
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 225–233
August 11-16, 2024 ©2024 Association for Computational Linguistics

Growing Trees on Sounds: Assessing Strategies
for End-to-End Dependency Parsing of Speech

Adrien Pupier, Maximin Coavoux, Jérôme Goulian, Benjamin Lecouteux
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

first.last@univ-grenoble-alpes.fr

Abstract

Direct dependency parsing of the speech signal
–as opposed to parsing speech transcriptions–
has recently been proposed as a task (Pupier
et al., 2022), as a way of incorporating prosodic
information in the parsing system and by-
passing the limitations of a pipeline approach
that would consist of using first an Automatic
Speech Recognition (ASR) system and then a
syntactic parser. In this article, we report on
a set of experiments aiming at assessing the
performance of two parsing paradigms (graph-
based parsing and sequence labeling based pars-
ing) on speech parsing. We perform this eval-
uation on a large treebank of spoken French,
featuring realistic spontaneous conversations.
Our findings show that (i) the graph-based ap-
proach obtain better results across the board
(ii) parsing directly from speech outperforms a
pipeline approach, despite having 30% fewer
parameters.

1 Introduction

Dependency parsing is a central task in natural lan-
guage processing (NLP). In the NLP community,
it has mostly been addressed on textual data, either
natively written texts or sometimes speech tran-
scriptions. Yet, speech is the main form of commu-
nication between humans, as well as arguably one
of the most realistic types of linguistic data, which
motivates the design of NLP systems able to deal
directly with speech, both for applicative purposes
and to construct corpora annotated with linguistic
information. When parsing speech transcriptions,
most prior work has focused on disfluency detec-
tion and removal (Charniak and Johnson, 2001;
Johnson and Charniak, 2004; Rasooli and Tetreault,
2013; Honnibal and Johnson, 2014; Jamshid Lou
et al., 2019), in an effort to ‘normalize’ the tran-
scriptions and make them suitable input for NLP
systems trained on written language. Using only
transcriptions as input is a natural choice from an

(a) The two models based on audio features, blue
arrow is AUDIO, red arrow is ORACLE.

(b) The two baseline models based on a pretrained
language model, blue arrow is PIPELINE (predicted
transcription), read arrow is TEXT (gold transcrip-
tions).

Figure 1: Overview of architectures with the 4 settings
described in Section 4.

225



NLP perspective: it makes it possible to use off-
the-shelf NLP parsers ‘as is’. However, predicted
transcriptions can be very noisy, in particular for
speech from spontaneous conversations. Further-
more, transcriptions are abstractions that contain
much less information than the speech signal. The
prosody, and the pauses in the speech utterances
are very important clues for parsing (Price et al.,
1991) that are completely absent from transcrip-
tions. Hence, we address speech parsing using
only the speech signal as input. With the popu-
larization of self-supervised method and modern
neural network architecture (pretrained transform-
ers), both speech and text domains now use similar
techniques (Chrupała, 2023). This convergence
of methodology has raised interest in other appli-
cations of speech models to go beyond ‘simple’
speech recognition. Thus, addressing classical NLP
tasks directly on speech is a natural step and design
NLP tools able to deal with spontaneous speech,
arguably the most realistic type of linguistic produc-
tion. In short, Our contributions are the following:

• we introduce a graph-based end-to-end depen-
dency parsing algorithm for speech;

• we evaluate the parser on Orféo, a large tree-
bank of spoken French that features sponta-
neous speech, and compare its performance to
pipeline systems and to a parsing-as-tagging
parser;

• we release our code at https://github.
com/Pupiera/Growing_tree_on_sound.1

2 Parsers and pre-trained models

We define speech parsing as the task of predicting
a dependency tree from an audio signal correspond-
ing to a spoken utterance.2

Our parser is composed of 2 modules (Figure 1a):
(i) an acoustic module that is used to predict tran-
scriptions and a segmentation of the signal in words
and (ii) a parsing module that uses the segmentation
to construct audio word embeddings and predict
trees.

Word level representations from speech To ex-
tract representations from the raw speech, we use a
pre-trained wav2vec2 model trained on seven thou-

1The code is also archived at https://doi.org/10.
5281/zenodo.11474162.

2For the sake of simplicity, we will use the term ‘sentence’
in the rest of the article, even though the very definition of a
sentence is debatable in the spoken domain.

sand hours of French speech: LeBenchmark7K3

(Parcollet et al., 2024). Parsing requires word-level
representations. We use the methodology of Pupier
et al. (2022) to construct audio word embeddings
from the implicit frame level segmentation pro-
vided by the CTC speech recognition algorithm
(Graves et al., 2006). The method consists in com-
bining the frame vectors corresponding to a single
predicted word with an LSTM.

Graph-based parsing We use the audio word
embeddings –whose construction is described
above– as input to our implementation of a classical
graph-based biaffine parser (Dozat and Manning,
2016): (i) compute a score every possible arc with
a biaffine classifier and (ii) find the best scoring
tree with a maximum spanning tree algorithm.

Sequence labeling The sequence labeling parser
follows Pupier et al. (2022) and is based on
the dep2label approach (Gómez-Rodríguez et al.,
2020; Strzyz et al., 2020), specifically the
relative POS-based encoding (Strzyz et al.,
2019). This method reduces the parsing prob-
lem to a sequence labeling problem. The head
of each token is encoded in a label of the form
±Integer@POS. The integer stands for the relative
position of the head considering only words of the
POS category. Eg., -3@NOUN means that the head
of the current word is the third noun before it.

3 Dataset

We use the CEFC-Orféo treebank (Benzitoun et al.,
2016), a dependency-annotated French corpus com-
posed of multiple subcorpora (CLESTHIA, 2018;
ICAR, 2017; ATILF, 2020; Mathieu et al., (2012-
2020; André, 2016; Carruthers, 2013; Cresti et al.,
2004; DELIC et al., 2004; Francard et al., 2009;
Kawaguchi et al., 2006; Husianycia, 2011), and re-
leased with the audio recordings. The treebank con-
sists of various types of interactions, all of which
feature spontaneous discussions, except for the
French Oral Narrative corpus (audiobooks). Orféo
features many types of speech situations (eg. com-
mercial interactions, interviews, informal discus-
sions between friends) and is the largest French spo-
ken corpus annotated in dependency syntax. The
annotation scheme has been designed specifically
for Orféo (Benzitoun et al., 2016) and differs from
the Universal Dependency framework in many re-

3https://huggingface.co/LeBenchmark/
wav2vec2-FR-7K-large
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gards (in particular: its POS tagset is finer-grained,
whereas the syntactic function tagset has only 14
relations). The syntactic annotations of Orféo were
done manually for 5% of the corpus and automati-
cally for the rest of the corpus. The train/dev/test
split we use makes sure that the test section only
contains gold annotations. Nevertheless, the sub-
corpora with gold syntactic annotations correspond
to low-quality recordings, which makes them a very
challenging benchmark.

4 Experiments

Experimental settings Our experiments aim
at: (i) comparing our graph-based parser to the
seq2label model, (ii) comparing to pipeline ap-
proaches with text-based parsers, and (iii) assessing
the robustness of word representations with control
experiments: using word boundaries (provided in
the corpus) as input for the audio models and gold
transcriptions for the text-based model. We com-
pare the following settings (illustrated in Figure 1):

• AUDIO: Access to raw audio only, the model
creates word-level representation from the
acoustic model as described in Section 2.

• ORACLE: Access to raw audio and silver4

word-level timestamps, making it easier to
create word representations and mitigating the
impact of the quality of the speech recognition
on parsing.

• PIPELINE: Access to predicted transcrip-
tions from the acoustic model only, then a lan-
guage model uses the transcriptions as input
for parsing. The training trees are modified
to take into account any deletion and inser-
tion of words. However, as for the speech
approach, deletion or insertion penalizes the
global score of the model since the model is
evaluated against the gold transcriptions and
not the modified one. The drawback of this
approach is that no information about prosody
or pauses is available.

• TEXT: Access to gold transcriptions: this
unrealistic setting provides an upper bound
performance in the ideal case (perfect ASR).

Both PIPELINE and TEXT settings use a French
BERT model: camembert-base5 (Martin et al.,
2020) to extract contextualized word embeddings.

4The corpus contained word-level timestamps that have
been automatically constructed through forced alignment.

5https://huggingface.co/almanach/
camembert-base

For PIPELINE and TEXT settings, on top of our
implementations, we use hops (Grobol and Crabbé,
2021), an external state-of-the-art graph-based
parser. The hops parser uses a character-bi-LSTM
in addition to BERT to produce word embeddings,
whereas our implementation does not (in an effort
to make both versions of our parser, text-based and
audio-based, as similar as possible).

Each parsing method for each modality is trained
with the same number of epochs, the same hyper-
parameters (see Table 4 and 5 of Appendix A), and
approximately the same number of parameters. We
select the best checkpoint on the development set
in each setting for the final evaluation. Our imple-
mentations use speechbrain (Ravanelli et al., 2021).

Metrics We use classical evaluation measures:
Word Error Rate (WER) and Character Error Rate
(CER) for speech recognition, POS accuracy (POS),
Unlabeled Attachment Score (UAS), and Labeled
Attachment Score (LAS) for dependency parsing.

We report results in Table 1 for the full corpus,
and in Table 2 for a sub-corpus of the test set (Vali-
bel) for which speech recognition is easier.

Evaluation To evaluate our architecture, we use
a modified version of the evaluation script provided
by the CoNLL 2018 Shared Task.6 The main limi-
tation of this evaluation protocol is that it requires
the two sequences to be exactly the same, which is
not the case when speech recognition is involved.
Thus, we modify this evaluation script to work even
when the two sequences to evaluate are not of the
same length. However, the modified script requires
an alignement between the 2 sequences. For our
purpose, we use an alignment based on edit dis-
tance, i.e. the same alignment strategy already used
to compute WER.

The modified script work by following this sim-
ple set of rules, depending on the edit operations:

• for word deletions: the predicted sequence is
shorter, thus add a dummy token in the output
sequence at the correct index to realign the
sequences;

• for word additions: the predicted sequence is
longer, thus add a dummy token in the gold
sequence at the correct index to realign the
sequence;

• for word substitutions: do nothing;

6https://universaldependencies.org/conll18/
evaluation.html
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Model WER↓ CER↓ POS↑ UAS↑ LAS↑ Parameters Pre-training

AUDIO SEQ2LABEL 35.9 22.3 73.0 65.7 60.4 315M + 34.9M Wav2vec2
AUDIO GRAPH 35.6 22.1 73.1 66.0 60.9 315M + 34.9M Wav2vec2

ORACLE SEQ2LABEL 36.3 22.2 75.6 68.7 62.7 315M + 34.9M Wav2vec2
ORACLE GRAPH 35.6 22.2 77.4 73.3 67.5 315M + 34.9M Wav2vec2

PIPELINE SEQ2LABEL 35.6 22.0 70.8 63.8 58.4 314M + 110M + 39.2M Wav2vec2 + CamemBERT
PIPELINE GRAPH 35.6 22.0 69.3 60.5 53.1 314M + 110M + 41.4M Wav2vec2 + CamemBERT
PIPELINE HOPS 35.6 22.0 72.4 65.8 61.0 314M + 110M + 100M Wav2vec2 + CamemBERT

TEXT SEQ2LABEL 0 0 96.9 88.8 85.7 110M + 39.2M CamemBERT
TEXT GRAPH 0 0 95.1 87.4 84.0 110M + 41.4M CamemBERT
TEXT HOPS 0 0 98.2 90.3 87.7 110M + 100M CamemBERT

Table 1: Evaluation on the full Orféo test set with the settings described in Section 4.

Model WER↓ CER↓ POS↑ UAS↑ LAS↑ Parameters Pre-training

AUDIO SEQ2LABEL 31.0 18.4 77.1 70.2 65.2 315M + 34.9M Wav2vec2
AUDIO GRAPH 30.6 18.2 77.0 70.9 66.2 315M + 34.9M Wav2vec2

ORACLE SEQ2LABEL 30.9 18.6 78.3 71.9 66.2 315M + 34.9M Wav2vec2
ORACLE GRAPH 31.4 19.2 79.8 76.0 70.4 315M + 34.9M Wav2vec2

PIPELINE SEQ2LABEL 30.5 18.2 74.7 67.7 62.4 314M + 110M + 39.2M Wav2vec2 + CamemBERT
PIPELINE GRAPH 30.5 18.2 73.5 64.2 57.3 314M + 110M + 41.4M Wav2vec2 + CamemBERT
PIPELINE HOPS 30.5 18.2 76.3 69.4 64.6 314M + 110M + 100M Wav2vec2 + CamemBERT

TEXT SEQ2LABEL 0 0 94.5 86.7 83.1 110M + 39.2M CamemBERT
TEXT GRAPH 0 0 96.8 88.3 84.5 110M + 41.4M CamemBERT
TEXT HOPS 0 0 98.2 90.3 87.1 110M + 100M CamemBERT

Table 2: Evaluation on the Valibel corpus (a subset of the test set).

WER↓ CER↓ POS↑ UAS↑ LAS↑ Parameters

Graph-tiny 35.74 22.32 72.97 65.86 60.79 314M + 11.7M
Graph-base 35.63 22.10 73.13 66.05 60.90 314M + 34.9M
Graph-large 35.60 22.02 73.17 65.96 60.67 314M + 67.6M

Table 3: Comparison of parsing metrics with the graph-
based architecture and different number of parameters.

• The syntactic information of the inserted to-
ken must differ from that of the corresponding
word in the other sequence. Thus every in-
sertion and deletion are considered parsing
errors.

Results: Speech recognition effect on parsing
quality In Table 1, we observe that both graph-
based and seq2label-based approaches give simi-
lar results when using no additional information,
which shows that the limiting factor of the model
is the speech recognition, rather than the parsing.

It is important to note that due to the nature of the
speech corpus (spontaneous discussions), the WER
is higher than what is typically expected on ASR
benchmarks (usually containing ‘read’ speech). As
a matter of fact, the ASR module used in our model
reaches around 8 WER when trained and evaluated

on CommonVoice5.1 (Ardila et al., 2020).
Further evidence of the limitation caused by the

speech recognition module is shown in Table 3:
changing the number of parameters of the graph-
based parser does not significantly alter perfor-
mance. Additionally, in Table 2 we observe a clear
improvement in all the parsing metrics when evalu-
ating on a test corpus with better speech recognition
performance. The model’s speech recognition abil-
ity directly affects the number of predicted tokens
(some words may be deleted or added), which in
turn impacts parsing.

Results: Difference between sequence label-
ing approach and graph-based approach It
is somewhat surprising that on the text modality
(PIPELINE), the sequence labeling parser outper-
forms the graph-based approach, since this is not
the case on the other modality (AUDIO). However,
it does not outperform a larger graph-based model
with an additional character-bi-LSTM such as hops.
The character bi-LSTM may mitigate the impact of
out-of-vocabulary words produced by misspelling
errors from the ASR.

A hypothesis about the graph-based model per-
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formance on AUDIO and the ORACLE settings may
be that it is able to extract more relevant syntactic
information from the signal due to its global de-
coding than simpler approaches such as sequence
labeling.

The largest gap between the two parsing ap-
proaches occur when more information about
speech segmentation is given to the models
(ORACLE), reducing the overall influence of the
speech recognition task on parsing.

Transcribe then parse or directly parse ? The
PIPELINE approach with hops does reach a similar
performance as the AUDIO model with our graph-
based parser. However, hops is a more complex
model not fully comparable to our graph-based
parser. Moreover, it has 50% as many parameters
as the model working directly on audio, requires 2
pretrained models, and is thus more expensive to
train.

Lastly, Table 2 shows that the AUDIO approach
outperforms the PIPELINE approach when the qual-
ity of the speech recognition improves. This result
suggests that parsing benefits from AUDIO as soon
as ASR reaches reasonable quality.

5 Conclusion

We introduced a graph-based speech parser that
takes only the raw audio signal as input and as-
sessed its performance in various settings and in
several control experiments. We show that a sim-
ple graph-based approach with wav2vec2 audio
features is on a par with or outmatches a more com-
plex pipeline approach that requires two pretrained
models.

From control experiments (ORACLE), we show
that acquiring good quality word representations di-
rectly from speech is the main challenge for speech
parsing. We will focus future work on improving
the quality of word segmentation on the speech
signal.

Limitations

We only evaluate our parsers on French, due to
the availability of a large treebank, hence our con-
clusions should be interpreted with this restricted
scope. We plan to extend to other languages and
treebanks in future work.

We did not do a full grid search for hyperparam-
eter tuning, due to computational resource limita-
tions and environmental considerations, although
we dedicated approximately the same computation

budget to each model in a dedicated setting. How-
ever, we acknowledge that not doing a full hyper-
parameter search may have affected the final per-
formance of the parsers.
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A Training Details

Table 4 and 5 describe in more detail the hyperpa-
rameters used for each parser for the different sets
of modalities.
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Parser SEQ GRAPH

Epoch 30 30
Batch size 8 8

Tuning parameters
Learning rate 0.0001 0.0001

Optimizer AdaDelta AdaDelta
Model name LeBenchmark7K

Encoder
Encoder layer 3 3

Dropout 0.15 0.15
Encoder Dim 1024 1024

Activation LeakyReLU LeakyRelu
Fusion LSTM

Layer 2 2
Dim 500 500

Bidirectional False False
Bias True True

LSTM parser
Layer 2 3
Dim 800 768

Bidirectional True True
Labeler (SEQ2LABEL)

Dim 1600
Layer 1

Linear head dim arc 846
Linear head dim POS 23
Linear head dim label 19

Arc MLP (GRAPH)
Dim 768

Layer 1
Linear head dim 768

Label MLP (GRAPH)
Dim 768

Layer 1
Head dim 768

POS MLP (GRAPH)
Dim 768

Linear head dim 24

Table 4: AUDIO and ORACLE SEQ2LABEL and GRAPH hyperparameters.
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Parser SEQ2LABEL GRAPH HOPS

Epoch 40 40 40
Batch size 32 32 32

Tuning parameters
Learning rate 0.001 0.001 0.00003

optimizer Adam Adam Adam
Embedding Last layer Last layer Mean First 12 layers

Embedding dim 768 768 768
BERT camembert_base

Char Bi-LSTM HOPS

Embedding dim 128
Word Embedding HOPS

Embedding dim 256
LSTM parser

Dim 768 768 512
Layers 3 2 3

Bidirectional True True True
Labeler (SEQ2LABEL)

Dim 1536
Layer 1

Linear head dim arc 846
Linear head dim POS 23
Linear head dim label 19

Arc MLP (GRAPH and HOPS)
Dim 768 1024

Layer 1 2
Linear head dim 768 768

Label MLP (GRAPH)
Dim 768 1024

Layer 1 2
Head dim 768 768

POS MLP (GRAPH)
Dim 768 1024

Linear head dim 24 24

Table 5: PIPELINE and TEXT SEQ2LABEL, GRAPH and PIPELINE hyperparameters.
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