In International Conference on Learning
Representations (ICLR).

Felix Leibfried and Jordi Grau-Moya. 2020. Mutual-
information regularization in markov decision pro-
cesses and actor-critic learning. In Conference on
Robot Learning (CORL).

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. 2020. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643.

Yuxi Li. 2017. Deep reinforcement learning: An
overview. arXiv preprint arXiv:1701.07274.

Alice Martin, Guillaume Quispe, Charles Ollion, Syl-
vain Le Corff, Florian Strub, and Olivier Pietquin.
2022. Learning natural language generation with
truncated reinforcement learning. In Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT).

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language understanding for text-based
games using deep reinforcement learning. In Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

Kolby Nottingham, Prithviraj Ammanabrolu, Alane
Suhr, Yejin Choi, Hannaneh Hajishirzi, Sameer
Singh, and Roy Fox. 2023. Do embodied agents
dream of pixelated sheep?: Embodied decision mak-
ing using language guided world modelling. In Work-
shop on Reincarnating Reinforcement Learning at
ICLR 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, et al.
2022. Training language models to follow instruc-
tions with human feedback. In Conference on Neural
Information Processing Systems (NeurIPS).

1629

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li,
Tingwu Wang, Sanja Fidler, and Antonio Torralba.
2018. Virtualhome: Simulating household activities
via programs. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 8494–8502.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Conference on
Neural Information Processing Systems (NeurIPS).

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence (ESWC).

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zijing Shi, Yunqiu Xu, Meng Fang, and Ling Chen.
2023. Self-imitation learning for action generation
in text-based games. In Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL).

David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian
Bolton, et al. 2017. Mastering the game of go without
human knowledge. nature, 550(7676):354–359.

Kefan Su and Zongqing Lu. 2022. Divergence-
regularized multi-agent actor-critic. In International
Conference on Machine Learning (ICML).

Kaili Sun, Xudong Luo, and Michael Y Luo. 2022. A
survey of pretrained language models. In Interna-
tional Conference on Knowledge Science, Engineer-
ing and Management (KSEM).

Richard S Sutton and Andrew G Barto. 2018. Reinforce-
ment learning: An introduction. MIT press.

Jens Tuyls, Shunyu Yao, Sham Kakade, and Karthik
Narasimhan. 2022. Multi-stage episodic control for
strategic exploration in text games. In International
Conference on Learning Representations (ICLR).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Conference on Neural Information Pro-
cessing Systems (NeurIPS).

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu,
Xiaojian Ma, and Yitao Liang. 2023. Describe, ex-
plain, plan and select: interactive planning with
llms enables open-world multi-task agents. In Con-
ference on Neural Information Processing Systems
(NeurIPS).

Yifan Wu, George Tucker, and Ofir Nachum. 2019.
Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, and
Chengqi Zhang. 2021. Generalization in text-based
games via hierarchical reinforcement learning. In
Findings of the Association for Computational Lin-
guistics at EMNLP 2021.

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du, Joey
Zhou, and Chengqi Zhang. 2022. Perceiving the
world: Question-guided reinforcement learning for
text-based games. In Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Yunqiu Xu, Meng Fang, Ling Chen, Yali Du,
Joey Tianyi Zhou, and Chengqi Zhang. 2020. Deep
reinforcement learning with stacked hierarchical at-
tention for text-based games. In Conference on Neu-
ral Information Processing Systems (NeurIPS).

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter
Abbeel, and Dale Schuurmans. 2023. Foundation
models for decision making: Problems, methods, and
opportunities. arXiv preprint arXiv:2303.04129.

Shunyu Yao, Rohan Rao, Matthew Hausknecht, and
Karthik Narasimhan. 2020. Keep calm and explore:
Language models for action generation in text-based
games. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie,
Penglin Cai, Hao Dong, and Zongqing Lu. 2023a.
Plan4mc: Skill reinforcement learning and plan-
ning for open-world minecraft tasks. arXiv preprint
arXiv:2303.16563.

Haoqi Yuan, Chi Zhang, Hongcheng Wang, Feiyang Xie,
Penglin Cai, Hao Dong, and Zongqing Lu. 2023b.
Skill reinforcement learning and planning for open-
world long-horizon tasks. In Foundation Models for
Decision Making Workshop at NeurIPS 2023.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J
Mankowitz, and Shie Mannor. 2018. Learn what
not to learn: action elimination with deep reinforce-
ment learning. In Conference on Neural Information
Processing Systems (NeurIPS).

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2021.
Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of
reinforcement learning and control, pages 321–384.

Victor Zhong, Jesse Mu, Luke Zettlemoyer, Edward
Grefenstette, and Tim Rocktäschel. 2022. Improving
policy learning via language dynamics distillation.

1630

In Conference on Neural Information Processing Sys-
tems (NeurIPS).

Anjie Zhu, Peng-Fei Zhang, Yi Zhang, Zi Huang, and
Jie Shao. 2023. Abstract then play: A skill-centric
reinforcement learning framework for text-based
games. In Findings of the Association for Computa-
tional Linguistics at ACL 2023.

1631

A Appendix

A.1 Proof of Theorem 1
Theorem 1. If a sequence (πk, π

prior
k)∞k=0 is obtained by iteratively applying Equation (1),(2) and (3), then

it exhibits the monotonic improvement property on the MI-regularized RL objective, J(πk+1, π
prior
k+1) ≥

J(πk, π
prior
k). Here, the MI-regularized RL objective J(π, πprior) is defined as:

J(π, πprior) = Eρπ(s) Eπ

[
r(s, a)− α log

π(a|s)
πprior(a| stext)

]
.

Proof. We begin our proof by the following definition of the KL-augmented reward:

rππprior(s, a) = r(s, a)− αEs′∼P,a′∼π

[
log

π(a′|s′)
πprior(a′|s′)

]
.

To avoid the discussion on the corner case, we assume π and πprior take the form of ϵ-soft policy (Sutton
and Barto, 2018).

Based on this definition of the KL-augmented reward, and the following way of the policy evaluation
(7) and the policy improvement (8):

Q(s, a) = r(s, a) + γ EP,π

[
Q(s′, a′)− α log

π(a′|s′)
πprior(a′| stext′)

]
, (7)

π(·|s) = argmaxπ′ Eπ′
[
Q(s, ·)− α log

π′(·|s)
πprior(·| stext)

]
, (8)

for a pair of (πk, π
prior
k), we can follow Theorem 2 in Su and Lu (2022) to show the following conclusion:

J(πk+1, π
prior
k) ≥ J(πk, πpriork).

For the new policy πk+1 and the old prior policy πpriork , we have the following objective:

J(πk+1, π
prior
k) = Eρπk+1

(s) Eπk+1(a|s)
[
r(s, a)− α log

πk+1(a|s)
πpriork (a| stext)

]
.

To update πpriork with a fixed πk+1, maximizing the above objective is equivalent to minimizing the
following objective:

Ĵ(πk+1, π
prior
k) = Eρπk+1

(s) Eπk+1(a|s)
[
log

πk+1(a|s)
πpriork (a| stext)

]
.

Therefore, for πpriork+1 that takes the following form of the prior adaptation:

πpriork+1 (a| stext) = Eρπk+1
(snon-text | stext)

[
πk+1(a| stext, snon-text)

]
,

similar to Lemma 10.8.1 in Cover (1999), we can have the following proof:

Ĵ(πk+1, π
prior
k)− Ĵ(πk+1, π

prior
k+1)

= Eρπk+1
,πk+1

[
log

πk+1(a|s)
πpriork (a| stext)

− log
πk+1(a|s)

πpriork+1 (a| stext)

]

= Eρπk+1
(stext)

[
Eρπk+1

(snon-text | stext) Eπk+1

[
log

πpriork+1 (a| stext)
πpriork (a| stext)

]]

= Eρπk+1
(stext)

[
E
πprior
k+1

[
log

πpriork+1 (a| stext)
πpriork (a| stext)

]]

= Eρπk+1
(stext)

[
KL(πpriork+1 ||π

prior
k)

]

≥ 0

1632

such that:

Ĵ(πk+1, π
prior
k+1) ≤ Ĵ(πk+1, π

prior
k),

which indicates:

J(πk+1, π
prior
k+1) ≥ J(πk+1, π

prior
k) ≥ J(πk, πpriork),

and concludes our proof.

A.2 Pseudocode

Algorithm 1 MIPO
1: Initialize θ and ψ for critic network and policy network, load parameters ϕ for prior network;
2: Initialize target critic and target prior policy using θ and ϕ;
3: Initialize replay buffer D and | D̃ | (≪ |D |);
4: for i = 1 to I do
5: s← s0
6: for t = 0 to T do
7: Sample action at from π(at|st;ψ)
8: Execute action at and get rt, st+1

9: Store (st, at, rt, st+1) in D and D̃
10: Sample batch B from D
11: Update Q(s, a; θ) with B by (4)
12: Update π(a|s;ψ) with B by (5)
13: Sample batch B̃ from D̃
14: Update πprior(a| stext;ϕ) with B̃ by (6)
15: end for
16: if i mod update_interval = 0 then
17: Update target critic and target prior policy with θ and ϕ
18: end if
19: end for

A.3 Experiment details
For TextWorld experiments, our method and all baselines are implemented using PyTorch based on the
code of GATA (Adhikari et al., 2020)1. We use the default hyperparameters of GATA-GTF for all methods,
except the maximum number of episodes is set from 100k to 60k and we do not use any pretrained word
embedding and set all word embeddings to be trainable. As MIPO uses an actor-critic framework, we
add an actor head that contains 3 fully-connected layers with 64/64/1 units activated by ReLU except
the last one. This actor head takes the state-action representation provided by the GATA network with
gradient detached and produces the logit for each action. The learning rate for the policy network and
prior network is 5 × 10−4. Except for the above-mentioned modifications, every detail is set to be the
same as GATA. For VirtualHome2 experiments, the maximum number of episodes is further reduced to
20k to accelerate the training process. Some hyperparameters are also changed to adapt to this faster
training process, for example, the batch size is set to 128 and the multi-step hyperparameter is set to 1.

For MIPO3 and GATA-KL, two hyperparameters α, β are added. β is fixed as 0.04 for all difficulty
levels during training. For α, it always start from αstart = 0.5 and gradually decay to αmin in TextWorld
experiments. A small-scale parameter search is performed in Difficulty 1 and 4 for αmin. For Difficulty
1, we tried αmin = [0.1, 0.15] and found 0.15 to be the best. For Difficulty 4, we tried αmin =

1https://github.com/xingdi-eric-yuan/GATA-public, MIT License.
2https://github.com/xavierpuigf/virtualhome, MIT license.
3Code available at https://github.com/PKU-RL/MIPO.

1633

https://github.com/xingdi-eric-yuan/GATA-public
https://github.com/xavierpuigf/virtualhome
https://github.com/PKU-RL/MIPO

[0.1, 0.15, 0.25] and found 0.25 to be the best. For Difficulty 2 and 3, αmin is set to be 0.1 heuristically. In
VirtualHome experiments, αmin is set to be 0.1 for both difficulties. Also, for MIPO, a small replay buffer
D̃ is used for the language model adaption, we set the size of D̃ to be 12500, which is much smaller than
the size of D (500000). For GATA-TrufLL and GATA-CSM, we set the threshold λ = 0.5. For methods
using pretrained language models, we use DistilBERT (Sanh et al., 2019) downloaded from Hugging Face.
Spacy with en_core_web_sm model is used in all methods, which is consistent with GATA.

For all tables, we report the mean and standard derivations of three different random seeds and bold the
result with the best mean performance. For all plots, we plot the curves with the moving average of a
window size of 10 and a half standard deviation. The unit of x-axis is 1k episodes. For the generalization
results, as MIPO uses a stochastic policy, we evaluate the performance of MIPO 10 times for each
generalization task and report the mean.

In terms of the computation budget, all TextWorld experiments are trained in machines rented from
online services. All machines are equipped with 12 CPU cores and 1 RTX 3090 GPU. Depending on
the algorithm and the difficulty level, each experiment takes around 5 to 45 hours to complete. For
VirtualHome experiments, all methods are trained in a local machine with 4 Nvidia GPUs (A100) and 224
Intel CPU Cores. Depending on the algorithm and the difficulty level, each experiment takes around 2 to
5 days to complete.

In terms of the use of AI assistants. ChatGPT is used to polish some sentences in this paper.

A.4 Adaptation to Different Language Model
MIPO is a general RL algorithm and can be paired with any pretrained language model, so it should be
model-agnostic. We conduct the following experiments to validate this point. In this experiment, we
change the pretrained language model to GPT2 for MIPO, GATA-Truff, and GATA-CSM. As we can see
from Table 4, MIPO-GPT2 still outperforms other baselines, and it also achieves similar performance
with MIPO, which indicates that MIPO is agnostic to the selection of pretrained language model.

D3

MIPO 2.57±0.12
MIPO-GPT2 2.44±0.19

GATA-TrufLL-GPT2 0.12±0.01
GATA-CSM-GPT2 1.40±0.11

Table 4: Train game points per episode in TextWorld cooking games.

1634

