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Abstract

Human gaze data provide cognitive information
that reflect human language comprehension,
and has been effectively integrated into a vari-
ety of natural language processing (NLP) tasks,
demonstrating improved performance over cor-
responding plain text-based models. In this
work, we propose to integrate a gaze module
into pre-trained language models (LMs) at the
fine-tuning stage to improve their capabilities
to learn representations that are grounded in
human language processing. This is done by
extending the conventional purely text-based
fine-tuning objective with an auxiliary loss
to exploit cognitive signals. The gaze mod-
ule is only included during training, retain-
ing compatibility with existing pre-trained LM-
based pipelines. We evaluate the proposed ap-
proach using two distinct pre-trained LMs on
the GLUE benchmark and observe that the pro-
posed model improves performance compared
to both standard fine-tuning and traditional text
augmentation baselines. Our code is publicly
available.1

1 Introduction

As humans read, the unconscious cognitive pro-
cesses that unfold in their minds while compre-
hending the stimulus text are reflected in their eye
movement behavior (Just and Carpenter, 1980).
These gaze signals hold the potential to enhance
NLP tasks. Research has focused on using ag-
gregated word-level gaze features to enrich text
features (Barrett et al., 2016; Mishra et al., 2016;
Hollenstein and Zhang, 2019) or to regularize neu-
ral attention mechanisms, making their inductive
bias more human-like (Barrett et al., 2018; Sood
et al., 2020, 2023).

Moreover, there has been growing interest in
adopting non-aggregated scanpaths (i.e., sequences

1https://github.com/aeye-lab/
ACL-GazeSupervisedLM

Shared Dense
Layer

Transformer

My dog likes playing

C T1 T2 T3 T4 T[SEP]T5

T2 T4 T5 T3

Fixation index: [2, 2, 4, 5, 3]

Scanpath Module

Shared Dense
Layer

T2

Scanpath Encoder (GRU) C

Scanpath Generation Model
(Eyettention)

rearrange

Figure 1: Overall architecture during training. The stan-
dard objective is augmented with an auxiliary loss from
a scanpath-integrated branch, where token embeddings
are rearranged based on the simulated fixation sequence.

of consecutive fixations) to augment LMs. These
scanpaths capture the complete sequential order-
ing of a reader’s gaze behavior and approximate
their attention. Mishra et al. (2017) and Khurana
et al. (2023) employed neural networks to indepen-
dently encode scanpaths and text, followed by the
fusion of the features extracted from both modal-
ities. Yang and Hollenstein (2023) proposed rear-
ranging the contextualized token embeddings pro-
duced by pre-trained LMs based on the order in
which the reader fixates on the words, followed
by applying sequence modeling to the reordered
sequence. To tackle the issue of gaze data scarcity,
Deng et al. (2023a) explored the possibility of aug-
menting LMs using synthetic scanpaths, generated
by a scanpath generation model. Remarkably, syn-
thetic scanpaths demonstrated advantages across
various NLP tasks, particularly in settings with lim-
ited labeled examples for the downstream task.

In contrast to previous studies that concentrated
on learning joint cross-modal representations of
text and scanpath, we start from a different perspec-
tive and explore utilizing gaze data to improve on
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the learned text representations of pre-trained LMs
during the fine-tuning stage, without incurring ad-
ditional computational effort when using the model
at application time. To this end, we extend the
standard pre-trained LM fine-tuning objective with
an auxiliary loss by integrating a scanpath mod-
ule, which serves a dual purpose. First, the aux-
iliary loss can effectively incorporate human-like
gaze signals generated using a scanpath generation
model and thus provide informative gradients to
guide the LM towards more representative local
minima. Second, reordering the token-embedding
sequence based on the fixation sequence can di-
versify textual information, potentially improving
generalization performance (Xie et al., 2020). This
stands in contrast to heuristic text augmentation
strategies, like random word insertion, replacement,
swapping, and deletion (Wei and Zou, 2019; Xie
et al., 2020). Scanpaths inherently contain cogni-
tive information that better aligns with and comple-
ments textual information.

Notably, our proposed gaze module is only ac-
tive during training (fine-tuning), ensuring align-
ment with the standard usage of LMs after this
stage. This offers two key benefits. First, it fa-
cilitates seamless integration with existing LM-
based pipelines. Second, at deployment time, it
eliminates the need to either collect real-time gaze
recordings, which is costly and impractical for most
use-cases, or generate synthetic gaze data, which is
often computationally challenging for devices with
limited computational resources.

On the General Language Understanding Eval-
uation (GLUE) benchmark, our proposed gaze-
augmented fine-tuning outperforms both standard
text-only fine-tuning and traditional text augmenta-
tion baselines, without incurring additional compu-
tational effort at application time.

2 Method

In this section, we start out with a brief descrip-
tion of the conventional fine-tuning procedure for
Transformer-based encoders on downstream tasks.
Subsequently, we introduce our method, and ex-
plain how it incorporates synthetic scanpaths into
this fine-tuning procedure to enhance representa-
tion learning of Transformer-based encoders. The
overall model architecture is illustrated in Figure 1.

Preliminaries Our learning objective is to solve
standard multi-class classification or regression
problems. We assume access to a Transformer-

based pre-trained LM like BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019). In the conven-
tional fine-tuning approach for downstream tasks,
the pre-trained LM is adapted to a specific task
by fine-tuning all the parameters end-to-end us-
ing task-specific inputs and outputs. The final hid-
den state of the “[CLS]” token typically serves as
the aggregated sentence representation, which is
then fed into a newly initialized (series of) dense
layer(s) with output neurons corresponding to the
number of labels in the task. We minimize the
standard cross-entropy loss for classification and
mean-squared-error loss for regression, denoted as
Lstandard in Figure 1.

Scanpath Integration We extend the standard
fine-tuning framework by integrating a scanpath
module. The design of the scanpath module fol-
lows the prior work of Deng et al. (2023a) and
Yang and Hollenstein (2023). Specifically, the
Transformer encoder produces contextualized to-
ken embeddings for a given sentence, with each
embedding associated with its position index in
the sequence. Simultaneously, a synthetic scanpath
(fixation-index sequence) is generated based on
the same sentence using the scanpath-generation
model Eyettention (Deng et al., 2023b), which has
demonstrated effectiveness in simulating human-
like scanpaths during reading (see Appendix A for
detailed information about the Eyettention model).
The scanpath module then rearranges the token-
embedding sequence based on the simulated fix-
ation sequence. Subsequently, we use a scanpath
encoder, implemented as a layer of Gated Recurrent
Units (GRU), to process the reordered sequence.
The output from the last step of the scanpath en-
coder is then forwarded to the subsequent dense
layer. For the branch that takes the scanpath into
account, we introduce an additional loss term, re-
ferred to as Lscanpath in Figure 1, which represents
the cross-entropy loss for classification and the
mean-squared-error loss for regression.

Training Objective We combine the standard
purely text-based loss and the scanpath-integrated
loss with a trade-off factor λ. The final training
objective is defined as:

L := Lstandard + λLscanpath.

The joint optimization of the two branches facil-
itates the flow of cognitive information from the
scanpath module to the Transformer through back-
propagation, thereby improving its capability to
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K Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT 42.100.46 62.161.30 73.580.56 77.681.71 18.524.24 80.480.32 82.120.43 54.950.67 61.45
+EDA 47.741.10 64.890.56 76.230.34 80.481.26 14.052.84† 79.560.62† 82.680.40 55.740.30 62.6720

0

+SP 42.630.82 64.470.84 73.830.44 81.190.98 23.333.42 82.010.28 82.710.48 56.100.67 63.28

BERT 52.351.23 67.330.29 77.780.46 84.170.28 30.291.86 83.900.24 83.150.26 60.431.07 67.43
+EDA 56.370.88 68.030.33 78.480.32 85.370.17 28.891.58† 83.280.24† 84.000.28 60.430.49 68.1150

0

+SP 55.400.61 67.860.42 78.190.24 84.220.52 35.871.50 85.260.29 84.520.46 61.440.43 69.10

10
00

BERT 60.510.66 69.400.54 79.530.16 85.250.51 39.920.86 86.220.11 85.420.23 63.101.16 71.17
+EDA 61.580.50 69.910.35 80.490.16 86.100.34 31.041.89† 85.500.22† 86.370.44 64.261.16 70.66†

10
00

+SP 61.750.32 70.580.30 80.240.33 86.700.09 42.450.59 86.730.14 86.770.69 63.181.08 72.3

RoBERTa 40.060.68 68.590.54 77.210.60 88.560.39 30.292.55 82.840.43 83.370.16 55.811.15 65.84
+EDA 53.640.44 68.840.71 77.520.57 87.940.64† 23.304.16† 83.860.10 84.050.49 58.411.20 67.2020

0

+SP 44.900.63 69.050.69 78.140.68 87.110.86† 29.073.18† 82.420.24† 83.860.62 63.032.58 67.20

RoBERTa 65.200.46 73.420.48 81.540.22 89.610.35 39.590.95 86.680.30 86.090.36 62.241.92 73.05
+EDA 64.970.56† 71.570.45† 81.200.23† 89.270.35† 36.052.28† 86.460.26† 87.490.67 59.491.55† 72.06†50

0

+SP 64.890.42† 73.790.30 81.780.16 89.750.30 39.071.96† 86.290.07† 87.000.54 68.011.07 73.82

RoBERTa 70.910.61 75.630.29 83.430.12 90.690.24 44.780.65 88.060.19 88.850.19 64.911.26 75.91
+EDA 70.840.34† 74.590.52† 82.640.47† 90.230.38† 41.441.18† 87.790.15† 89.600.41 63.252.00† 75.05†

10
00

+SP 70.690.37† 75.400.16† 83.590.42 89.910.35† 44.431.88† 88.120.17 89.420.53 72.710.73 76.78

Table 1: Results on the GLUE benchmark with K = {200, 500, 1000} training instances. We use F1 for QQP and
MRPC, Spearman correlation for STS-B, Matthews correlation for CoLA, and accuracy for the remaining tasks.
We perform 5 runs with different random seeds and report the means along with standard errors. The dagger “†”
indicates performance that is inferior to standard fine-tuning.

process and comprehend text. Consequently, dur-
ing testing, we can remove the scanpath module
and generate predictions solely from the Trans-
former and the final dense layer. This ensures align-
ment with standard LM usage after the fine-tuning
stage, notably preserving its intrinsic efficiency and
compatibility.

3 Experiments

3.1 Evaluation Setup
Data Sets We conduct experiments on the GLUE
benchmark (Wang et al., 2018), including sen-
timent analysis (SST-2), linguistic acceptability
(CoLA), similarity and paraphrase tasks (MRPC,
STS-B, QQP), and natural language inference tasks
(MNLI, QNLI, RTE).

Model and Data Setup We use BERTbase (De-
vlin et al., 2019) and RoBERTabase (Liu et al.,
2019) as the base models in the experiments. We
primarily focus on a low-resource setting where
only limited labeled examples for the downstream
task are available. In such cases, effective fine-
tuning strategies are crucial to enable high-capacity
LMs to learn more informative representations
for enhanced performance in downstream tasks
(Zhang et al., 2021). For each task, we sample
a small subset of training instances with sizes
K = {200, 500, 1000}. We take an additional
1,000 instances from the original training set as the
development set and use the original development
set for testing. Additionally, we consider a high-

resource setting where we use the entire training
set and report the results on the GLUE develop-
ment sets. Appendix B gives further details about
training and hyper-parameter tuning.

Baselines We compare our proposed method
with the standard text-only fine-tuning using only
Lstandard as the training objective. Moreover, we
compare to the Easy Data Augmentation (EDA)
method (Wei and Zou, 2019), which randomly
performs word insertion, replacement, swap, and
deletion in the text to augment the training data.

3.2 Results

Low-Resource Performance Table 1 shows that,
overall, our scanpath-augmented fine-tuning (+SP)
consistently outperforms the standard fine-tuning
and EDA baselines, regardless of the number of
training instances. We observe performance gains
of 2-3% for BERT and 1-2% for RoBERTa over
standard fine-tuning. At the per-task level, our
method outperforms standard fine-tuning across all
tasks in all setups for BERT, and on five, five and
four out of eight tasks when trained with 200, 500,
and 1,000 instances, respectively, for RoBERTa.
The improvements are larger with fewer training
instances, indicating the efficacy of our method
in low-resource scenarios. Notably, for tasks like
CoLA and STS-B, where the EDA method yields
largely inferior results compared to standard fine-
tuning (Model=BERT), our method shows supe-
rior performance. This suggests that the scanpath,
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Model MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT 83.87 88.02 91.01 92.43 59.90 89.47 90.51 66.79 82.75
+EDA 83.82† 87.53† 90.79† 92.55 56.88† 88.67† 90.94 71.12 82.79
+SP 84.17 88.27 91.38 93.23 64.27 89.61 91.60 71.48 84.25

RoBERTa 87.77 89.03 92.88 94.84 61.48 90.58 93.15 77.98 85.96
+EDA 87.71† 88.58† 92.48† 95.41 58.88† 90.35† 92.93† 76.17† 85.31†
+SP 87.95 89.10 92.97 94.95 63.20 90.55† 92.93† 80.14 86.47

Table 2: Results on the GLUE development sets using all training samples. The dagger “†” indicates performance
that is inferior to standard fine-tuning.

which inherently contains cognitive information,
aligns with and complements textual information
effectively.

High-Resource Performance In Table 2, we
present the results of different methods when us-
ing all training instances. Our scanpath-augmented
fine-tuning (+SP) achieves the highest overall per-
formance. While the gains are not as significant as
in the low-resource setting for most tasks, notable
improvements persist for tasks like CoLA and RTE.
In contrast, the EDA method fails to enhance perfor-
mance over standard fine-tuning overall, which is
in line with findings from previous research (Long-
pre et al., 2020).

3.3 Ablation Studies
Location of the Scanpath Module We explore
the impact of integrating the scanpath module at dif-
ferent feature-representation levels on the model’s
performance. Specifically, we experiment with
placing the scanpath module after the 11th, 8th, 5th,
and embedding layer of the Transformer. In these
cases, it is straightforward to use the subsequent
Transformer layers to process the scanpath-guided
reordered sequence; we therefore remove the scan-
path encoder from the module. Moreover, we add
extra positional embeddings to the token embed-
dings after the rearrangement, providing informa-
tion about the positions of tokens in the sequence.

Table 3 shows that integrating the scanpath mod-
ule into the model, regardless of its placement,
yields improved performance compared to stan-
dard text-only fine-tuning. However, placing it at
a lower position within the Transformer results in
smaller gains. This may be attributed to the top
Transformer layers capturing richer semantic infor-
mation (Jawahar et al., 2019). Placing the scan-
path module at the top facilitates better access to
this information, potentially aiding in leveraging
cognitive information. Furthermore, adding extra
positional information to the reordered sequence
marginally impacts performance.

Model SST-2 CoLA MRPC RTE Avg.

BERT 92.43 59.90 90.51 66.79 77.41
+SP (-AfterLayer-12) 93.23 64.27 91.60 71.48 80.15

+SP-AfterLayer-11 92.89 63.38 91.19 71.84 79.83
+Pos Emb 93.00 62.91 91.09 70.40 79.35

+SP-AfterLayer-8 93.12 62.44 91.36 70.04 79.24
+Pos Emb 93.12 63.04 91.00 69.68 79.21

+SP-AfterLayer-5 93.12 61.34 90.88 70.40 78.94
+Pos Emb 92.89 61.62 91.03 71.48 79.26

+SP-Emb 93.23 61.11 90.82 68.23 78.35

Table 3: Comparison of the Scanpath Module at various
model locations: after the n-th Transformer layer (SP-
AfterLayer-n), and after the Transformer’s embedding
layer (SP-Emb). We add extra positional embeddings to
the token embeddings in the reordered sequence (+Pos
Emb).

Scanpath vs Random Order The core principle
of the scanpath module is to utilize the order of
fixations to integrate estimated cognitive informa-
tion into the model. To study whether the observed
gains truly arise from the order of fixations, we
compare our method which rearranges the token-
embedding sequence based on the scanpath to two
baselines: (1) shuffling the scanpath ordering, and
(2) randomly shuffling the token-embedding se-
quence. Table 4 shows that shuffling the scanpath
results in consistent performance drops across all
tasks, indicating the importance of the order of fix-
ations. Furthermore, excluding the scanpath and
randomly shuffling BERT token embeddings leads
to a large decrease in performance gain, underscor-
ing the importance of both fixated words and their
order in enhancing model performance.

Model SST-2 CoLA MRPC RTE Avg.

BERT 92.43 59.90 90.51 66.79 77.41
+SP 93.23 64.27 91.60 71.48 80.15

+Shuffle SP 93.00 63.81 91.34 71.12 79.82
+Random Shuffle 92.78 60.66 91.42 68.95 78.45

Table 4: Comparison of strategies for reordering token
embeddings: scanpath-guided (SP), shuffled scanpath-
guided (Shuffle SP), and (Random Shuffle).
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4 Conclusion

Our work contributes to the broad effort of enrich-
ing NLP models by grounding them in various do-
mains of experience. Specifically, we focus on
the use of scanpath data, demonstrating its vital
role in enhancing textual representation learning.
By extending the standard pre-trained LM fine-
tuning objective with a scanpath-integrated loss,
we ground the LM in human language processing.
Finally, our experiments show that the proposed
method surpasses standard fine-tuning and EDA
baselines on the GLUE benchmark, pointing to the
potentially promising future direction of enriching
textual representations with gaze data, especially
for low-resource tasks and languages (Reich et al.,
2024). However, it should be noted that the per-
formance gains achieved by incorporating gaze su-
pervision vary across different NLP tasks. Future
work may include further analysis of the impact of
incorporating cognitive information into language
models on specific downstream tasks.

Limitations

One limitation of our work is that the scanpath-
generation model—Eyettention—was pre-trained
on a single eye-tracking corpus with a relatively
small sample (see Appendix A). Participants read
sentences covering only a single domain and a nar-
row range of text difficulty levels. This limitation
may restrict the knowledge acquired by Eyettention
concerning human language processing, thus poten-
tially leading to limited benefits when integrating
simulated gaze data into LMs. In our experiments,
we observe that our proposed fine-tuning scheme
provides smaller benefits to RoBERTa than BERT,
even in the low-resource setting. The key differ-
ence between these models is the scale of unsuper-
vised pre-training. We hypothesize that RoBERTa
which is pre-trained on a larger scale of data has
learnt sufficiently robust language representations,
and to further improve its representation learning
capability, a more competitive scanpath-generation
model, trained on a large eye-tracking dataset that
covers diverse domains of texts, might be required.

Furthermore, it is worth exploring the perfor-
mance of the proposed approach when using other
state-of-the-art scanpath generators. Different ar-
chitectures have been developed recently in the
field (Bolliger et al., 2023; Khurana et al., 2023).
Exploring the strengths and weaknesses of differ-
ent scanpath generators when integrated into LMs

could provide valuable insight into the develop-
ment of improved scanpath generators for benefit-
ing NLP tasks.

Ethics Statement

It is essential to acknowledge potential privacy
risks in the collection, sharing, and processing of
human gaze data. Due to the highly individual na-
ture of eye movements, there exists a possibility of
extracting sensitive information such as a partici-
pant’s identity (Jäger et al., 2020; Makowski et al.,
2021), gender (Sammaknejad et al., 2017) and eth-
nicity (Blignaut and Wium, 2014) from gaze data,
posing a risk of privacy leakage. The use of syn-
thetic gaze data can help alleviate the necessity for
large-scale experiments involving human subjects,
although some amount of human gaze data remains
necessary to train generative models.
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A Model Details

Scanpath Generation Model For the utilization
of the scanpath generation model Eyettention, we
follow the work of (Deng et al., 2023a). The train-
ing process for the Eyettention model is conducted
in two phases. First, we pre-train the Eyetten-
tion model on the L1 subset of the CELER cor-
pus (Berzak et al., 2022), which comprises eye-
tracking recordings collected from native speakers
of English during natural reading sentences. Sec-
ond, the Eyettention model is fine-tuned on down-
stream NLP tasks. More specifically, in our pro-
posed scanpath-augmented fine-tuning scheme, we
fine-tune the Transformer encoder and the Eyetten-
tion model, as well as train the scanpath encoder
and the final dense layer from scratch. We tailor the
parameters of Eyettention for specific downstream
tasks, aiming to provide targeted inductive biases.
For further details on the Eyettention model, please
refer to (Deng et al., 2023b,a).

In our experiments, we evaluate our proposed ap-
proach using two distinct pre-trained LMs, BERT
and RoBERTa, each equipped with its unique to-
kenizer. The Eyettention model includes a pre-
trained LM in the text encoder for embedding the
stimulus sentence. The generated fixation sequence
(token index sequence) is based on the specific to-
kenizer associated with the pre-trained LM used.
To facilitate a direct application of the arrange-
ment operation based on the token-embedding se-
quence and fixation sequence without additional
complex conversion, we maintain consistency by
using the same pre-trained LMs in the Eyettention
text encoder when evaluating specific pre-trained
LMs as our base models. By replacing BERT with
RoBERTa in the Eyettention text encoder, we ob-
serve a similar validation loss in scanpath predic-
tion on the CELER corpus.

Scanpath Encoder The scanpath encoder is com-
posed of a unidirectional GRU layer (Cho et al.,
2014) with a hidden size of 768 and a dropout rate
of 0.1. We initialize the hidden state of the GRU
layer using the [CLS] token outputs from the final
layer of the pre-trained LMs.

B Training Details

We train all models using the PyTorch (Paszke et al.,
2019) library on an NVIDIA A100-SXM4-40GB
GPU using the NVIDIA CUDA platform. We
use the pre-trained checkpoints from the Hugging-

Face repository (Wolf et al., 2020) for the language
model BERTbase and RoBERTabase. The models are
optimized using the AdamW optimizer (Loshchilov
and Hutter, 2019). We set the maximum sequence
length to 128 and the training batch size to 32.

In the high-resource setting, we train the models
for 20 epochs and update the best checkpoint by
measuring validation accuracy every 500 steps. For
datasets with fewer than 500 steps per epoch, we
update and validate at the end of each epoch. We
tune the learning rates for BERT from {5e-5, 4e-5,
3e-5, 2e-5} and for RoBERTa from {3e-5, 2e-5, 1e-
5} for each task, following the recommendations
in the original paper (Devlin et al., 2019; Liu et al.,
2019).

In the low-resource setting, we train the mod-
els for 10 epochs and save checkpoints every
epoch. We use the same learning rate that was
found optimal in the high-resource setting for each
task. We perform 5 runs with different data seeds
({111,222,333,444,555}) for shuffling, while the
seed s=42 is consistently utilized for model training
across all models.

In both high-resource and low-resource settings,
for our proposed scanpath-augmented fine-tuning
method, we conduct a hyperparameter search on
the development set to determine the optimal trade-
off factor λ for each task, exploring values from
{1, 0.7, 0.5, 0.3, 0.1, 0.01, 0.001}. For the EDA
baseline, we tune the number of generated aug-
mented sentences added to the original training set,
exploring values from {1, 2, 4, 8, 16} based on the
recommendations in the original paper (Wei and
Zou, 2019).
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