
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 205–216
August 11-16, 2024 ©2024 Association for Computational Linguistics

DynaSemble: Dynamic Ensembling of Textual and Structure-Based Models
for Knowledge Graph Completion

Ananjan Nandi Navdeep Kaur Parag Singla Mausam
Indian Institute of Technology, Delhi

{tgk.ananjan, navdeepkjohal}@gmail.com {parags, mausam}@cse.iitd.ac.in

Abstract

We consider two popular approaches to Knowl-
edge Graph Completion (KGC): textual mod-
els that rely on textual entity descriptions, and
structure-based models that exploit the con-
nectivity structure of the Knowledge Graph
(KG). Preliminary experiments show that these
approaches have complementary strengths:
structure-based models perform exceptionally
well when the gold answer is easily reachable
from the query head in the KG, while tex-
tual models exploit descriptions to give good
performance even when the gold answer is
not easily reachable. In response, we pro-
pose DynaSemble, a novel method for learning
query-dependent ensemble weights to combine
these approaches by using the distributions of
scores assigned by the models in the ensemble
to all candidate entities. DynaSemble achieves
state-of-the-art results on three standard KGC
datasets, with up to 6.8 pt MRR and 8.3 pt
Hits@1 gains over the best baseline model for
the WN18RR dataset.

1 Introduction

The task of Knowledge Graph Completion (KGC)
can be described as inferring missing links in a
Knowledge Graph (KG) based on given triples
(h, r, t), where r is a relation that exists between
the head entity h and the tail entity t. Several KGC
approaches, such as NBFNet (Zhu et al., 2021) and
RGHAT (Zhang et al., 2020), exploit the under-
lying graph structure, often using GNNs. On the
other hand, textual models such as SimKGC (Wang
et al., 2022) and HittER (Chen et al., 2021) leverage
pre-trained large language models (LLMs) such as
BERT (Devlin et al., 2019) to utilize textual descrip-
tions of the KG entities and relations for KGC.

Our preliminary experiments suggest that when
the gold answer t for query (h, r, ?) is reachable
from h via a path of reasonable length in the KG,
structure-based models tend to outperform textual
models. In contrast, textual models use textual de-

scriptions to perform better than structure-based
models when t is not easily reachable from h. Mo-
tivated by our findings, we seek to explore how en-
sembling, an approach currently underrepresented
in KGC literature (see Jain et al. (2018b) for an ex-
ample), can effectively harness the complementary
strengths of these models.

Consequently, we propose DynaSemble: a novel,
simple, model-agnostic and lightweight method for
learning ensemble weights such that the weights are
(i) query-dependent and (ii) learned from statistical
features obtained from the distribution of scores
assigned by individual models to all candidate enti-
ties. This approach results in a new state-of-the-art
baseline when applied on two strong KGC mod-
els: SimKGC and NBFNet, which are textual and
structure-based in nature, respectively.

On three KGC datasets, we find that applying
DynaSemble to SimKGC and NBFNet consistently
improves KGC performance, outperforming best
individual models by up to 6.8 pt MRR and 8.3 pt
Hits@1 on the WN18RR dataset. To the best of
our knowledge, our results are state of the art for
all three datasets. Further experiments (including
a fourth dataset to which NBFNet does not scale)
show that DynaSemble generalises to ensembling
with another KG embedding model, RotatE (Sun
et al., 2019), with similar gains. We also demon-
strate that DynaSemble outperforms conventional
model-combination techniques such as static en-
sembling (where the ensemble weight is a tuned
constant hyperparameter) and re-ranking. We re-
lease all code1 to guide future research.

2 Background and Related Work

Task: We are given an incomplete KG K =
(E ,R, T) consisting of entities E , relation set R
and set of triples T = {(h, r, t)} (where h, t ∈ E
and r ∈ R). The goal of KGC is to answer queries

1https://github.com/dair-iitd/KGC-Ensemble

205

https://github.com/dair-iitd/KGC-Ensemble

of the form (h, r, ?) or (?, r, t) to predict missing
links, with corresponding answers t and h. We
model (?, r, t) as (t, r−1, ?) queries in this work.

Overview of Related Work: We focus on three
types of KGC models. The first type consists of
Graph Neural Network (GNN) based models such
as NBFNet (Zhu et al., 2021), RGHAT (Zhang
et al., 2020) that leverage neighborhood informa-
tion to train distinct GNN architectures. The sec-
ond type contains textual models such as KG-
BERT (Yao et al., 2019), HittER (Chen et al., 2021)
and SimKGC (Wang et al., 2022) which fine-tune
a pre-trained LLM on textual descriptions of enti-
ties and relations for KGC. The third type involves
models such as RotatE (Sun et al., 2019) and Com-
plEx (Trouillon et al., 2016; Jain et al., 2018a) that
learn low-dimensional embeddings for entities and
relations and compose them by employing unique
scoring functions. Unification of these approaches
has not been extensively studied in KGC literature.
VEM2L (He et al., 2022) proposes a method to en-
courage multiple KGC models to learn from each
other during training. KGT5 (Saxena et al., 2022)
finds that their textual model struggles when the
query has a large number of correct answers in the
training set and routes those queries to a structure-
based model as a consequence, exhibiting some
performance gains. Since our main experiments
are based on NBFNet, SimKGC, HittER and Ro-
tatE, we describe these next.

NBFNet: Neural Bellman-Ford Network
(NBFNet) is a path-based link prediction model
that introduces neural functions into the General-
ized Bellman-Ford (GBF) Algorithm (Baras and
Theodorakopoulos, 2010), which in turn models
the path between two nodes in the KG through
generalized sum and product operators. This
formulates a novel GNN framework that learns
entity representations for each candidate tail t
conditioned on h and r for each query (h, r, ?).
The score of any candidate t is then computed by
applying an MLP to its embedding.

SimKGC: SimKGC is an LLM-based KGC model
that employs a bi-encoder architecture to generate
the score of a given triple (h, r, t). The model con-
siders two pre-trained BERT (Devlin et al., 2019)
models. The first model is finetuned on a concate-
nation of textual descriptions of h and r to generate
their joint embedding ehr and the second model is
finetuned on the textual description of t to generate
the embedding et. The score for the triple is the

cosine similarity between ehr and et.
HittER: HittER proposes a hierarchical
transformer-based approach for jointly learning
entity and relation embeddings by aggregating
information from the graph neighborhood. A
transformer provides relation-dependent entity
embeddings for the neighborhood of an entity,
which are then aggregated by another transformer.
These embeddings are trained using a joint masked
entity prediction and link prediction task.
RotatE: RotatE is a KG Embedding model that
maps entities and relations to a complex vector
space and models each relation r as a complex ro-
tation from the head r to the tail t for triple (h, r, t).
More specifically, the scoring function of RotatE is
∥h ◦ r− t∥ where h, t ∈ Ck are the complex em-
bedding of h and t, and ◦ is the Hadamard product.

3 DynaSemble

Our goal is to dynamically ensemble k KGC mod-
els Mi, which may be textual or structure-based, to
maximize performance. Each model Mi assigns a
score Mi(h, r, t) to all candidate tails t ∈ E for
query q = (h, r, ?). These models are trained inde-
pendently and their parameters are frozen before
ensembling. We formulate the ensemble E as:

E(h, r, t) =
k∑

i=1

wi(q)Mi(h, r, t)

where E(h, r, t) is the ensemble score for t given
query q = (h, r, ?). We first normalize these scores
as described below.
Normalization: To bring the distribution of scores
assigned by each model Mi over all t ∈ E in the
same range for each query, we max-min normalize
the scores obtained from all models Mi separately:

Mi(h, r, t)← Mi(h, r, t)− min
t′∈E

Mi(h, r, t′)

Mi(h, r, t)←
Mi(h, r, t)

maxt′∈E Mi(h, r, t′)
The scores obtained after normalization lie in

the range [0,1] for all models. We next describe the
simple model used to learn the query-dependent
ensemble weights wi.
Model: We extract the following features from the
score distribution of each model Mi:

f(Mi, q) = mean
t′∈E

(Mi(h, r, t′))||var
t′∈E

(Mi(h, r, t′))

In the above equations, mean() and var() are the
standard mean and variance functions respectively,

206

Table 1: Results on four datasets for our baselines and approach. [NBF], [Sim], [Hit]and [RotE] represent NBFNet,
SimKGC, HittER and RotatE models. [NBF] does not scale up to YAGO3-10. We use model checkpoints published
by the authors for [Hit] on the WN18RR and FB15k-237 datasets. Best individual model results are underlined.

Model WN18RR FB15k-237 CoDex-M YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

[Sim] 66.4 58.5 80.3 32.1 23.2 50.5 29.1 21.0 45.2 15.8 10.0 27.3
[Hit] 50.3 46.3 58.5 37.2 27.8 55.8 - - - - - -
[NBF] 54.2 48.6 65.7 40.5 31.0 59.4 35.3 27.0 51.4 - - -
[RotE] 47.7 43.9 55.2 33.7 24.0 53.2 33.5 26.3 46.9 49.3 39.9 67.1
[Sim]+[NBF] 73.2 66.9 85.7 42.7 33.2 61.5 38.9 30.5 54.8 - - -
[Sim]+[RotE] 68.0 60.7 80.7 36.6 26.9 56.3 36.3 28.1 51.7 50.6 41.3 67.9
[Hit]+[NBF] 56.8 51.7 67.1 42.1 32.6 60.8 - - - - - -
[Hit]+[RotE] 51.4 47.7 59.4 38.5 29.0 57.2 - - - - - -
[Sim]+[NBF]+[RotE] 73.2 66.9 85.7 43.0 33.4 62.0 40.0 31.2 54.8 - - -
[Hit]+[NBF]+[RotE] 57.0 51.9 67.3 42.4 32.8 60.9 - - - - - -

whose outputs are concatenated to obtain the fea-
ture. This choice is driven by the insight that the
variance and mean of the distribution of scores
computed by any model over E is correlated to
the model confidence. A more detailed discussion,
along with an exploration of other possible feature
sets can be found in Appendix C.

Next, we concatenate these features for all Mi
to obtain a final feature vector that is passed to an
independent 2-layer MLP (MLPi) for each model
Mi to learn query-dependent wi:

wi(q) = MLPi(f(M1, q)||f(M2, q)||...||f(Mk, q))

Intuitively, this concatenation informs each MLP
about the relative confidence of all models re-
garding their predictions, enhancing the ensem-
ble weight computation for corresponding models.
Note that our approach is agnostic to models Mi.

Our experiments in this paper mostly involve
only one textual model. Therefore, we learn the
ensemble weights for the other models with respect
to this textual model, which is assigned a fixed
weight of 1. This decreases the parameter count
while still being as expressive as learning distinct
ensemble weights for all models. The method for
learning these other weights is unchanged.
Loss Function: We train DynaSemble on the val-
idation set (traditionally used to tune ensemble
weights) using margin loss between the score of
the gold entity and a set of negative samples. The
train set is not used since all models are likely to
give high-confidence predictions on its triples (Ap-
pendix D). If the gold entity is t∗ and the set of
negative samples is N, the loss function L for query
q = (h, r, ?) is:

L =
∑

t∈N
max (E(h, r, t)− E(h, r, t∗) + m, 0)

where m is the margin hyperparameter. This hy-
perparameter ensures that the generated ensemble
weights stay numerically stable during training. In
practice, we find that this loss function can be sub-
stituted for a cross-entropy loss as well.

4 Experiments

Datasets: We use four datasets for evalua-
tion: WN18RR (Dettmers et al., 2018), FB15k-
237 (Toutanova and Chen, 2015), CoDex-
M (Safavi and Koutra, 2020) and YAGO3-
10 (Mahdisoltani et al., 2015). For each triple in the
test set, we answer queries (h, r, ?) and (t, r−1, ?)
with answers t and h. We report the Mean Recipro-
cal Rank (MRR) and Hits@k (H@1, H@10) under
the filtered measures (Bordes et al., 2013). Details
and data statistics are in Appendix A.

Baselines: We use SimKGC ([Sim] in tables) and
HittER ([Hit] in tables) as strong textual model
baselines. NBFNet ([NBF] in tables) serves as a
strong structure-based model baseline. We also
present results with RotatE ([RotE] in tables) to
showcase the generalisation of our method to KG
embedding models. We have reproduced the num-
bers published by the original authors for these
baselines, and use model checkpoints published
by the authors2 for [Hit] on the WN18RR and
FB15k-237 datasets. Since [NBF] does not scale up
to YAGO3-10 with reasonable hyperparameters on
our hardware, we omit those results. We represent
DynaSemble of models by + in tables.

Experimental Setup: All baseline models are
frozen after training using optimal configurations.
Ensemble weights are trained on the validation
split, using Adam as the optimizer with a learn-

2https://github.com/microsoft/HittER

207

https://github.com/microsoft/HittER

ing rate of 5.0e-5. We use 10,000 negative samples
per query. MLP hidden dimensions are set to 16
and 32 for ensemble of 2 and 3 models respectively.
MLP weights are initialized uniformly in the range
[0, 2]. DynaSemble training converges in a single
epoch, making our method fast and efficient.

Results: We report DynaSemble results in Table 1
(more details in Appendix B). We observe a notable
increase in performance after ensembling with
[Sim] and [Hit] for both [NBF] and [RotE], which
shows that our approach is performant for the en-
sembling of textual models with both structure-
based and KG embedding models. In particular,
we obtain 6.8 pt MRR and 8.4 pt Hits@1 improve-
ment with [Sim] + [NBF] over [Sim] on WN18RR.
Ensembling with [Sim] results in substantial per-
formance gains even when it is outperformed by
structure-based models (on FB15k-237, CoDex-M
and YAGO3-10 datasets).

We find that ensembling of [NBF] and [RotE]
with [Sim] results in larger improvements than with
[Hit] (notably with a 16.4 pt MRR and 15.2 pt
Hits@1 gap between [Sim] + [NBF] and [Hit] +
[NBF]). Even on the FB15k-237 dataset, where
[Hit] outperforms [Sim] by 5.1 pt MRR and 4.6
pt Hits@1, [Sim] + [NBF] narrowly outperforms
[Hit] + [NBF] by 0.6 pt MRR and 0.6 pt Hits@1.
These observations suggest that [Sim] leverages
the textual information in the knowledge graph
more effectively than [Hit], thus acting as a better
complement to the structure-based models.

On YAGO3-10, where [RotE] outperforms [Sim]
by 33.5 pt MRR and 29.9 pt Hits@1, we still ob-
tain 1.3 pt MRR and 1.4 pt Hits@1 gain with [Sim]
+ [RotE] over [RotE]. Results for [Sim] + [NBF] +
[RotE] show that ensembling with [RotE] results in
marginal gains over [Sim] + [NBF], obtaining up to
1.1 pt MRR and 0.7 pt Hits@1 gain on CoDex-M.
We hypothesize that the gains are marginal due to
[RotE]’s ability to implicitly capture and exploit
structural information (explored in more detail in
Appendix E and F), making it somewhat redundant
in the presence of [NBF]. To the best of our knowl-
edge, our best results on the WN18RR, FB15k-237
and CoDex-M datasets are state-of-the-art.

5 Analysis

We perform four further analyses to answer the
following questions: Q1. How does the behavior
of textual and structure-based models vary with
reachability? Q2. Do the weights learned by

DynaSemble follow expected trends with reach-
ability? Q3. Does DynaSemble improve perfor-
mance over conventional model-combination tech-
niques? Q4. How does DynaSemble of a textual
and structure-based model compare to DynaSemble
of two textual or structure-based models?

Reachability Ablation: To answer Q1, we divide
the test set for each dataset into ‘reachable’ and
‘unreachable’ splits. A triple (h, r, t) is part of the
reachable split if t can be reached from h with a
path of length at most l (= 2) in the KG. If not, it
is put in the unreachable split. We present split-
wise results for [NBF], [Sim] and [Sim]+[NBF] on
the WN18RR and FB15k-237 datasets in Table 2.

Table 2: Results on Reachable and Unreachable Split of
[NBF], [Sim] and [Sim] + [NBF] on WN18RR and FB15k-
237. Best individual model results are underlined.

Dataset Model Reachable Split Unreachable Split
MRR H@1 H@10 MRR H@1 H@10

WN18RR
[NBF] 89.7 86.8 95.7 26.0 18.3 41.8
[Sim] 85.3 79.4 94.5 51.8 42.3 69.0

[Sim]+[NBF] 93.9 91.7 97.4 56.8 47.0 76.4

FB15k−237
[NBF] 44.8 35.2 64.0 28.2 19.3 46.2
[Sim] 31.5 22.6 49.6 30.0 21.2 48.2

[Sim]+[NBF] 46.5 36.8 65.3 32.3 23.1 50.6

We observe that [Sim] outperforms [NBF] on the
unreachable split (by up to 25.8 pt MRR and 24.0
pt Hits@1 for WN18RR), while [NBF] outperforms
[Sim] on the reachable split (by up to 13.3 pt MRR
and 12.6 pt Hits@1 for FB15k-237). This is be-
cause [NBF] can easily exploit knowledge of the
KG structure to perform well on the reachable split,
while [Sim] can instead use BERT to leverage tex-
tual descriptions to perform better on the unreach-
able split. The performance gap between [Sim]
and [NBF] on the unreachable split is notably larger
for WN18RR than for FB15k-237, which can be
attributed to the sparsity of the WN18RR dataset,
the unreachable split for which also has several
entities unseen in the training data. In such cases,
[Sim] achieves reasonable performance, whereas
[NBF] lacks any paths for reasoning. Our ensem-
ble obtains substantial gains over best individual
models on both splits, with 4.2 pt MRR and 4.9 pt
Hits@1 gain on the reachable split and 5.0 pt MRR
and 4.7 pt Hits@1 gain on the unreachable split for
WN18RR. More details in Appendix E.

Analysis of Ensemble Weights: To answer Q2, we
study the mean of the ensemble weight w2 for [Sim]
+ [NBF] over the queries in the reachable and un-
reachable splits of the datasets we use. We observe
that this mean is consistently larger (by a margin
of up to 17% for WN18RR) on the reachable split

208

than the unreachable split. This is because [NBF]
tends to give better performance on the reachable
split, and a larger w2 gives it more importance in
the ensemble. More details and numbers are in
Appendix G, including results analyzing the non-
trivial standard deviation of w2.
Comparison with Conventional Techniques: To
answer Q3, we present results for static ensembling
and re-ranking using [Sim] and [NBF] for WN18RR
and FB15k-237 datasets in Table 3. ‘Static en-
sembling’ involves manually tuning the ensemble
weight as a constant on the validation set. For
[NBF]-[Sim] re-ranking (Han et al., 2020), we con-
sider the top 100 entities by score from [NBF] for
each query and re-rank them according to their
[Sim] score. The rest of the entities are ranked
according to [NBF]. We present results for [Sim]-
[NBF] re-ranking as well for comparison. We also
include results for the ensembling heuristic used
in KGT5 (Saxena et al., 2022) (KGT5 Ensemble),
which uses the textual model to answer queries
that have no answers in the training set and the
structure-based model to answer all other queries.

Table 3: Comparison of Static, KGT5 and Dynamic En-
sembling and Re-ranking. [X]-[Y] re-ranking indicates
re-ranking of top 100 predictions from [X] using [Y].

Dataset Approach MRR H@1 H@10

WN18RR

[NBF]-[Sim] Re-rank 63.5 57.1 74.9
[Sim]-[NBF] Re-rank 60.7 53.3 76.0

Static Ensemble 72.2 65.5 85.4
KGT5 Ensemble 66.6 58.7 80.3

Dynamic Ensemble 73.2 66.9 85.7

FB15k−237

[NBF]-[Sim] Re-rank 32.7 23.3 52.5
[Sim]-[NBF] Re-rank 38.9 30.0 56.5

Static Ensemble 41.9 32.7 60.1
KGT5 Ensemble 31.1 22.3 49.3

Dynamic Ensemble 42.7 33.2 61.5

We find that DynaSemble outperforms re-
ranking, ‘KGT5 ensembling’ and ‘static ensembling’
across datasets. Notably, DynaSemble beats re-
ranking by 9.7 pt MRR and 9.8 pt Hits@1, KGT5
ensembling by 5.6 pt MRR and 8.2 pt Hits@1,
and static ensembling by 1.0 pt MRR and 1.4 pt
Hits@1 on the WN18RR dataset. This highlights
the utility of DynaSemble in comparison to existing
model combination heuristics. We also perform a
paired student’s t-test to validate the statistical sig-
nificance of the gains obtained from DynaSemble
over "static ensembling", resulting in a t-value of
8.9 (p < 0.001) for the WN18RR dataset and 6.7
(p < 0.01) for the CoDex-M dataset. Further de-
tails can be found in Appendix H.
Impact of Types of Ensembled Models: To an-

swer Q4, we contrast results for [Sim] + [NBF]
(DynaSemble of a textual and structure-based
model) against [Sim] + [Hit] (DynaSemble of two
textual models) and [NBF] + [RotE] (DynaSemble
of two structure-based models) for WN18RR and
FB15k-237 datasets in Table 10.

Table 4: Results for [Sim] + [NBF], [Sim] + [Hit] and
[NBF] + [RotE] on WN18RR and FB15k-237. Best indi-
vidual model results are underlined.

Model WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

[Sim] 66.4 58.5 80.3 32.1 23.2 50.5
[Hit] 50.3 46.3 58.5 37.2 27.8 55.8
[NBF] 54.2 48.6 65.7 40.5 31.0 59.4
[RotE] 47.7 43.9 55.2 33.7 24.0 53.2

[Sim] + [NBF] 73.2 66.9 85.7 42.7 33.2 61.5
[Sim] + [Hit] 68.1 61.2 80.9 37.8 28.2 56.8
[NBF] + [RotE] 55.4 50.0 66.3 42.3 32.8 61.3

DynaSemble achieves 1.7 pt MRR and 1.7 pt
Hits@1 improvements over best individual mod-
els ([Sim]) for [Sim] + [Hit] on the WN18RR
dataset and 1.8 pt MRR and 1.8 pt Hits@1 im-
provements over best individual models ([NBF]) for
[NBF] + [RotE] on the FB15k-237 dataset, show-
ing that DynaSemble generalizes to these settings.
We further note that [Sim] + [NBF] outperforms
[Sim]+[Hit] by 5.1 pt MRR and 5.7 pt Hits@1 and
[NBF]+[RotE] by 17.8 pt MRR and 16.9 pt Hits@1
on the WN18RR dataset. This trend persists for the
FB15k-237 dataset, where [Sim]+[NBF] marginally
outperforms [NBF] + [RotE] despite [RotE] outper-
forming [Sim] by 1.6 pt MRR and 0.8 pt Hits@1
individually. These observations are in line with
our insights regarding the complementary strengths
of textual and structure-based KGC approaches,
which results in larger gains when models corre-
sponding to different approaches are ensembled.

6 Conclusion and Future Work

We present DynaSemble: a simple, novel, model-
agnostic and lightweight dynamic ensembling ap-
proach for KGC, while also highlighting the com-
plementary strengths of textual and structure-based
KGC models. Our state-of-the-art results for a
DynaSemble of SimKGC and NBFNet over three
standard KGC datasets (WN18RR, FB15k-237 and
CoDex-M) creates a new competitive ensemble
baseline for the task. We release all code for future
research. Future work includes tighter training-
time unification methods, and extensions to tempo-
ral (Jain et al., 2020; Singh et al., 2023) and multi-
lingual KGC models (Chakrabarti et al., 2022).

209

Limitations

We do not consider Neuro-Symbolic KGC ap-
proaches in this work, which have also recently
started to give competitive results with other KGC
approaches, through models such as RNNLogic
(Qu et al., 2021) and extensions (Nandi et al., 2023).
Our experiments consider ensembling of one tex-
tual model with multiple structural models. This
is because most textual models in recent KGC lit-
erature are not competitive with SimKGC (Wang
et al., 2022), therefore we do not expect large gains
by including them along with SimKGC in an en-
semble. The ensembling of multiple textual mod-
els with multiple structure-based models would be
a possible future work. In models with substan-
tial validation splits, learning query embeddings to
augment the features we use to compute ensemble
weights is also a possibility.

Ethics Statement

We anticipate no substantial ethical issues aris-
ing due to our work on ensembling textual and
structure-based models for KGC. Our work relies
on other baseline models for ensembling. This may
propagate any bias present in these baseline models,
however ensembling may also reduce these biases.

Acknowledgements

This work is supported by IBM AI Horizons Net-
work, grants from Google, Verisk, and Huawei, and
the Jai Gupta chair fellowship by IIT Delhi. We
thank the IIT-D HPC facility for its computational
resources.

References

Baras S Baras and George Theodorakopoulos. 2010.
Path Problems in Networks. Synthetic Lectures in
Communication Networks, 3:1–77.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
relational Data. In NeurIPS. Curran Associates, Inc.

Soumen Chakrabarti, Harkanwar Singh, Shubham Lo-
hiya, Prachi Jain, and Mausam. 2022. Joint comple-
tion and alignment of multilingual knowledge graphs.
In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2022, Abu Dhabi, United Arab Emirates, December
7-11, 2022, pages 11922–11938.

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao,
Ruofei Zhang, and Yangfeng Ji. 2021. HittER: Hi-
erarchical transformers for knowledge graph embed-
dings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10395–10407, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2D
Knowledge Graph Embeddings. In Proceedings of
the Thirty-Second AAAI Conference on Artificial In-
telligence and Thirtieth Innovative Applications of Ar-
tificial Intelligence Conference and Eighth AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Shuguang Han, Xuanhui Wang, Michael Bendersky, and
Marc Najork. 2020. Learning-to-Rank with BERT in
TF-Ranking. In Arxiv.

Tao He, Ming Liu, Yixin Cao, Tianwen Jiang, Zihao
Zheng, Jingrun Zhang, Sendong Zhao, and Bing Qin.
2022. Vem2l: A plug-and-play framework for fusing
text and structure knowledge on sparse knowledge
graph completion.

Prachi Jain, Pankaj Kumar, Mausam, and Soumen
Chakrabarti. 2018a. Type-sensitive knowledge base
inference without explicit type supervision. In Pro-
ceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, ACL 2018,
Melbourne, Australia, July 15-20, 2018, Volume 2:
Short Papers, pages 75–80.

Prachi Jain, Shikhar Murty, Mausam, and Soumen
Chakrabarti. 2018b. Mitigating the effect of out-
of-vocabulary entity pairs in matrix factorization for
KB inference. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelli-
gence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden, pages 4122–4129.

Prachi Jain, Sushant Rathi, Mausam, and Soumen
Chakrabarti. 2020. Temporal knowledge base com-
pletion: New algorithms and evaluation protocols. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2020, Online, November 16-20, 2020, pages 3733–
3747.

Farzaneh Mahdisoltani, Joanna Asia Biega, and
Fabian M. Suchanek. 2015. Yago3: A Knowledge
Base from Multilingual Wikipedias. In Conference
on Innovative Data Systems Research.

210

https://link.springer.com/book/10.1007/978-3-031-79983-9
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.812
https://doi.org/10.18653/v1/2021.emnlp-main.812
https://doi.org/10.18653/v1/2021.emnlp-main.812
https://dl.acm.org/doi/10.5555/3504035.3504256
https://dl.acm.org/doi/10.5555/3504035.3504256
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2004.08476
https://arxiv.org/abs/2004.08476
http://arxiv.org/abs/2207.01528
http://arxiv.org/abs/2207.01528
http://arxiv.org/abs/2207.01528
https://asiabiega.github.io/papers/yago3_cidr2015.pdf
https://asiabiega.github.io/papers/yago3_cidr2015.pdf

Ananjan Nandi, Navdeep Kaur, Parag Singla, and
Mausam. 2023. Simple augmentations of logical
rules for neuro-symbolic knowledge graph comple-
tion. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 256–269.

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux,
Yoshua Bengio, and Jian Tang. 2021. RNNLogic:
Learning Logic Rules for Reasoning on Knowledge
Graphs. In ICLR, pages 1–21.

Tara Safavi and Danai Koutra. 2020. CoDEx: A Com-
prehensive Knowledge Graph Completion Bench-
mark. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8328–8350, Online. Association for
Computational Linguistics.

Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
2022. Sequence-to-sequence knowledge graph com-
pletion and question answering. arXiv preprint
arXiv:2203.10321.

Ishaan Singh, Navdeep Kaur, Garima Gaur, and
Mausam. 2023. Neustip: A neuro-symbolic model
for link and time prediction in temporal knowledge
graphs. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 4497–4516.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. RotatE: Knowledge Graph Embedding
by Relational Rotation in Complex Space. In ICLR.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus Latent Features for Knowledge Base and Text
Inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Composi-
tionality, pages 57–66, Beijing, China. Association
for Computational Linguistics.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
Embeddings for Simple Link Prediction. In ICML,
page 2071–2080. JMLR.org.

Liang Wang, Wei Zhao, Zhuoyu Wei, and Jingming
Liu. 2022. SimKGC: Simple Contrastive Knowledge
Graph Completion with Pre-trained Language Mod-
els. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 4281–4294, Dublin, Ireland.
Association for Computational Linguistics.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-
BERT: BERT for Knowledge Graph Completion. In
AAAI Conference on Artificial Intelligence.

Zhao Zhang, Fuzhen Zhuang, Hengshu Zhu, Zhi-Ping
Shi, Hui Xiong, and Qing He. 2020. Relational
Graph Neural Network with Hierarchical Attention
for Knowledge Graph Completion. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence,
pages 9612–9619. AAAI Press.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhon-
neux, and Jian Tang. 2021. Neural Bellman-Ford
Networks: A General Graph Neural Network Frame-
work for Link Prediction. In Advances in Neural
Information Processing Systems.

A Data Statistics and Evaluation Metrics

Table 5 outlines the statistics of the datasets utilized
in our experimental section. We utilize the standard
train, validation and test splits for all datasets.

Metrics: For each triplet (h, r, t) in the KG, typ-
ically queries of the form (h, r, ?) and (?, r, t)
are created for evaluation, with corresponding an-
swers t and h. We represent the (?, r, t) query
as (t, r−1, ?) with the same answer h, where r−1

is the inverse relation for r, for both training and
testing. Given ranks for all queries, we report the
Mean Reciprocal Rank (MRR) and Hit@k (H@k,
k = 1, 10) under the filtered setting in the main pa-
per and two additional metrics: Mean Rank (MR)
and Hits@3 in the appendices.

B Detailed Results on Proposed Ensemble

Here we present our experimental setup for the
main results presented in Table 1. Since loading
both NBFNet and the two BERT encoders from
SimKGC into GPU at the same time is too taxing
for our hardware, we dump the embeddings of all
possible (h, r) and t from SimKGC to disk, and
use them for training our ensemble. SimKGC is
reliant on textual descriptions for performance. The
original authors provide descriptions for WN18RR
and FB15k-237, while descriptions for CoDex-M
are available as part of the dataset. Since YAGO3-
10 does not contain any descriptions, we treat the
entity names as their descriptions. SimKGC also
has a structural re-ranking step independent of its
biencoder architecture, which we do not utilize as
we expect our ensembling method to subsume it.

Next, we present results in Table 6 that are sup-
plementary to results already presented in Table 1.
In addition to MRR, Hits@1 and Hits@10 consid-
ered in Table 1, we also present numbers for Mean
Rank (MR) and Hits@3 in Table 6. As before, the
’+’ sign represents our ensemble approach. We
also consider an additional KG embedding model
ComplEx (Trouillon et al., 2016) ([Comp] in tables)
in this section and present complete results for it.

We observe that for the two new metrics consid-
ered in Table 6, we also obtain substantial perfor-
mance gains on ensembling, notably a gain of 5.2

211

https://arxiv.org/pdf/2010.04029.pdf
https://arxiv.org/pdf/2010.04029.pdf
https://arxiv.org/pdf/2010.04029.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.669
https://doi.org/10.18653/v1/2020.emnlp-main.669
https://doi.org/10.18653/v1/2020.emnlp-main.669
https://openreview.net/forum?id=HkgEQnRqYQ
https://openreview.net/forum?id=HkgEQnRqYQ
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://doi.org/10.18653/v1/W15-4007
https://dl.acm.org/doi/10.5555/3045390.3045609
https://dl.acm.org/doi/10.5555/3045390.3045609
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2022.acl-long.295
https://doi.org/10.18653/v1/2022.acl-long.295
http://arxiv.org/abs/1909.03193
http://arxiv.org/abs/1909.03193
https://ojs.aaai.org/index.php/AAAI/article/view/6508
https://ojs.aaai.org/index.php/AAAI/article/view/6508
https://ojs.aaai.org/index.php/AAAI/article/view/6508
https://arxiv.org/abs/2106.06935
https://arxiv.org/abs/2106.06935
https://arxiv.org/abs/2106.06935

Table 5: Statistics of Knowledge Graph datasets

Datasets #Entities #Relations #Training #Validation #Test
FB15k-237 14541 237 272,115 17,535 20,446
WN18RR 40,943 11 86,835 3,034 3,134
Yago3-10 123182 36 1,079,040 5000 5000
CoDex-M 17050 71 185584 10310 10311

Table 6: Results of on four datasets: WN18RR, FB15k-237, Yago3-10 and CoDex-M with ensemble of textual
and structure-based models. [NBF], [Sim], [RotE] and [Comp] represents NBFNet, SimKGC, RotatE and CompleX
models respectively. [NBF] does not scale to YAGO3-10. Best individual model results are underlined.

Model WN18RR FB15k-237
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

[Sim] 174.0 66.4 58.5 71.3 80.3 131.9 32.1 23.2 34.6 50.5
[NBF] 699.3 54.2 48.6 56.9 65.7 111.4 40.5 31.0 44.3 59.4
[RotE] 4730.7 47.7 43.9 49.1 55.2 176.6 33.7 24.0 37.4 53.2
[Comp] 5102.6 47.2 42.8 49.2 56.0 180.7 35.7 26.3 39.4 54.7
[Sim]+[NBF] 56.6 73.2 66.9 76.5 85.7 92.2 42.7 33.2 46.7 61.5
[Sim]+[RotE] 162.7 68.0 60.7 72.2 80.7 116.0 36.6 26.9 40.2 56.3
[Sim]+[Comp] 172.9 68.0 60.8 72.3 80.7 116.3 37.8 28.3 41.2 57.1
[Sim]+[NBF]+[RotE] 56.6 73.2 66.9 76.5 85.7 91.5 43.0 33.4 47.0 62.0
[Sim]+[NBF]+[Comp] 56.6 73.2 66.9 76.5 85.7 92.0 42.8 33.3 46.8 61.5

Model CoDex-M Yago3-10
MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10

[Sim] 284.2 29.1 21.0 31.5 45.2 497.4 15.8 10.0 16.2 27.3
[NBF] 337.5 35.3 27.0 39.0 51.4 - - - - -
[RotE] 502.6 33.5 26.3 36.8 46.9 1866.8 49.3 39.9 55.0 67.1
[Comp] 391.0 35.3 27.7 38.8 49.5 1578.1 49.2 40.1 53.8 66.7
[Sim]+[NBF] 252.1 38.9 30.5 42.7 54.8 - - - - -
[Sim]+[RotE] 293.4 36.3 28.1 40.0 51.7 610.6 50.6 41.3 56.0 67.9
[Sim]+[Comp] 296.3 37.5 29.6 41.0 52.4 515.9 49.5 40.5 54.2 66.6
[Sim]+[NBF]+[RotE] 216.5 40.0 31.2 43.3 54.8 - - - - -
[Sim]+[NBF]+[Comp] 293.3 37.6 29.8 41.1 52.5 - - - - -

Table 7: Results of [Sim], [NBF], [RotE], [Comp] and [Sim] + [NBF] on the Reachable and Unreachable splits of
WN18RR, FB15k-237, and CoDex-M datasets. Best individual model results are underlined.

Dataset Model Reachable Split Unreachable Split
MR MRR H@1 H@10 MR MRR H@1 H@10

WN18RR

[Sim] 29.7 85.3 79.4 94.5 288.5 51.8 42.3 69.0
[NBF] 4.7 89.7 86.8 95.7 1250.7 26.0 18.3 41.8
[RotE] 102.9 85.6 83.3 90.0 8404.8 17.5 12.6 1.1
[Comp] 285.9 85.6 83.8 88.5 10526.6 16.2 12.1 23.7
[Sim]+[NBF] 2.7 93.9 91.7 97.4 99.4 56.8 47.0 76.4

FB15k−237

[Sim] 131.8 31.5 22.6 49.6 153.8 30.0 21.2 48.2
[NBF] 86.9 44.8 35.2 64.0 180.4 28.2 19.3 46.2
[RotE] 131.8 35.6 25.5 56.3 303.2 28.1 19.8 44.5
[Comp] 129.9 37.9 28.0 57.8 323.9 29.7 21.5 46.0
[Sim]+[NBF] 76.0 46.5 36.8 65.3 137.0 32.3 23.1 50.6

CoDex−M

[Sim] 166.5 35.5 26.8 52.4 363.6 23.7 15.8 39.6
[NBF] 150.1 47.8 39.5 63.2 458.1 27.2 18.9 43.5
[RotE] 290.5 44.2 37.2 56.8 639.1 26.7 19.5 40.5
[Comp] 187.1 46.5 38.8 60.4 519.0 28.2 20.8 42.6
[Sim]+[NBF] 112.8 51.2 40.5 66.1 339.6 31.4 23.0 47.6

212

pt Hits@3 and 67.4% MR on the WN18RR dataset
with [Sim] + [NBF] over [Sim]. Further, we ob-
serve that [Sim]+[Comp] consistently outperforms
both [Sim] and [Comp], (by up to 2.2 pt MRR for
CoDex-M). We also present complete numbers for
[Sim]+[NBF]+[Comp] and [Sim]+[NBF]+[RotE] here.

C Feature Selection for Ensemble Weight
Learning

In this section, we justify our choice of features
for learning ensemble weights. We focus on NBF
and Sim for this purpose. We claim that after our
normalization procedure, a model has lower mean
and variance when it is confident about the validity
of its top predictions. To highlight this, we present
distribution of the normalized scores over all can-
didate entities for NBF and Sim for two queries in
the WN18RR dataset: one from the reachable split
and the other from the unreachable split. The query
for Figure 1a lies in the reachable split while the
query for Figure 1b lies in the unreachable split.
The entity id of the gold answer is marked with a
red vertical line in both cases.

(a) Query in reachable split

(b) Query in unreachable split

Figure 1: Score distributions of [NBF] and [Sim] for two
queries in WN18RR

We notice that for the query in the reachable
split, [NBF] is very confident about its top predic-
tion. Therefore, it scores the gold answer signif-
icantly higher than the other candidates. Upon
normalization, this causes the other entities to have
comparatively smaller values (mostly in the range
[0-0.4]), with a tighter spread. In comparison, for
the query in the unreachable split, [NBF] cannot pre-
dict the gold answer confidently. This results in a
much larger spread of scores across entities, with a
lot of extreme values close to 1 indicating that the
model is unable to conclusively determine which
entity is the correct one. We choose the mean and
variance as features because they will be able to
distinguish between these two distributions, with
their values being substantially smaller in the first
case where [NBF] is confident about the predictions.

[Sim] also has these properties, albeit to a lesser
degree. This is because SimKGC cannot exploit
the KG structure, and therefore has to draw conclu-
sions based on textual descriptions, which can point
to several candidate answers of seemingly compa-
rable validity. This results in the score distributions
having a higher spread and a lower margin between
the score of the top prediction and the other candi-
dates. Therefore, the relative values of these mean
and variance features can also inform the MLPs
about the relative confidence of the models about
their output, allowing them to compute ensemble
weights for corresponding models as necessary.

As validation, we present the average of the
mean and variance features from [NBF] over all test
queries in the reachable and unreachable split for
the WN18RR, FB15k-237 and CoDex-M datasets
in Table 8.

Table 8: Average of[NBF] Features across Splits

Dataset Reachable Split Unreachable Split
Mean Var Mean Var

WN18RR 0.277 0.008 0.353 0.127
FB15k-237 0.244 0.017 0.284 0.019
CoDex-M 0.492 0.015 0.566 0.017

We find that the average of the mean and vari-
ance features is up to 21% lower (for WN18RR)
on the reachable split than the unreachable split, al-
lowing the MLPs to distinguish between the splits
based on score distribution statistics alone. We
finally present results of experiments with other
similar sets of features as input to the MLP in Ta-
ble 9.

213

Table 9: Performance of [Sim] + [NBF] with different
sets of input features to the MLP. + indicates concatena-
tion here. Var and Std stand for variance and standard
deviation. Zip stands for passing the entire output distri-
bution from the base models as input to the MLP. Top
10 indicates using the top 10 scores from the output
distribution as input features.

Dataset Input Features MRR H@1 H@10

WN18RR

Mean + Var 73.2 66.9 85.7
Mean + Std 73.1 66.8 85.1

Std 67.1 59.2 80.5
Mean 67.2 59.4 80.5
Zip 66.6 58.7 80.3

Top 10 72.1 65.5 84.8

CoDex-M

Mean + Var 38.9 30.5 54.8
Mean + Std 38.1 29.9 54.1

Std 32.5 23.4 48.5
Mean 32.1 23.5 48.6
Zip 31.6 23.3 48.1

Top 10 31.7 23.3 48.4

We find that features that are created according
to the reasoning above (Mean + Var and Mean +
Std) perform better as compared to other features
(Zip, Top 10) across datasets and metrics.

D Choice of Training Data for Dynamic
Ensemble

In this section, we expand upon the choice of us-
ing the validation split to train the dynamic en-
semble weights, which is usually used for manu-
ally tuning the constant ensemble weights in static
ensembling. We present results for dynamic en-
sembles trained on three splits of data: i) the full
training split (FullTrain) ii) the validation split
(Validation, this corresponds to the dynamic
ensemble results in the paper) iii) a randomly-
chosen 1% split of the training data, which is held-
out while training the base models before ensem-
bling (Held− OutTrain). We present results for
[Sim] + [NBF]) trained on these three splits of the
WN18RR and FB15k-237 datasets in Table ??.

Table 10: Results for [Sim] + [NBF] trained under
the FullTrain, Validation and Held− OutTrain
conditions on the WN18RR and FB15k-237 datasets.
BestIndv represents the performance of the best in-
dividual model in each case, which is [Sim] for the
WN18RR dataset and [NBF] for the FB15k-237 dataset.

Method WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

BestIndv 66.4 58.5 80.3 40.5 31.0 59.4
FullTrain 66.4 58.6 80.3 40.6 31.2 59.4
Validation 73.2 66.9 85.7 42.7 33.2 61.5

Held − OutTrain 73.0 66.5 85.4 42.4 32.9 61.4

We find that FullTrain results in less than 0.1
pt MRR improvement over best individual mod-
els for both datasets. This is because both base

models are capable of fitting the training data with
near-perfect performance. As a result, both mod-
els showcase high confidence about their outputs
and the dynamic ensemble is unable to learn any
correlations between model confidence and corre-
sponding ensemble weight for the test split. There-
fore, the ensemble weights for each model con-
verge rapidly to 0 or 1 during training.

We additionally find that Held− OutTrain
results in performance within 0.3 pt MRR of
Validation in both datasets. This small drop
in performance might be caused by the slightly
smaller amount of data being used to train both
the base models and the dynamic ensemble, as
compared to the original setting. This shows that
holding out part of the training data is an effective
strategy to train the dynamic ensemble on datasets
that do not have a validation split, as the small
drop in performance of the base model is amply
compensated by the gains from ensembling.

E Detailed Reachability Ablation

In this section we discuss further results of the ex-
periment done to answer Q1 in Section 5. The re-
sults presented in Table 7 are supplementary to the
results presented in Table 2 where in addition to the
MRR, Hits@1, Hits@10 metrics already presented
in Table 2, we present results over one additional
metric, MR. Additionally, we present the results on
the ‘reachable’ and ‘unreachable’ split of CoDex-
M, and for [RotE] and [Comp] on all datasets. We
observe that [Sim] has up to 76% lower MR than
[NBF] on the unreachable split while [NBF] has up to
83.3% lower MR than [Sim] on the reachable split
over all the three datasets (both statistics mentioned
are for WN18RR). The ensemble of [Sim]+[NBF]
brings the MR down further, notably obtaining a
gain of 42.5% on reachable split and 66% on un-
reachable split over best individual models for the
WN18RR dataset. We also observe that [RotE]
and [Comp] show similar variation of performance
across splits when compared to [NBF], performing
notably better on the reachable split as compared
to the unreachable split across datasets. This in-
dicates that these KG embedding models are also
dependent on KG structure and paths between the
head and gold tail to some extent for performance.
We investigate this in more detail in Appendix F.

214

F RotatE as a Structure-Based Model

We claim that despite structure not being explicitly
involved in the training of [RotE], it is still capable
of capturing the structure of the KG to some extent
in its relation embeddings by exploiting the compo-
sitionality inherent in its scoring function. Consider
an example in which (h1, r1, h2), (h2, r2, h3) and
(h1, r3, h3) are all present in the KG. Let Tr(h) be
the vector obtained after rotating the embedding
of h by the complex rotation defined by r. During
training, Tr1(h1) will be brought close to the em-
bedding of h2 and Tr2(h2) will be brought close to
the embedding of h3. As a result, Tr2(Tr1(h1))
will be brought close to h3. Upon training on
(h1, r3, h3), Tr3(h1)) will also be brought close
to h3. However, the relative positions of h1 and
h3 on the complex plane already contain informa-
tion about Tr2 ◦ Tr1 , which is used while training
Tr3 . As more such examples are seen over multiple
epochs, Tr3 will eventually be brought closer to
the composed rotation Tr2 ◦ Tr1 . Therefore, when
query (h, r3, ?) is seen at test time, the model will
be more likely to return candidates t which are
connected to h through a path in the KG involving
relations r1 and r2, making it structure dependent.

Of course, this phenomenon is not limited to
paths of length 2, but can encode paths of longer
length as well. We also expect only the most com-
mon paths to be captured through this mechanism,
since multiple such paths have to be encoded by the
same relation embedding. To validate these claims,
we perform an experiment where we exhaustively
mine the dataset for cases where (h1, r1, h2) is
present in the KG, alongside an entity h3 such that
(h1, r2, h3) and (h3, r3, h2) are also present in the
KG. This essentially considers all the cases where
there is a path involving r2 and r3 that is closed
by r1. We enumerate all such cases for each triple
(r1, r2, r3) and filter out those triples that have less
than 20 occurrences in the KG. For each of the re-
maining triples, we take a random vector and trans-
form it according to Tr2 ◦ Tr3 . We then report the
r such that transforming the same vector accord-
ing to Tr moves it closest to the result obtained on
transforming it according to Tr2 ◦ Tr3 . We expect
r to be r1 for a majority of the triples based on our
claims. We report accuracies obtained through this
experiment for [RotE] on the WN18RR, FB15k-
237 and CoDex-M datasets in Table 11.

Table 11: Structure Dependency of [RotE] and [Comp]

Dataset Accuracy of Closest Relation
[RotE]

WN18RR 38.1
FB15k-237 45.0
CoDex-M 68.2

We find that the accuracies are substantially bet-
ter than the random baseline of 1

NumberofRelations
for all datasets (which is 9.1% for WN18RR, 0.4%
for FB15k-237 and 1.4% for CoDex-M). [Sim] is
not capable of capturing this notion, since it en-
codes (h, r) together using BERT, not as a compo-
sition of h and r embeddings. Therefore, we find
that its behavior is independent of the split in which
the query under consideration is present.

G Reachability Trends of Ensemble
Weights

The aim of this section is to further discuss the
results of the experiment done to answer Q2 in Sec-
tion 5. The results in Table 13 present the mean and
standard deviation of ensemble weights w2 over the
queries in the reachable and unreachable split for
the WN18RR, CoDex-M and FB15k-237 datasets.
The weight discussed in these tables is w2 in the en-
semble defined as w1[Sim] + w2[NBF] (with w1 = 1)
according to Section 3. We observe that across all
datasets, the average weight for reachable split is
higher than the weight of unreachable split (up to
17% higher for WN18RR), thus reinforcing the fact
that our approach gives more weightage to [NBF]
on the reachable split across datasets. The standard
deviation of w2 is also non-trivial on all splits of all
datasets, showing that our approach is capable of
adjusting it as required by individual queries.

Table 13: Mean and Standard Deviation (Std Dev in
Table) of Ensemble Weights for [Sim] + [NBF]

Dataset Reachable Split Unreachable Split
Mean Std Dev Mean Std Dev

WN18RR 0.61 0.04 0.52 0.07
CoDex-M 2.03 0.24 1.91 0.38
FB15k-237 2.64 0.22 2.57 0.24

To investigate why our ensemble weights are
not binary and are quite consistent with each
other for each split, we contrast [Sim] + [NBF]
with a model that selects NBFNet on the reach-
able split and SimKGC on the unreachable split:
Split− Select. We present results in Table 14.

215

Table 12: Results of paired student’s t-test for dynamic ensemble and static ensemble on MRR with [Sim] + [NBF].

Dataset Method Split 1 Split 2 Split 3 Split 4 Split 5

WN18RR
Dynamic Ensemble 73.5 73.2 73.2 73.7 73.2
Static Ensemble 72.0 72.5 71.9 72.3 71.9
Difference 1.5 0.7 1.3 1.4 1.3

CoDex-M
Dynamic Ensemble 38.7 38.9 38.8 39.1 38.7
Static Ensemble 37.1 37.8 38.0 37.8 38.0
Difference 1.6 1.1 0.8 1.3 0.7

Table 14: Comparison of [Sim] + [NBF] and
Split− Select on the WN18RR dataset.

Dataset Approach MRR H@1 H@10

WN18RR [Sim] + [NBF] 73.2 66.9 85.7
Split − Select 68.4 61.8 81.0

We find that dynamic ensembling performs bet-
ter than the oracle by 4.8 pt MRR. This is be-
cause structure-based models tend to rank more
connected tails higher, while text-based models
rank tails based solely on their textual descriptions.
Therefore, a soft ensemble can take advantage of
both structural and textual information to perform
better than a mixture-of-experts model that simply
selects one of the base models based on expected
performance trends.

H Significance of Improvements with
Dynamic Ensembling

We first perform a paired student’s t-test on the
MRR over a 5-fold split for [Sim] + [NBF] to con-
firm that the gains obtained by our approach over
static ensembling are statistically significant. We
present the results in Table 12.

We obtain a t-value of 8.9 for WN18RR and 6.7
for CoDex-M. With a p-value of 0.05, the refer-
ence value is 2.78. Therefore, the gains obtained
by our model over static ensembling are indeed
statistically significant.

The performance of an ensemble is ultimately
dependent on the performance of the individual
models. To obtain an estimate of the best possible
performance that can be obtained from model fu-
sion, we present results in Table 15 with [Sim] +
[NBF] for a model that selects the most performant
model for each query (BEST).

Table 15: Comparison of [Sim] + [NBF] and BEST on the
WN18RR and CoDex-M datasets.

Dataset Approach MRR H@1 H@10

WN18RR [Sim] + [NBF] 73.2 66.9 85.7
BEST 74.1 67.6 86.1

CoDex-
M

[Sim] + [NBF] 38.9 30.5 54.8
BEST 41.2 32.6 57.9

We find that the results for our dynamic ensem-
ble are only up to 2.3 MRR pts behind a theoretical
oracle that always knows the best model for each
query, indicating that most of the potential for im-
provement through late fusion techniques has been
obtained through dynamic ensembling.

216

