@inproceedings{nandi-etal-2024-dynasemble,
title = "{D}yna{S}emble: Dynamic Ensembling of Textual and Structure-Based Models for Knowledge Graph Completion",
author = "Nandi, Ananjan and
Kaur, Navdeep and
Singla, Parag and
., Mausam",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-short.20",
doi = "10.18653/v1/2024.acl-short.20",
pages = "205--216",
abstract = "We consider two popular approaches to KnowledgeGraph Completion (KGC): textual modelsthat rely on textual entity descriptions, andstructure-based models that exploit the connectivitystructure of the Knowledge Graph(KG). Preliminary experiments show that theseapproaches have complementary strengths:structure-based models perform exceptionallywell when the gold answer is easily reachablefrom the query head in the KG, while textualmodels exploit descriptions to give goodperformance even when the gold answer isnot easily reachable. In response, we proposeDynaSemble, a novel method for learningquery-dependent ensemble weights to combinethese approaches by using the distributions ofscores assigned by the models in the ensembleto all candidate entities. DynaSemble achievesstate-of-the-art results on three standard KGCdatasets, with up to 6.8 pt MRR and 8.3 ptHits@1 gains over the best baseline model forthe WN18RR dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nandi-etal-2024-dynasemble">
<titleInfo>
<title>DynaSemble: Dynamic Ensembling of Textual and Structure-Based Models for Knowledge Graph Completion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ananjan</namePart>
<namePart type="family">Nandi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Navdeep</namePart>
<namePart type="family">Kaur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Parag</namePart>
<namePart type="family">Singla</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mausam</namePart>
<namePart type="family">.</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We consider two popular approaches to KnowledgeGraph Completion (KGC): textual modelsthat rely on textual entity descriptions, andstructure-based models that exploit the connectivitystructure of the Knowledge Graph(KG). Preliminary experiments show that theseapproaches have complementary strengths:structure-based models perform exceptionallywell when the gold answer is easily reachablefrom the query head in the KG, while textualmodels exploit descriptions to give goodperformance even when the gold answer isnot easily reachable. In response, we proposeDynaSemble, a novel method for learningquery-dependent ensemble weights to combinethese approaches by using the distributions ofscores assigned by the models in the ensembleto all candidate entities. DynaSemble achievesstate-of-the-art results on three standard KGCdatasets, with up to 6.8 pt MRR and 8.3 ptHits@1 gains over the best baseline model forthe WN18RR dataset.</abstract>
<identifier type="citekey">nandi-etal-2024-dynasemble</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.20</identifier>
<location>
<url>https://aclanthology.org/2024.acl-short.20</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>205</start>
<end>216</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DynaSemble: Dynamic Ensembling of Textual and Structure-Based Models for Knowledge Graph Completion
%A Nandi, Ananjan
%A Kaur, Navdeep
%A Singla, Parag
%A ., Mausam
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F nandi-etal-2024-dynasemble
%X We consider two popular approaches to KnowledgeGraph Completion (KGC): textual modelsthat rely on textual entity descriptions, andstructure-based models that exploit the connectivitystructure of the Knowledge Graph(KG). Preliminary experiments show that theseapproaches have complementary strengths:structure-based models perform exceptionallywell when the gold answer is easily reachablefrom the query head in the KG, while textualmodels exploit descriptions to give goodperformance even when the gold answer isnot easily reachable. In response, we proposeDynaSemble, a novel method for learningquery-dependent ensemble weights to combinethese approaches by using the distributions ofscores assigned by the models in the ensembleto all candidate entities. DynaSemble achievesstate-of-the-art results on three standard KGCdatasets, with up to 6.8 pt MRR and 8.3 ptHits@1 gains over the best baseline model forthe WN18RR dataset.
%R 10.18653/v1/2024.acl-short.20
%U https://aclanthology.org/2024.acl-short.20
%U https://doi.org/10.18653/v1/2024.acl-short.20
%P 205-216
Markdown (Informal)
[DynaSemble: Dynamic Ensembling of Textual and Structure-Based Models for Knowledge Graph Completion](https://aclanthology.org/2024.acl-short.20) (Nandi et al., ACL 2024)
ACL