
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 234–245
August 11-16, 2024 ©2024 Association for Computational Linguistics

Sketch-Guided Constrained Decoding for
Boosting Blackbox Large Language Models without Logit Access

Saibo Geng, Berkay Döner, Chris Wendler, Martin Josifoski, Robert West
EPFL

{saibo.geng, berkay.doner, chris.wendler, martin.josifoski, robert.west}@epfl.ch

Abstract

Constrained decoding, a technique for enforc-
ing constraints on language model outputs, of-
fers a way to control text generation without
retraining or architectural modifications. Its
application is, however, typically restricted to
models that give users access to next-token dis-
tributions (usually via softmax logits), which
poses a limitation with blackbox large language
models (LLMs). This paper introduces sketch-
guided constrained decoding (SketchGCD), a
novel approach to constrained decoding for
blackbox LLMs, which operates without access
to the logits of the blackbox LLM. SketchGCD
utilizes a locally hosted auxiliary model to re-
fine the output of an unconstrained blackbox
LLM, effectively treating this initial output as
a “sketch” for further elaboration. This ap-
proach is complementary to traditional logit-
based techniques and enables the application
of constrained decoding in settings where full
model transparency is unavailable. We demon-
strate the efficacy of SketchGCD through ex-
periments in closed information extraction and
constituency parsing, showing how it enhances
the utility and flexibility of blackbox LLMs for
complex NLP tasks.1

1 Introduction

Large language models (LLMs) have seen a re-
markable expansion in scope, being used for di-
verse tasks including tool interaction, SQL trans-
lation, robotic navigation and item recommenda-
tions, where adherence to specific constraints is
paramount (Bubeck et al., 2023; Schick et al., 2023;
Poesia et al., 2022; Shah et al., 2022; Zhang et al.,
2023; Hua et al., 2023). Despite their versatility,
LLMs often struggle with constraint adherence in
few-shot scenarios, leading to outputs that violate
task-specific requirements (Chen and Wan, 2023;
Agrawal et al., 2023; Huang et al., 2023).

1Code and data available at https://github.com/
epfl-dlab/SketchGCD

Figure 1: Overview of sketch-guided constrained de-
coding (SketchGCD). In the initial sketching phase,
a blackbox LLM generates a preliminary “sketch” an-
swer without applying any constraints. Then, in the
constrained decoding phase, an auxiliary model, the
constrained decoder, refines the sketch. The refined,
final output respects the specified constraints by con-
struction.

Constrained decoding offers a solution, restrict-
ing model outputs to respect predefined constraints
without necessitating model retraining or architec-
tural modifications (Poesia et al., 2022; Shin et al.,
2021; Beurer-Kellner et al., 2023; Scholak et al.,
2021; Geng et al., 2023). However, existing con-
strained decoding methods require access to the
model’s logits during inference, which is not al-
ways feasible in practice (cf. Appendix A). Since
the most powerful LLMs tend to be commercial
and blackbox (Lee et al., 2023), this has restricted
the application of constrained decoding methods.
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Contributions. To overcome this restriction,
we present sketch-guided constrained decoding
(SketchGCD), which bypasses the need for direct
logit access. SketchGCD uses a locally hosted
(lightweight) open-source LLM to refine the out-
puts of a (heavyweight) blackbox LLM to satisfy
the specified constraints. We validate our method
on closed information extraction, where the con-
straints require generating triples grounded in a
knowledge base, and constituency parsing, where
the constraints require generating tree-structured
outputs. Our experiments show that SketchGCD
significantly boosts the performance of LLMs and
beats previous approaches by a wide margin.

2 Method

SketchGCD splits the constrained decoding task
into two distinct phases: sketching and constrained
decoding.

During sketching, a sketcher—a powerful black-
box LLM denoted as Psk—is employed. It inter-
prets an instruction I alongside a set of demonstra-
tion pairs D = {(xi,yi)}n

i=1, producing a prelimi-
nary draft y∗ via unconstrained decoding:

y∗ ≈ argmax
y∈S

Psk(y | I,D,x), (1)

where S is the set of all possible sequences.
Constrained decoding is done by a constrained

decoder, a smaller-scale, locally hosted LLM Pcg.
Given an instruction Icg, a set of input–sketch–
output demonstrations Dcg = {(xi,yi,zi)}n

i=1, the
original input x, and the sketch y∗, it refines y∗ into

z∗ ≈ argmax
z∈S∩C

Pcg(z | Icg,Dcg,x,y∗), (2)

subject to constraints C. (Optionally, x and xi may
be omitted, with loss of information.)

The sketcher’s output y∗ is typically of high qual-
ity, encapsulating the necessary information for the
constrained decoder to produce the final sequence
z∗ that adheres to the constraints C. Given the
quality of y∗, the constrained decoder can be imple-
mented using a much smaller model, as its primary
task is to rewrite the sketch y∗ with the help of con-
strained decoding, thus facilitating deployment on
standard consumer-grade hardware.

On the contrary, classical, direct few-shot
prompting with constrained decoding would usu-
ally require a larger constrained generator Pcg to be
run locally, in order to find

w∗ ≈ argmax
w∈S∩C

Pcg(w | I,D,x). (3)

Another basic alternative, unconstrained few-
shot prompting (Brown et al., 2020), yields y∗ as
the end product.

SketchGCD builds on the expectation that the
constrained refined output z∗ should be at least as
good as both y∗ (as z∗ respects the constraints) and
w∗ (as Psk is a more powerful LLM than Pcg).

3 Experiments

In our experimental setup, we evaluate the effi-
cacy of SketchGCD by comparing it against two es-
tablished baselines: (1) few-shot-prompted uncon-
strained decoding with powerful blackbox LLMs
(Eq. 1) and (2) few-shot-prompted constrained
decoding with open-source LLMs (Eq. 3). The
SketchGCD method remains flexible and is agnos-
tic to the exact implementation of constrained de-
coding. Here we adopt the grammar constrained
decoding framework of Geng et al. (2023), but any
other constraining method can be plugged in.

In our evaluation, we distinguish between se-
quences that are valid (i.e., that satisfy the con-
straints) and those that are correct (i.e., those that
are equal to the intended output for the given input).
A valid output is a prerequisite for being correct,
but it is not the sole criterion for correctness.

3.1 Closed information extraction

Task description. The goal of closed information
triplet extraction (IE) is to extract a comprehensive
set of facts from natural-language text. Formally,
given a knowledge base represented by a knowl-
edge graph (KG) containing a catalog of entities E
and a catalog of relations R, the goal is to extract
the complete set yset ⊂E×R×E of fact triplets ex-
pressed in a given input text x. It is crucial that the
entities and relations in these triplets be accurately
grounded in the KG’s catalog. An example of this
process can be seen in Fig. 1. The instructions I
and Icg for the sketcher and constrained decoder,
respectively, are listed in Appendix D.1.

Constraints. We apply the constraints in Ap-
pendix D.2, which restrict entities (1.5 million) and
relations (857) to the Wikidata KG, and enforce the
structural constraint that outputs must be formatted
as sequences of entity–relation–entity triplets.

Datasets and evaluation metrics. We use the
Wiki-NRE (Trisedya et al., 2019) and SynthIE-
text (Josifoski et al., 2023) datasets (details in Ap-
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Wiki-NRE SynthIE-text
Precision Recall F1 Precision Recall F1

Without logit access
GPT-4 42.4± 2.7 44.9±3.0 43.6± 2.6 46.1± 2.3 44.4± 2.2 45.2± 2.2

+ SketchGCD 7B 38.7± 3.2 (↓3.7) 47.1± 2.9 (↑2.2) 46.1± 2.8 (↑2.5) 58.8± 7.9 (↑12.7) 47.3± 2.3 (↑2.9) 52.4± 2.2 (↑7.2)
GPT-3.5-Turbo 27.4± 2.0 27.4± 2.5 27.4± 2.5 24.6± 2.0 23.1± 1.9 23.8± 1.9

+ SketchGCD 7B 31.3± 3.3 (↑3.9) 46.4± 2.8 (↑18.7) 37.4± 2.8 (↑10.0) 49.5± 2.8 (↑24.9) 41.4± 2.1 (↑18.3) 45.1± 2.1 (↑21.3)
Claude 34.1± 3.1 28.2± 2.8 30.8± 2.7 27.0± 2.0 26.7± 2.0 26.8± 2.0

+ SketchGCD 7B 30.4± 2.5 (↓3.7) 40.6± 2.8 (↑12.4) 34.8± 2.9 (↑4.0) 51.4± 2.5 (↑24.4) 36.3± 2.2 (↑9.6) 42.5± 2.2 (↑15.7)
Claude-instant 24.5± 2.9 18.0± 2.2 20.8± 2.4 13.0± 1.7 15.2± 1.6 14.0± 1.6

+ SketchGCD 7B 44.9± 3.3 (↑20.4) 31.1± 2.7 (↑13.1) 36.7± 2.5 (↑15.9) 44.9± 2.6 (↑31.9) 31.1± 2.1 (↑15.9) 36.7± 2.1 (↑22.7)

With logit access
LLaMA-2-7B 18.3± 2.4 14.0± 1.8 15.9± 1.2 12.0± 1.5 8.6± 1.1 10.0± 1.3

+ SketchGCD 7B 23.6± 2.7 (↑5.3) 34.2± 2.9 (↑20.2) 28.0± 2.4 (↑12.1) 33.3± 2.5 (↑21.3) 21.0± 2.0 (↑12.4) 25.7± 2.1 (↑15.7)
+ CD 33.6± 2.7 32.9± 2.9 32.8± 2.5 34.0± 2.3 25.9± 2.0 29.4± 2.0

LLaMA-2-13B 22.6± 2.3 23.6± 2.4 23.1± 2.3 15.7± 1.6 12.7± 1.2 14.0± 1.5

+ SketchGCD 7B 28.8± 2.6 (↑6.2) 44.2± 3.0 (↑20.6) 34.9± 2.5 (↑11.8) 36.1± 2.0 (↑20.4) 25.1± 1.8 (↑12.4) 29.6± 1.8 (↑15.6)
+ CD 35.5± 2.6 39.1± 3.0 37.2± 2.5 39.7± 2.0 32.5± 1.8 35.7± 1.8

LLaMA-2-70B 26.1± 2.7 24.5± 2.3 25.7± 2.4 32.6± 2.0 26.9± 1.8 29.4± 1.8

+ SketchGCD 7B 26.9± 2.7 (↑0.8) 41.0± 2.6 (↑16.5) 32.5± 2.1 (↑6.8) 52.0± 2.0 (↑19.4) 37.6± 1.8 (↑10.7) 43.6± 2.0 (↑14.2)
+ CD 39.9± 2.6 46.5± 2.6 42.3± 2.1 62.7± 2.0 50.3± 2.0 55.8± 2.0

Table 1: Results for closed information extraction, in terms of triplet-based precision, recall, and F1-score (micro-
averaged, with bootstrapped 95% confidence intervals) on the Wiki-NRE and SynthIE-text datasets. The results
compare the effectiveness of SketchGCD (blue rows) against two baselines: (1) few-shot-prompted unconstrained
decoding with powerful blackbox LLMs (“without logit access”, white rows, Eq. 1) and (2) few-shot-prompted
constrained decoding (“CD”) with open-source LLMs (“with logit access”, Eq. 3). Four demonstrations are used in
few-shot prompting. LLaMA-7B serves as the constrained generator Pcg for SketchGCD.

pendix D.3). Performance is measured using micro
precision, recall, and F1-score.

Results. We make the following observations
based on Table 1: (1) The best blackbox LLMs
(e.g., GPT-4) demonstrate strong performance even
without constrained decoding, outperforming small
open-source LLMs (LLaMA-2 7B/13B/33B) with
constrained decoding. (2) Even without requir-
ing access to logits, SketchGCD still manages to
enhance the performance of LLMs significantly
across all models of any size. (3) In case where
logit access is available, constrained decoding is
more effective than SketchGCD, as shown by the
second half of the table. Given these observations,
we conjecture that, if logits were accessible for
blackbox LLMs, a further improvement in perfor-
mance could be achieved with constrained decod-
ing. However, without logit access, SketchGCD
provides an effective alternative.

Impact of constrained decoder. We investigate
the impact of the constrained decoder on the perfor-
mance of SketchGCD. As shown in Table 2, given
GPT-4 as the sketcher, the choice of the constrained
decoder can affect the performance of SketchGCD.
Contrary to our expectations, larger constrained

Wiki-NRE SynthIE-text
Prec Recall F1 Prec Recall F1

GPT-4 42.4 44.9 43.6 46.1 44.4 45.2
+ LLaMA-2-7B 38.7 57.1 46.1 58.9 47.3 52.4
+ LLaMA-2-13B 42.9 52.8 47.3 53.6 51.4 52.5
+ LLaMA-2-70B 35.2 54.0 42.6 58.1 53.1 55.5

Table 2: Impact of constrained decoder model (used
in step 2 of SketchGCD) on closed information extrac-
tion. GPT-4 is used as the sketcher in all cases.

decoder models do not always lead to better perfor-
mance. Our intuition is that step 2 of SketchGCD
(constrained decoding) is relatively simple, and the
additional capacity of larger constrained decoders
does not necessarily provide an advantage.

Impact of beam size. Our experiments show that
using beam search is critical for the performance
of both SketchGCD and classical constrained de-
coding. As shown in Table 3, employing beam
search (even with a minimal beam size of 2) signifi-
cantly improves performance over greedy decoding.
Larger beam sizes further enhance performance, al-
lowing the model to explore a larger search space,
but with a diminishing returns.

The following example illustrates the importance
of beam search. Suppose we are doing closed in-
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Wiki-NRE
LLaMA-2-7B + CD LLaMA-2-13B + CD

Prec Recall F1 Prec Recall F1

1 beam 29.9 22.6 25.8 32.7 32.3 32.5
2 beams 33.6 32.1 32.8 35.9 39.6 37.7
4 beams 33.7 32.9 33.3 36.0 38.5 37.2
8 beams 36.6 30.8 33.4 39.6 36.0 37.7

Table 3: Impact of beam size in beam search on closed
information extraction during classical constrained de-
coding. “1 beam” is equivalent to greedy decoding.

formation extraction on the sentence “Mona Lisa
is housed in the Musée du Louvre in Paris.” Our
entity catalog contains among other, the entities
Louvre Museum and Musée d’Orsay. During un-
constrained decoding, the model might generate
the following output with highest probability: “[s]
Mona Lisa [r] located in [o] Musée du Louvre”.
This output is invalid as the entity Musée du Louvre
is not in the entity catalog and should be rendered
as Louvre Museum instead.

With constrained decoding, the non-bold part
of the output remains unaltered, as it satisfies the
constraints. However, the bold suffix “du Louvre”
is rejected by constrained decoding because Musée
du Louvre is not in the entity catalog. The model
will be forced to sample from the allowed entity
catalog only, which can lead to “Musée d’Orsay”
as the output. In this example, greedy constrained
decoding was able to produce a valid yet incor-
rect output. On the contrary, had we used beam
search, the model would have been able to consider
both Musée du Louvre and Louvre Museum simul-
taneously, and would have been able to select the
correct entity, Louvre Museum, for the output.

3.2 Constituency parsing

Task description. Constituency parsing involves
breaking down a sentence into its syntactic com-
ponents to form a parse tree that represents the
sentence’s structure. For instance, the sentence “I
saw a fox” corresponds to the parse tree [S [NP
[PRP I]] [VP [VBD saw] [NP [DT a] [NN fox]]]].
For a visual representation of this tree, see Ap-
pendix E Fig. 5. The instructions I and Icg are
listed in Appendix E.1.

Constraints. We apply the context-free grammar
constraints in Appendix E.2 to ensure that brackets
are balanced, and labels are consistent.

Dataset and evaluation metrics. Our evaluation
uses the Penn Treebank test split. The parsing error

rate of LLMs, regardless of size, is generally high,
so we use only the shortest 25% of the samples
for evaluation (up to 128 tokens according to the
LLaMA tokenizer). We assess performance using
bracketing recall and precision, as well as tag ac-
curacy, as measured by the EVALB tool (Sekine
and Collins, 2008). Since these metrics are only
applicable to valid parse trees, and since models
typically generate valid trees only for simpler in-
puts, one needs to be careful while interpreting the
results, as weaker model may have better scores
because they only generate a small fraction of valid
parse trees (simpler ones) (Deutsch et al., 2019).

Results. The results in Table 4 show that even
advanced LLMs like GPT-4 struggle to generate
valid parse trees, especially for longer sentences.
The following observations can be made: (1) Both
SketchGCD and classical constrained decoding sig-
nificantly help the model generate more structurally
valid parse trees. (2) The other metrics mostly re-
main unchanged or slightly drop, as a larger validity
rate means more difficult examples are included in
the evaluation. (3) The most common errors in the
unconstrained setting are imbalanced brackets, in-
valid tags, and missing words, as shown in Table 5.
(4) With SketchGCD, the error rate for imbalanced
brackets and invalid tags is significantly reduced,
while the error rate for missing words increases
significantly.

Note that constrained decoding with a more so-
phisticated grammar, as described in Appendix E.2,
can achieve 100% valid trees and 100% valid tags
(see Table 9). However, as implementing such a
grammar is non-trivial, we use a simpler context-
free grammar here (see Appendix E.2) to mimic
the real-world scenario where a simpler might be
preferred over a perfect grammar.

4 Related work

Constrained decoding. Deutsch et al. (2019) intro-
duced a general constrained decoding framework
for text generation based on automata. Scholak
et al. (2021); Poesia et al. (2022); Geng et al. (2023)
implemented incremental parsing for domain-
specific tasks such as SQL generation. Beurer-
Kellner et al. (2023); Poesia et al. (2023) have pro-
posed iterative approaches to constrained decoding
using blackbox LLM APIs, albeit with potential
limitations such as excessive API calls (thus in-
creasing monetary cost), as detailed in Appendix C.
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Method Bracket prec* Bracket recall* Bracket F1* Tag accuracy* Tag validity Tree validity

Without logit access
GPT-4 76.6± 5.0 67.7± 4.5 71.9± 4.0 95.4± 0.9 93.6± 4.0 86.0± 4.0

+ SketchGCD 75.8± 2.4 (↓0.8) 67.8± 2.4 (↓0.1) 71.5± 2.4 (↓0.4) 95.3± 0.8 (↓0.1) 100± 0.0 (↑6.4) 92.5± 4.0 (↑6.5)
GPT-3.5-Turbo 68.2± 0.7 55.5± 1.1 61.2± 0.6 93.1± 0.5 91.7± 2.4 76.9± 5.2

+ SketchGCD 68.7± 3.2 (↑0.5) 56.6± 2.8 (↑1.1) 62.1± 2.0 (↑0.9) 92.6± 1.3 (↓0.5) 100± 0.0 (↑8.3) 81.5± 4.0 (↑4.6)
Claude 2.1 73.1± 3.3 63.1± 2.6 67.7± 2.5 94.5± 1.1 95.1± 2.5 62.6± 5.2

+ SketchGCD 71.6± 3.0 (↓1.5) 62.9± 2.5 (↓0.2) 66.9± 2.6 (↓0.8) 93.4± 1.3 (↓1.1) 100± 0.0 (↑4.9) 68.7± 5.5 (↑6.1)
Claude-instant 1.2 71.3± 2.4 59.1± 1.4 64.7± 1.9 89.6± 1.6 91.7± 2.3 56.6± 5.2

+ SketchGCD 66.6± 3.3 (↓4.7) 57.4± 3.1 (↓1.7) 61.6± 3.3 (↓3.1) 87.9± 2.5 (↓1.7) 100± 0.0 (↑8.3) 67.8± 3.7 (↑11.2)

With logit access
llama-2-7B 23.1± 4 10.4± 3 14.3± 4 14.9± 3 93.2± 3 32.1± 5

+ CD 28.5± 6 (↑5.4) 16.5± 3 (↑6.1) 20.9± 5 (↑6.6) 13.8± 2 (↓1.1) 100± 0 (↑6.8) 35.1± 5 (↑3.0)
llama-2-13B 33.4± 7 22.4± 4 26.8± 5 29.3± 4 95.5± 2 38.5± 6

+ CD 33.3± 6 (↓0.1) 21.8± 5 (↓0.6) 26.3± 5 (↓0.5) 34.0± 4 (↑4.7) 100± 0 (↑4.5) 43.4± 5 (↑4.9)
llama-2-70B 45.5± 6 37.7± 5 41.2± 5 55.5± 5 75.8± 5 40.4± 6

+ CD 39.8± 6 (↓5.7) 35.6± 4 (↓2.1) 37.6± 4 (↓3.6) 53.8± 4 (↓1.7) 100± 0 ((↑24.2)) 47.6± 5 (↑7.2)

Table 4: Results for constituency parsing, in terms of bracketing precision, recall, F1-score, tag accuracy, tag
validity, and parse tree validity (with bootstrapped 95% confidence intervals), on Penn Treebank test split. Only
subset of samples whose ground-truth parse trees are shorter than 128 tokens (per LLaMA tokenizer) are considered
(shortest 25% of the full dataset). Disclaimer: a weak method can have high precision by predicting very few valid
parse trees (simple ones), and a strong method can have low precision by predicting more valid parse trees including
complex ones (Deutsch et al., 2019). Four demonstrations are used in few-shot prompting. LLaMA-7B serves as
the constrained generator Pcg for SGCD. (* Considering only sentences with valid parse trees.)

Error type
Method InvalidTag Extra Imbal Missing

GPT-4 6.4% 0.4% 10.2% 2.3%
+ SketchGCD 0.0% 0.0% 2.6% 6.0%

GPT-3.5-Turbo 8.3% 2.6% 9.4% 2.3%
+ SketchGCD 0.0% 1.5% 1.9% 16.2%

Claude 2.1 4.9% 3.8% 3.4% 30.2%
+ SketchGCD 0.0% 3.0% 3.8% 29.8%

Table 5: Error analysis for constituency parsing on
the Penn Treebank dataset. InvalidTag refers to model
generating invalid tags, Extra to model adding extra
words absent from input, Imbal to model generating
imbalanced brackets, and Missing to model dropping
words from input.

Collaborative generation. Vernikos et al. (2023)
and Welleck et al. (2023) explored training smaller
language models to refine the outputs from larger
models for enhanced quality. The skeleton-of-
thought method (Ning et al., 2023) generates an
initial output skeleton and then concurrently de-
velops each segment. Grammar prompting (Wang
et al., 2023) creates a meta-grammar to guide the
output of LLMs in producing valid results.

5 Conclusion

So far, constrained decoding has been limited to
open-source models that provide access to their log-
its during generation. Overcoming this limitation,
we propose sketch-guided constrained decoding
(SketchGCD), a simple method for constrained de-
coding with blackbox LLMs that does not require
access to next-token logits during generation. By
using separate sketching and refinement phases,
SketchGCD allows to benefit from the power of
blackbox LLMs while still enforcing constraints.
Our work is complementary to existing methods for
constrained decoding and can be used in conjunc-
tion with them. Despite its simplicity, SketchGCD
achieves strong performance on tasks exhibiting
strong structural constraints, outperforming uncon-
strained generation by a large margin.

6 Limitations

The limitations of our method include the follow-
ing. First, SketchGCD adds an overhead as it re-
quires a constrained decoder to refine the sketches
after the sketching phase. Second, as LLMs keep
getting better, the benefits of SketchGCD might di-
minish on some tasks as the unconstrained model’s
performance improves. Third, just as classical con-
strained decoding, SketchGCD can only enforce
constraints at the structure level or the syntactic
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level, but not at the semantic level. The model
can still generate semantically incorrect outputs.
However, in many real-world applications, we have
observed semantic errors to be less common than
structural errors.
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A Blackbox LLM logit access

Model Logit bias Token probs MMLU

GPT-4-0614 Yes Top 5 86.4
GPT-3.5-Turbo-0614 Yes Top 5 70.0
Claude-2.1 No No 78.5
Claude-instant No No 73.4
PaLM-2-text-bison Yes Top 5 78.3

Table 6: The blackbox LLMs we use in our experiments
and the access they provide to the logit distribution.
MMLU is the mainstream metric for LLM benchmark-
ing.

Logit bias indicates whether the model’s API
allows user to pass in a logit bias vector to steer
the decoding process, i.e., write access to the logit
distribution. Token probs indicates whether the
model’s API allows user to access the model’s next
token probability distribution, i.e., read access to
the logit distribution. MMLU (Hendrycks et al.,
2021) is the mainstream metric for LLM bench-
marking.

B Grammar constrained decoding

Grammar-constrained decoding takes a formal
grammar G as input and ensures that the output
string w is a valid sentence in the formal language
L(G) defined by the grammar G. This process is
achieved through the integration of two key compo-
nents: a grammar completion engine (Poesia et al.,
2022) and a sampling method, e.g. greedy search,
nucleus sampling, etc. The grammar completion
engine is used to ensure the grammaticality of the
output string, while the LLM is used to ensure the
plausibility of the output string.

We use Grammatical Framework’s runtime pow-
ered completion engine (Ranta, 2019) with con-
strained beam search as the sampling method.

C Logit bias-based iterative decoding

Most blackbox LLM APIs do not provide complete
access to the model’s next token probability distri-
bution at each decoding step. Nonetheless, many
allow users to input a logit bias parameter to in-
fluence the decoding process, i.e., granting users
write access but not read access to the model’s log-
its at each decoding step. This parameter accepts
a vector of logits that is added to the logits of the
next token probability distribution at each decod-
ing step. By using the logit bias parameter, users
can direct the decoding process, effectively mask-
ing the logits of invalid tokens. This approach is

particularly effective for static constraints, such as
lexical constraints (Hokamp and Liu, 2017), where
the constraints remain constant throughout the de-
coding.

However, the logit bias parameter is a static array
and does not change during the decoding process.
This makes it challenging to apply dynamic con-
straints, which change as decoding progresses, such
as constraints involving membership in formal lan-
guages (Deutsch et al., 2019; Poesia et al., 2022;
Geng et al., 2023).

A straightforward but costly solution for dy-
namic constraints is to iteratively invoke the black-
box LLMs API with updated logit bias vectors at
each decoding step (Beurer-Kellner et al., 2023;
Poesia et al., 2023; Agrawal et al., 2023; Choi et al.,
2023). However, this approach is prohibitively ex-
pensive. Each API call generates only a single
token, and the cost is calculated based on both the
input and output tokens2. The expense of itera-
tively calling the blackbox LLMs API with new
context and prefix at each step scales quadratically,
being O(n2) where n is the length of the output
sequence. Although methods like those proposed
by Beurer-Kellner et al. (2023) and Poesia et al.
(2023) use speculation to reduce the number of
API calls, the costs can remain high, especially
when the constraints are complex.

D Task 1. closed information extraction

In this section, we provide more details about the
closed information extraction task.

D.1 Task instruction
We provide the instruction for the IE task in Fig-
ure 2. The few-shot demonstrations are rather long
and thus we do not include them here. The full
prompt is available in our code repository.

D.2 Grammar
The grammar is defined as follows, where V rep-
resents the set of variables, Σ the set of terminal
symbols, and P the set of production rules:

V = {S,T,A,B,C,E,R},Σ= {tokens}
P = {S → [ST |ϵ],T → [ABC[e]]

A → [[s] E],E → (entity1|entity2|...),
B → [[r] R],R → (rel1|rel2|...)
C → [[o] E], ϵ→ </s>}

2See https://openai.com/pricing for details.
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Extract the subject-relation-object triples
in fully-expanded format from texts below.

The subjects and objects are entities in
Wikidata, and the relations are Wikidata

properties. Here are a few examples.

(a) Instruction for sketcher

In this task, you will be provided with texts
along with draft annotations that represent
extracted information triples in the form
of subject-relation-object. Your role is to
refine these triples to ensure completeness

and accuracy. Here are a few examples.

(b) Instruction for constrained decoder

Figure 2: Instructions for parsing tasks.

The outputs are structured as a sequence of
triplets, where each triplet is separated by a special
marker [e]. Every triplet consists of a subject, a
relation, and an object. These elements are each
preceded by a special marker: [s] for the subject,
[r] for the relation, and [o] for the object, re-
spectively. The subject and object are pre-defined
Wikidata entities, and the relation is a pre-defined
Wikidata property. This grammar is classified as
context-free, more specifically, as a regular gram-
mar.

D.3 IE datasets

The original SynthIE-text and Wiki-NRE datasets
comprise 50,000 and 30,000 samples, respectively.
To minimize the evaluation cost on Large Language
Models (LLMs), we use a smaller subset consisting
of 1,000 samples from each dataset.

As noted by Josifoski et al. (2023), the Wiki-
NRE dataset displays a significant skew in its re-
lations distribution: the top 10 relations constitute
92% of the triplets, with the top 3 alone accounting
for 69%. To ensure our test set accurately reflects
the overall dataset, we have downscaled it to 1,000
samples to balance the distribution of relations, as
shown in Fig. 3

The SynthIE-text dataset, synthesized by re-
verse prompting Text-Davinci-003 with triplets
from Wikidata, stands out due to its substantial
size, diverse content, and high-quality human rat-
ings, as highlighted in (Josifoski et al., 2023).
This contrasts with prior datasets such as REBEL
(Huguet Cabot and Navigli, 2021), whose annota-

tion quality is low (Josifoski et al., 2022). However,
a potential minor bias may exist towards GPT-4
and GPT-3.5-Turbo, as SynthIE-text was generated
from a model in their family, Text-Davinci-003.
Despite this, we maintain that this does not com-
promise the validity of our method, given that our
primary focus is on the comparative performance
with and without the application of SketchGCD.

(a) Original relation distribution in WikiNRE test set

(b) Stratified relation distribution in WikiNRE test set

Figure 3: Relation distribution in WikiNRE before and
after stratification.

D.4 Discussion of GPT-4 on cIE
An intriguing finding is that SketchGCD’s perfor-
mance on the SynthIE-text dataset using GPT-4
(F1=45.6) is marginally lower than that achieved
with few-shot prompting alone, without con-
strained decoding (F1=45.8). Our analysis suggests
that the constrained decoder occasionally strug-
gles to adhere to the sketcher’s outline, resulting
in fewer triplets than expected in the output. This
observation is consistent with Wang et al. (2023)’s
findings, where constrained decoding was noted to
reduce the diversity of the generated samples.

More critically, since SynthIE-text is syntheti-
cally generated by reverse prompting Text-Davinci-
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Ratio of invalid triplets
Wiki-NRE SynthIE-text

Entity Rel Triplet Entity Rel Triplet

GPT-4 19.4 21.9 45.2 7.6 28.1 37.3
GPT-3.5-Turbo 23.4 50.2 65.8 13.8 52.5 63.3
Claude 17.0 41.1 55.5 17.4 52.8 64.6
Claude-ins 19.6 48.4 62.6 13.8 43.3 52.7

SketchGCD 0 0 0 0 0 0

Table 7: Triplets grounding analysis. We report the
percentage of generated entities, relations, and triplets
that are not present in the knowledge catalogue in few-
shot unconstrained setting. The grounding precision for
constrained methods is 100% by construction, and thus
0% invalid triplets.

003 with triplets from Wikidata, its text doesn’t
exhibit the naturalness characteristic of the Wiki-
NRE dataset. For instance, sentences in SynthIE-
text often resemble direct copies with slight alter-
ations from the original entity and relation names.
This tendency facilitates the LLMs’ task of ground-
ing entities and relations in the Knowledge Graph
(KG), thereby diminishing the necessity for con-
strained decoding.

However, in real-world scenarios, text is typi-
cally more intricate, and grounding entities and
relations in the KG is not as straightforward. De-
spite this, the overall performance enhancement
provided by SketchGCD across various models re-
mains noteworthy, averaging gains of up to 10.7%
and 8.1% on Wiki-NRE and SynthIE-text, respec-
tively.

D.5 Grounding analysis

In this study, we delve into the grounding efficacy
of GPT-4’s output. A triplet is deemed grounded
when both its subject and object entities, as well
as the relation, are present in the KG. Furthermore,
for a grounded triplet to be considered correct, it
must also be part of the target triplet set.

Given that being grounded is essential but not
solely adequate for being correct, it is crucial to
assess how well GPT-4’s output aligns with the
KG. According to the data presented in Table 7,
we observe that a significant portion of the output
triplets from GPT-4 are not grounded in the KG,
amounting to 45% and 37% on the Wiki-NRE and
SynthIE-text datasets, respectively. This finding
sheds light on the importance of constrained decod-
ing, as it ensures that the output is grounded in the
KG, thereby increasing the likelihood of validity.

E Task 2. constituency parsing

In this section, we provide more details about the
constituency parsing task.

E.1 Task instruction
We provide the instruction for the CP task in Fig-
ure 4. The few-shot demonstrations are rather long
and thus we do not include them here. The full
prompt is available in our code repository.

Perform constituency parsing on the
provided sentences in accordance

with the Penn TreeBank annotation
guidelines. Here are a few examples.

(a) Instruction for sketcher

In this task, you will be provided with a
draft annotations that represent the parse

tree of a sentence in Penn TreeBank format.
Your task is to rewrite the parse tree and
fix error if any. Here are a few examples.

(b) Instruction for constrained decoder

Figure 4: Instructions for parsing tasks.

E.2 Constraints and grammar

(a) The correct con-
stituency parse tree

(b) A grammatical but in-
correct parse tree

Figure 5: Parse trees for the sentence “I saw a fox”.

Here we describe the grammar used to constrain
the generative constituency parsing task.

Linearization. A constituency parse tree is inher-
ently a recursive structure. To effectively represent
this tree as a sequence of tokens for generation by
a Large Language Model (LLM), a linearization
is required. Two common strategies for this lin-
earization are pre-order traversal and post-order
traversal.

We have chosen to adopt the pre-order traversal
strategy. This approach is also the default method
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used in the PYEVALB tool (Sekine and Collins,
2008) and in the construction of the Penn Treebank
(Marcus et al., 1993). As an illustration, the parse
tree in Fig. 5a is linearized in the following format:
[S [NP [PRP I]] [VP [VBD saw] [NP [DT a] [NN
fox]]]].

The linearised parse tree needs to satisfy the
following structural constraints:

• Completeness: Every word in the sentence
needs to be included in the parse tree.

• Balanced brackets: At any point in the lin-
earized parse tree, the right bracket ] should
close a previously unclosed left bracket [
and every left bracket [ should be eventually
closed by a right bracket ].

• Label consistency: The label of terminal and
non-terminal nodes needs to be consistent
with the Penn Treebank format.

Simple Context-Free Grammar. The tree struc-
ture of the parse tree is usually captured by a
context-free grammar as shown in Table 8.

root ::= tree;
tree ::= node;
node ::= clause | phrase | word;
clause ::= spaced_open_parenthesis, space,

clause_tag, function_tag*,
index?, node*,

spaced_close_parenthesis;
phrase ::= spaced_open_parenthesis, space,

phrase_tag, function_tag*,
index?, node*,
spaced_close_parenthesis;

word ::= spaced_open_parenthesis, space,
word_tag, space, actual_word,
spaced_close_parenthesis;

clause_tag ::= "S" | ... | "SQ";
phrase_tag ::= "ADJP" | ...| "WHADVP";
word_tag ::= "CC" |...|"WRB";

function_tag ::= "-ADV" |... | "-TTL";
actual_word ::= "xxx";
index ::= "-", [1-9], {0-9};
spaced_open_parenthesis ::= space, "(";
spaced_close_parenthesis ::= space, ")";
space ::= " ";

Table 8: Lite Context-Free Grammar for constituency
parsing.

Sophisticated Regular Grammar. However, the
context-free grammar is not sufficient to capture
the completeness constraint, motivating the use of
a more restrictive grammar. Geng et al. (2023) pro-
posed a sophisticated regular grammar to enforce

S → B0,0

Bi, j → [α(Bi, j+1 |Ci, j+1)];

Ci, j → xi (Ci+1, j | Ei+1, j);

Cn, j → En, j;

Ei, j+1 →] (Ei, j | Bi, j);

En, j+1 →]En, j;

En,0 → ε;

whereα= (S | NP |V P | . . .) andxi ∈ tokens

Figure 6: Sophisticated Regular Grammar for con-
stituency parsing.

the constraints of completeness, balanced brackets,
and label consistency as shown in Fig. 6.

The grammar falls into the category of regu-
lar grammar and is input-dependent. it repro-
duces the input sentence, represented as a sequence
x = ⟨x0, . . . ,xn−1⟩ of words, in left-to-right order,
interspersing it with node labels and balanced
brackets. In order to guarantee balanced brackets,
the non-terminals Bi, j count the number of opened
left brackets [ using the second subscript index
j, and the rules ensure that the number of closed
brackets can never exceed the number of previously
opened brackets.

F Data contamination risk

There is a rising concern over the data contam-
ination risk of evaluating LLMs on downstream
tasks. The datasets of our experiments are pub-
licly available on internet so there is a risk that the
models may have seen the data, such as the ground
true parse tree of Penn Treebank during pretraining.
However, the risk of data contamination is indepen-
dent of our method and doesn’t affect the validity
of our conclusions.
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Method Bracket-Prec Bracket-Recall Bracket-F1 Tag Accuracy Valid Tag Valid Tree

GPT-4 76.6 67.7 71.9 95.4 93.6 86.0
+ Lite Context-Free Grammar 75.8 67.8 71.5 95.3 100 92.5
+ Sophisticated Regular Grammar 69.3 63.1 66.1 98.5 100 100

GPT-3.5-Turbo 68.2 55.5 61.2 93.1 91.7 76.9
+ Lite Context-Free Grammar 68.7 56.6 62.1 92.6 100 81.5
+ Sophisticated Regular Grammar 61.2 49.4 54.7 96.0 100 100

Claude 73.1 63.1 67.7 94.5 95.1 62.6
+ Lite Context-Free Grammar 71.6 62.9 66.9 93.4 100 68.7
+ Sophisticated Regular Grammar 52.1 45.4 48.5 75.9 100 99.2

Claude-instant 71.3 59.1 64.7 89.6 91.7 56.6
+ Lite Context-Free Grammar 66.6 57.4 61.6 87.9 100 67.8
+ Sophisticated Regular Grammar 59.6 49.2 53.9 84.9 100 99.5

Table 9: Constituency parsing with two different grammar constraints, measured in terms of bracketing recall,
precision, F1-score, and tag accuracy (with bootstrapped 95% confidence intervals) †Only subset of samples whose
ground-truth parse trees are shorter than 128 tokens(LLaMAtokenizer) are considered, which accounts for shortest
25% of the samples.
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