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Abstract

Language models only really need to use a tiny
fraction of their neurons for individual infer-
ences.

We present UltraSparseBERT, a BERT variant
that uses 0.3% of its neurons during inference
while performing on par with similar BERT
models. UltraSparseBERT selectively engages
just 12 out of 4095 neurons for each layer infer-
ence. This is achieved by reorganizing feedfor-
ward networks into fast feedforward networks
(FFFs).

To showcase but one benefit of high sparsity, we
provide an Intel MKL implementation achiev-
ing 78x speedup over the optimized feedfor-
ward baseline on CPUs, and an OpenAI Tri-
ton implementation performing forward passes
4.1x faster than the corresponding native GPU
implementation. The training and benchmark-
ing code is enclosed.

1 Introduction

Feedforward layers hold the majority of the param-
eters of language models (Brown et al., 2020; Anil
et al., 2023). However, not all of their neurons
need to be engaged in the computation of the feed-
forward layer output at inference time for every
input.

A growing body of work is taking advantage of
this fact in a top-down fashion, making use of a
method commonly referred to as “mixture of ex-
perts” (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022). This method consists of sub-
dividing a large feedforward network into blocks
(“experts”), designating some blocks to form a gat-
ing network, and jointly training both the experts
and the gating network to produce the layer’s out-
puts while using only a fraction of layer parameters,
conditionally on the input.

The covariant approach, dubbed “fast feedfor-
ward networks”, is to introduce conditional exe-

cution in a bottom-up fashion, utilizing individ-
ual neurons rather than blocks to perform gating
and be executed conditionally (Belcak and Wat-
tenhofer, 2023). We employ this approach and
produce UltraSparseBERT, a variant of the BERT
architecture (Devlin et al., 2018) that reorganizes
feedforward networks into simplified fast feedfor-
ward networks (FFFs). In terms of downstream
performance, UltraSparseBERT performs on par
with other BERT-like models that are similar in
size and undergo similar training procedures. The
intermediate layers of UltraSparseBERT are, how-
ever, effectively much sparser by design: given
a feedforward (FF) and a fast feedforward (FFF)
network, each with n neurons, the FFF uses the
parameters of only O (log2 n) neurons instead of
O (n) as for FF. This is a consequence of the fact
that FFFs organize their neurons into a balanced
binary tree, and execute only one branch of the tree
conditionally on the input. In terms of output pro-
duced by the intermediate layers, such a method of
execution is equivalent to treating the weights of
all unused neurons as zeroes and manifests itself as
conditional sparsity, since the choice of effectively
non-zero neurons is conditional on the layer input.

Performing inference on an FFF amounts to per-
forming conditional matrix multiplication (CMM),
in which the rows of the input dot with the columns
of neural weights one at a time, and the weight
column to proceed with is chosen depending on
the output of the previous dot-product operation.
In this manner, all neurons are used only by some
inputs and no input needs more than just a handful
of neurons to be handled by the network. This is in
contrast with dense matrix multiplication (DMM),
which lies at the heart of the traditional feedforward
networks, and which computes the dot products of
all rows with all columns.

Recent advances in deep learning infrastructure
have made it possible to produce efficient imple-
mentations of conditional matrix multiplication
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based on both popular computational frameworks
as well as custom kernel code. We showcase and
provide three implementations of FFF forward pass
based on advanced PyTorch compilation, the Ope-
nAI Triton framework, and the Intel MKL routines.
In a later section, we give a comparison of each im-
plementation to the corresponding optimized base-
line and note that while there is already clear evi-
dence of significant acceleration, there is potential
for more.

Reproducibility. We share our training, finetun-
ing, and benchmarking code as well as the weights
of our best model. For a quick conceptual verifi-
cation, the fact that only 12 neurons are used in
the inference of UltraSparseBERT can be verified
simply by zeroing the output of all but the chosen
neurons, and we also give the code for this.

Contributions.

• We present UltraSparseBERT, a BERT-like
model that has 4095 neurons but selectively
uses only 12 (0.03%) for inference.

• We finetune UltraSparseBERT for standard
downstream tasks and find that it performs on
par with its BERT peers.

• We provide three implementation that make
use of the high level of sparsity in UltraSparse-
BERT to perform faster feedforward layer in-
ference.

• Through UltraSparseBERT and the already
considerable speedups by early FFF imple-
mentations, we demonstrate the potential of
bottom-up conditional neural execution in lan-
guage modelling.

2 Model

2.1 Architecture

Our architectural starting point is the crammed-
BERT architecture (Geiping and Goldstein, 2023),
which we implement to the letter in all but the
nature of intermediate layers. There, the feedfor-
ward networks contained in the intermediate layers
of the crammedBERT transformer encoder are re-
placed with fast feedforward networks (Belcak and
Wattenhofer, 2023).

We make the following simplifying changes to
the original fast feedforward networks:

1. Remove all differences between leaf and non-
leaf nodes. In particular, we use the same
(GeLU) activation function across all nodes,
equip all nodes with output weights, and re-
move all output biases.

2. Fix the leaf size to 1.

3. Allow multiple FFF trees in parallel. We
allow for multiple FFF trees to jointly com-
pute the intermediate layer outputs. This is
achieved by summing the outputs of the in-
dividual trees and presenting the sum as the
intermediate layer output.

We denote a model with K trees of depth D + 1
by appending a suffix to the model name, i.e.
UltraSparseBERT-KxD. Note that for consis-
tency, we consider a tree with no edges to have
depth 0. A BERT-base-sized model with the tra-
ditional feedforward layer of width 3072 is then
just a special case of UltraSparseBERT, namely
UltraSparseBERT-3072x0.

We train a full range of increasingly deeper and
narrower models, starting from UltraSparseBERT-
3072x0 and proceeding with UltraSparseBERT-
1536x1, UltraSparseBERT-512x2, etc..

2.2 Training
We follow the final training procedure of crammed-
BERT (Geiping and Goldstein, 2023), namely dis-
abling dropout in pretraining and making use of
the 1-cycle triangular learning rate schedule. By
default, we train every model for 1 day on a single
A6000 GPU, except for the final UltraSparseBERT-
1x11-long model, which we train 2 times longer us-
ing the same regime for slightly better downstream
performance.

2.3 Downstream Performance
2.3.1 Setup
We finetune all UltraSparseBERT models for the
RTE, MRPC, SST, STS-B, MNLI, QQP, QNLI, and
CoLA tasks of the GLUE benchmark (Wang et al.,
2018) and report evaluation scores as in Geiping
and Goldstein (2023) for consistency. In short, this
approach amounts to finetuning for 5 epochs with
learning rate 4× 10−5 across all tasks.

We find that UltraSparseBERT models finetuned
in this manner for CoLA end up being undertrained
if only 5 training epochs are used. Therefore, we
extend the number of CoLA finetuning epochs to
15. This leads to little to no improvement for the
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Model NT NI/NT RTE MRPC STSB SST-2 MNLI QNLI QQP Avg CoLA Avg

Baselines

crammedBERT-3072 4095 100.0% 58.8 87.6 85.2 91.9 82.8 90.4 89.0 83.6 45.0 79.3
crammedBERT-4095 3072 100.0% 57.6 89.1 85.9 91.9 81.3 90.9 87.6 83.2 47.9 79.3

UltraSparseBERTs

UltraSparseBERT-3072x0 3072 100.0% 56.7 88.9 86.3 92.3 82.9 92.3 88.0 83.8 48.4 79.9
UltraSparseBERT-1536x1 4608 66.6% 55.2 89.4 85.0 91.9 82.2 90.1 89.0 83.1 47.5 79.2
UltraSparseBERT-512x2 3584 42.9% 59.2 87.7 86.0 89.9 81.9 90.3 89.3 83.3 46.2 79.2
UltraSparseBERT-256x3 3840 26.7% 54.2 87.4 85.9 91.6 81.6 90.0 89.1 82.7 48.0 78.8
UltraSparseBERT-128x4 3968 16.1% 58.4 87.5 87.2 92.3 81.2 89.9 90.0 83.5 45.9 79.3
UltraSparseBERT-64x5 4032 9.5% 55.7 89.0 87.2 91.4 81.6 90.2 89.4 83.3 46.1 79.1
UltraSparseBERT-32x6 4064 5.5% 57.6 88.2 86.1 91.2 81.0 89.2 88.3 82.8 40.6 78.1
UltraSparseBERT-16x7 4080 3.1% 55.5 89.0 86.7 88.9 80.1 89.4 86.9 82.1 41.5 77.6
UltraSparseBERT-8x8 4088 1.8% 56.2 88.4 85.4 88.7 80.6 89.3 86.4 81.9 32.7 76.5
UltraSparseBERT-4x9 4092 1.0% 53.8 85.9 85.7 89.6 81.9 89.3 88.0 82.0 31.8 76.4
UltraSparseBERT-2x10 4094 0.5% 59.9 88.8 85.3 87.4 79.9 89.2 86.1 82.0 35.4 76.9
UltraSparseBERT-1x11 4095 0.3% 57.8 88.1 86.1 89.7 80.2 89.3 87.1 82.3 37.1 77.3

Final Model

UltraSparseBERT-1x11-long 4095 0.3% 60.7 87.5 86.4 89.9 81.3 89.7 87.6 83.0 35.1 77.7

External Baselines

OpenAI GPT 3072 100% 56.0 82.3 80.0 91.3 81.4 87.4 70.3 78.8 45.4 75.1
DistilBERT 3072 100% 59.9 87.5 86.9 91.3 82.2 89.2 71.3 81.2 52.1 77.6
BERT-base 3072 100% 66.4 88.9 85.8 93.5 83.4 90.5 71.2 83.0 51.3 79.6

Table 1: The results of various language models on the GLUE-dev test sets. NT denotes the number of neurons
available for training, NI/NT the proportion of neurons that are used for a single inference. “Avg” denotes the average
score of all the task results to the left of the column. Emphasis marks the best crammed 1-day UltraSparseBERT
performance for the given column. OpenAI GPT, DistilBERT, and BERT-base refer to models reported in Radford
et al. (2018); Sanh et al. (2019); Devlin et al. (2018). Experimentation conducted according to the instructions in
Wang et al. (2018) and the precedent of Geiping and Goldstein (2023).

baseline crammedBERT models but has a signif-
icant impact on the CoLA performance of Ultra-
SparseBERTs.

2.3.2 Results
The results of our finetuning are listed in Table 1.

We see that UltraSparseBERT variants trained
for 1 day on a single A6000 GPU all retain at least
96.0% of the GLUE downstream predictive perfor-
mance of the original BERT-base model (Devlin
et al., 2018). We also observe that the performance
decreases with the increasing depth of the FFFs.
Note, however, that the majority of the performance
decrease due to the increasing depth is caused by
only a single task – CoLA. This behaviour has
previously been observed in the literature and is
in line with other work trying to compress BERT
behaviour into smaller models (Sun et al., 2019;
Turc et al., 2019; Mukherjee et al., 2021). If we
disregard CoLA, at least 98.6% of the predictive
performance is preserved by all UltraSparseBERT
model.

Furthermore, we see that save from CoLA, our
best model – UltraSparseBERT-1x11-long – per-

forms on par with the original BERT-base model
while using only 0.3% of its own neurons, which
amounts to a mere 0.4% of BERT-base neurons.
We share the weights of this model.

3 Inference

FFFs as a part of large language models have a
considerable acceleration potential. At the center
of their promise sits the operation of conditional
matrix multiplication.

3.1 Algorithm

Belcak and Wattenhofer (2023) gives recursive
pseudocode for FFF inference. We list the pseu-
docode for CMM and the consecutive inference
for FFFs, with modifications as per Section 2.1.
In Algorithm 1, B denotes the batch size, H the
layer input width (transformer hidden dimension),
2D − 1 is the number of neurons, and M⋆,k,Ml,⋆

denote the k-th column and l-th row of M , respec-
tively. The result of the >-comparison in CMM is
assumed to be an integer ∈ {0, 1}.
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CPU Implementation GPU Implementation

Model Limit Level 1 Level 2 Level 3 Native fused BMM Triton

BERT-base-4095 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x
UltraSparseBERT-1x11 341.2x 130.7x 255.1x - - 1.3x 5.5x

Table 2: The results of the feedforward inference acceleration evaluation. Emphasis highlights the better “fair
comparison” performance.

Algorithm 1: FFF inference forward pass.
Input: B ×H input matrix I ,

(2D − 1)×H weight matrix W in,
(2D − 1)×H weight matrix W out

Intermediate :B ×D logit matrix L,
B ×D node index matrix N

Output: B ×H matrix O

Function CMM(I,W in):
for d ∈ {1, . . . , D − 1} do

L⋆,d ← I

(
W in
[N⋆,d−1],⋆

)T

N⋆,d ← 2N⋆,d−1 + 1 + (L⋆,d > 0)

end
return L,N

Function FFFI(I,W
in,W out):

L,N ← CMM(I,W in)
L← Activation(L)
for d ∈ {0, . . . , D − 1} do

O⋆,d ← L⋆,d ·W out
N⋆,d,⋆

end
return O

3.2 Inference Performance

Implementations. For CPU inference, we use
the Math Kernel Library available as a part of the
Intel oneAPI. Level 1-3 implementations are im-
plementations that use Level 1-3 BLAS routines,
respectively.

The native fused implementation uses the native
fused feedforward layer kernel. Note that this is
the fastest GPU implementation for FF layers but
no such kernel currently exists for FFFs due to the
nature of CMM. The BMM implementation uses
the batched matrix multiplication and activation
kernels for both FFs and FFFs. The support for
this implementation without copying is currently
only available on PyTorch nightly builds. Triton
implementation is our custom OpenAI Triton ker-

nel code for both FFs and FFFs, performing fused
DMM/CMM and activation on the level of vec-
tor/matrix elements.

Methodology. For CPU inference, we perform
250 forward passes per entry on Intel(R) Core(TM)
i7-6700HQ CPUs under Intel MKL v2023.2.0, us-
ing 64-bit variants of all routines. We report the
mean time taken by single inference, noting that
the value of the standard deviation always lay well
under 2% of the mean. For GPU inference, we
perform 1000 forward passes per entry on NVIDIA
RTX A6000 GPUs under CUDA v12.1 and Py-
Torch 2.1.1-nightly. We measure the GPU time and
report the mean time taken, with the standard devi-
ation again well under 2% of the mean in all cases.
We take batch size B = 128× 128 (equivalent to
the BERT pretraining context token batch size) and
hidden dimension H = 768.

Results. Table 2 lists the performance compar-
ison of feedforward and fast feedforward layers
as they appear in BERT-base and UltraFastBERT-
1x11. Each column of the table lists the relative
inference FFF-over-FF implementation speedups
when using the same linear-algebraic routine prim-
itives. The two entries missing Table 2 are for the
unavailable BLAS Level 3 and Native fused imple-
mentations of FFFs.

The speedups reported in Table 2 give “fair com-
parisons”, meaning that in each case, both the FF
and FFF implementation used exactly the same
primitive linear-algebraic operations. One may
also be interested in knowing how the best imple-
mentations of FFF currently fare against the best
implementations of FF, even though the ones for
FF use primitives unavailable for FFF. On CPU, the
Level 2 implementation of FFF performs inference
78x faster than the fastest implementation of FF.
On GPU, the Triton implementation of FFF deliv-
ers a 4.1x speedup over the fastest (native fused)
implementation of FF. In sum, there are attractive
benefits to high-levels of conditional sparsity.
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4 Limitations

A limitation of our training work is that for most
FFF configurations, we only perform one training
run. It is possible that the downstream performance
of the individual configurations would vary across
multiple training runs. This is partially mitigated
by the use of multiple fine-tuning runs to find the
downstream task score as per the precedent for
BERT models on the GLUE benchmark.

A major weakness of inference speed measure-
ments is that they depend heavily on the hardware
used as well as the low-level optimization provided
as the interface to the hardware. To illustrate how
fast the landscape is changing: in October 2023,
neither the non-copying BMM nor the Triton im-
plementation leveraging local conditionality would
have been possible. Our sparsity argument, how-
ever, remains intact, and is easily verifiable through
the (default provided) implementation that zeroes
out the contributions of all unused neurons.

Our work focuses on efficiency of existing mod-
els and inherits the risks of the models used, if
any.
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