
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 287–301
August 11-16, 2024 ©2024 Association for Computational Linguistics

Soft Self-Consistency Improves Language Model Agents

Han Wang∗ Archiki Prasad∗ Elias Stengel-Eskin∗ Mohit Bansal
UNC Chapel Hill

{hwang, archiki, esteng, mbansal}@cs.unc.edu

Abstract

Generations from large language models
(LLMs) can be improved by sampling and scor-
ing multiple solutions to select a final answer.
Current “sample and select” methods such as
self-consistency (SC; Wang et al., 2023) rely
on majority voting to score answers. However,
when tasks have many distinct and valid an-
swers, selection by voting requires a large num-
ber of samples. This makes SC prohibitively
expensive for interactive tasks that involve
generating multiple actions (answers) sequen-
tially. After establishing that majority voting
fails to provide consistent gains on such tasks,
we demonstrate how to increase success rates
by softening the scoring criterion. We intro-
duce Soft Self-Consistency (SOFT-SC), which
replaces SC’s discontinuous scoring with a
continuous score computed from model like-
lihoods, allowing for selection even when ac-
tions are sparsely distributed. SOFT-SC im-
proves both performance and efficiency on
long-horizon interactive tasks, requiring half as
many samples as SC for comparable or better
performance. For a fixed number of samples,
SOFT-SC leads to a 1.3% increase over SC in
absolute success rate on writing bash programs,
a 6.6% increase on online shopping (WebShop),
and a 4.7% increase for an interactive house-
hold game (ALFWorld). Finally, we show that
SOFT-SC can be applied to both open-source
and black-box models.1

1 Introduction

The performance of large language models (LLMs)
can be greatly improved by generating multiple
samples and scoring their answers before mak-
ing a final selection. One popular and effective
“sample and select” approach is Self-Consistency
(SC; Wang et al., 2023), which leverages chain-of-
thought prompting (Wei et al., 2022) to generate

*Equal Contribution
1Our code is publicly available at: https://github.com/

HanNight/soft_self_consistency.

multiple solutions for each input query and then
determines the final answer via a majority vote.
While SC has demonstrated consistent benefits on
question-answering datasets, we find it provides
minimal gains in several interactive settings where
LLMs act as agents to generate a sequence of ac-
tions. SC’s selection mechanism relies on exact
match in order to tally votes, i.e., it scores answers
based on their frequency. However, in interactive
domains, multiple distinct and valid answers – in
this case, actions – can be generated at each step.
This diminishes the effectiveness of SC over ac-
tions because the likelihood of generating identical
actions decreases as the number of plausible op-
tions grows. For instance, a model tasked with
predicting bash commands based on user queries
has a very large action space (all bash commands)
and could generate semantically equivalent com-
mands that differ in their surface form (e.g., ls
-ltr vs ls -trl).2 Therefore, deriving a signal
from voting in LLM-agent domains would require
sampling a large number of actions at each step
throughout a lengthy trajectory, reducing efficiency
and making SC prohibitively expensive (cf. Fig. 1).

We hypothesize that relaxing the strict scoring
criterion from votes tallied by exact match to a
continuous score will address the shortcomings of
SC in two ways: (i) improving task performance
in sparse action spaces; and (ii) increasing sample
efficiency, i.e., higher success rates with fewer sam-
ples. We propose Soft Self-Consistency (SOFT-SC),
a continuous relaxation of exact-match sample and
select methods. Unlike match-based voting, SOFT-
SC handles cases without a unique majority answer.
Crucially, for a white-box model, SOFT-SC incurs
no additional cost and requires no external tests or
metrics, as the probabilities used are already pro-
duced. Finally, we show that SOFT-SC can be used

2For Bash program prediction with five samples, SC fails
to produce a single majority action 86% of the time.

287

https://github.com/HanNight/soft_self_consistency
https://github.com/HanNight/soft_self_consistency

5 10 15 20
(a) Bash

25

30

35
Su

cc
es

s R
at

e

k 5 10 15 20
(b) WebShop

15

20

25

SC Soft-SC

5 10 15 20
(c) ALFWorld

10

20

Figure 1: Compared to self-consistency (SC), our method SOFT-SC, exhibits better scaling with respect to the
number of samples k, generally outperforming SC for each k. We use CodeLlama-34B (Roziere et al., 2023) to
compute success rates on the test set of Bash and WebShop. Due to computational cost, for ALFWorld we use
Mistral-7B (Jiang et al., 2023) on a 30-task subset of the test set.

to rescore black-box models’ outputs and can be
integrated into an efficient variant of SC.

We test SOFT-SC on three diverse interactive
domains: Bash (Yang et al., 2023), WebShop (Yao
et al., 2022), and ALFWorld (Shridhar et al., 2021).
Summary of Key Findings:
1. We demonstrate that SOFT-SC outperforms SC

with the same number of samples, e.g., by up to
6.6% on WebShop using CodeLlama-34B.

2. SOFT-SC exhibits better sample efficiency i.e.,
produces better performance than SC with fewer
samples (cf. Fig. 1).

3. SOFT-SC scales better with model size than
SC, increasing performance by 8.8% on Bash
as model size increases from 7B to 70B, as op-
posed to only 5.8% improvement by SC.

4. SOFT-SC can be combined with smaller LMs
to score generations from black-box models.
We observe that SOFT-SC outperforms SC on
closed-source models such as GPT-4 (OpenAI,
2023) by up to 4% on WebShop.

2 Methodology

2.1 Soft Self-Consistency (SOFT-SC)

Following Wang et al. (2023), for a given in-
put x containing the task description, we gen-
erate k solutions using temperature-based sam-
pling (Ackley et al., 1985; Ficler and Goldberg,
2017). To perform selection, we score the action
yi resulting from each solution using the aggre-
gated probability of the action’s tokens. For an
action y composed of tokens y1, . . . , yn, we de-
fine score(y) = f

(
{PLM(yi|y<i,x) ∀i ∈ [1, n]}

)

where f ∈ {min,mean, product}. We choose
the aggregation method based on dev set perfor-
mance. We use mean probability for Bash and
ALFWorld and min probability for Webshop. We
then choose an action ŷ with the highest score, i.e.,
ŷ = argmaxkj=1 score(yj). Further details and

results for f options are provided in Appendix A.6.

2.2 Adaptive Soft Self-Consistency
To improve efficiency, Aggarwal et al. (2023) intro-
duce adaptive-consistency, which reduces the num-
ber of samples (k) by approximating the final vote
tally per example via sampling discrete vote distri-
butions from a prior and stopping when the samples
converge. Instead of sampling from discrete dis-
tributions, we choose k by aggregating likelihood
scores until a score threshold τ is reached. Follow-
ing Stengel-Eskin and Van Durme (2023b), we use
the minimum probability for comparing with the
threshold. We sample one action at a time, stopping
when

∑k
j=1 min|yj |

i=1PLM(yi|y<i,x) ≥ τ , where τ
is chosen on the dev set (cf. Appendix A.8).

2.3 Datasets
We test on three representative English LLM agent
datasets; further details can be found in Appen-
dices A.3 to A.5.

Bash. We use Yang et al. (2023)’s bash data,
which consists of 200 user queries or instructions
that can be completed via bash actions. We split
these into 50 dev and 150 test. The agent’s per-
formance is measured via success rate. Bash rep-
resents a domain with a large action space, as the
space of possible bash commands is very large,
and many of the queries involve stringing multiple
functionalities together into a complex command.

WebShop. WebShop (Yao et al., 2022) is a sim-
ulated online shopping website environment. Suc-
cess is measured both by a score ∈ [0, 1] reflect-
ing how well the purchased product matches the
user’s criteria; the success rate is the rate of perfect
scores. Following Zhou et al. (2023), we report
performance on a subset of 50 user queries. Web-
Shop also has a large action space, as there are 1.18
million real-world products to select from.

288

Method # Samples (k) Bash WebShop ALFWorld

SR Score SR SR

Greedy decoding 1 27.1± 1.7 33.1± 2.8 16.0± 4.0 18.7± 2.1
Self-Consistency (Wang et al., 2023) 10 28.7± 3.1 36.4± 3.3 18.0± 5.3 20.5± 2.9

Adaptive-Consistency (Aggarwal et al., 2023) [5.0, 7.3]† 27.3± 2.4 38.8± 2.4 19.3± 4.2 20.8± 3.2

SOFT-SC 5 28.2± 3.7 44.2± 3.8 24.0± 2.0 22.7± 2.5
SOFT-SC 10 30.0± 2.4 46.0± 6.0 24.6± 4.2 25.2± 3.2

Adaptive SOFT-SC [5.0, 5.9]† 30.0± 2.7 44.5± 4.1 23.3± 2.3 23.9± 2.9

Table 1: Success rates and scores from CodeLlama-34B, averaged across three seeds (± standard deviation). With a
fixed k = 10, SOFT-SC outperforms self-consistency by an average of 4.2%, across datasets. Adaptive sampling
uses fewer samples on average than adaptive-consistency while also increasing performance.
†Adaptive methods result in differing average k for each dataset, range reported here.

ALFWorld. ALFWorld (Shridhar et al., 2021) is
a text-game adaption (Côté et al., 2019) of the em-
bodied ALFRED benchmark (Shridhar et al., 2020)
in which an agent performs household chores (e.g.,
cleaning a mug) via a series of low-level actions.
We evaluate on 134 unseen tasks and report the
overall success rate. ALFWorld requires agents
to generate long action sequences, involving thou-
sands of valid actions at each step for some tasks.

Metrics. All these interactive tasks provide a
goal and associated environments to execute the
LLM-generated actions to accomplish said goal.
After executing each action, the environment re-
turns the observation and reward. The observation
is a natural language description of the state of the
system after executing the action, and the reward in-
dicates if the goal was successfully achieved. The
reward can be used to obtain a success rate, the
percentage of examples with the maximum reward
possible. Further details on the rewards for each
domain can be found in Appendices A.3 to A.5.

2.4 Baselines

We compare SOFT-SC against the following:

Greedy Decoding. We sample a single solution
with greedy decoding on all datasets; all prompts
are given in Appendix C. This is equivalent to both
SC and SOFT-SC when k = 1, as no selection is
needed for a single sample.

Self-Consistency (SC). We use self-consistency
as described by Wang et al. (2023), with majority
voting as the selection criterion. We tally votes
towards each response using exact match.

Adaptive-Consistency (AC). As described in
Sec. 2.2, Aggarwal et al. (2023) introduce an adap-
tive version of SC that improves efficiency by adap-

tively reducing the number of samples. We imple-
ment their Beta estimator for all of our settings.
Further details can be found in Appendix A.8.

3 Results and Discussion

Unless mentioned otherwise, we report average
performance on 3 random seeds for each test set.

For the same number of samples k, SOFT-SC
outperforms SC. In Table 1, we compare SOFT-
SC against the baselines on all datasets using
CodeLlama-34B on the test sets. While both SC
and SOFT-SC boost performance over the greedy
decoding baseline, we find SOFT-SC results in
a larger margin of improvement, 8.6% on Web-
Shop (SC only yields 2%). For the same number
of samples (k=10), SOFT-SC outperforms SC by
1.3%, 6.6%, and 4.7% (success rate) on Bash, Web-
Shop, and ALFWorld respectively. Comparing the
adaptive version of SOFT-SC with Aggarwal et al.
(2023), our likelihood-based scores not only im-
prove efficiency by generally using fewer samples,
but also outperforms AC, e.g., by 4% on WebShop
and 3.1% on ALFWorld.

SOFT-SC exhibits better scaling with k. In Ta-
ble 1, even with k=5, SOFT-SC can outperform
SC with k=10, e.g., with 2.2% improvement on
ALFWorld. In Fig. 1, we compare this trend across
more values of k, showing the scaling of SOFT-
SC and SC with an increasing k. We observe that
SC provides minimal gains even as k increases,
e.g., on Bash increasing k from 5 to 20 only yields
1% point improvement in success rate. On the
other hand, SOFT-SC consistently improves suc-
cess rates with ∼3% points improvement as k goes
from 5 to 20. While SC does improve the success
rate of Mistral-7B on ALFWorld with increasing
k, SOFT-SC yields greater performance gains us-

289

7B 13B 34B 70B
Model Size (CodeLlama)

20

30

40
Su

cc
es

s R
at

e SC Soft-SC

Figure 2: Scaling with model size on Bash (test). SOFT-
SC improves over SC for all model sizes.

ing fewer samples, e.g., SOFT-SC with k = 5 is
comparable to SC with k=10.

SOFT-SC effectively scales with model size. As
we scale up the size of the LM, we find that SOFT-
SC continues to provide improvements over SC.
Fig. 2 shows the scaling trends for CodeLlama mod-
els ranging from 7B to 70B parameters on Bash and
WebShop with a fixed k=10. For each LM, SOFT-
SC always outperforms SC. Furthermore, SOFT-
SC often allows smaller LMs to outperform larger
members of the same model class, e.g., CodeLlama-
13B with SOFT-SC outperforms CodeLlama-34B
with SC. This points to additional efficiency gains
from SOFT-SC, as it can allow smaller models to
replace larger ones.

SOFT-SC improves black-box models more than
SC. SOFT-SC requires access to token probabil-
ities to score actions. However, the most perfor-
mant LLMs are typically black-box models, of-
ten with limited or no access to logits (OpenAI,
2023; Pichai, 2023; Anthropic, 2023). In Fig. 3,
we study whether (smaller) open-source LMs can
be used to score generations from GPT-3.5 and
GPT-4. Here, we observe that SOFT-SC offers im-
provements over SC for a given black-box model,
e.g., 4% for GPT-4 on WebShop and 1.8% on Bash
when SOFT-SC uses the same number of genera-
tions from the black-box models as SC. Further-
more, even though Soft-SC requires 2 model calls
(one to the black-box model and one to a smaller
open-source model), SOFT-SC with k = 5 (total
10 calls) outperforms SC with k = 15 (total 15
calls to the black-box LLM), which shows that our
method is significantly more efficient and effec-
tive since it can achieve better performance with
fewer calls. Note that half of the calls for SOFT-SC
are to a 7B model, likely making them much less
expensive than calls to the black-box model.
Calibration is not required for strong SOFT-SC
performance. Given that SOFT-SC selects op-

20 25 30 35
(a) Bash

GPT-3.5

GPT-4

SR 20 25 30 35
(b) WebShop

GPT-3.5

GPT-4

SC (k=5) SC (k=15) Soft-SC w/ CL 7B (k=5)

Figure 3: SOFT-SC can be used to score outputs from
black-box models on Bash and Webshop (test), improv-
ing success rate (SR) over self-consistency.

k SC SOFT-SC (logit) SOFT-SC (verb.)

5 28.0± 4.1 28.2± 3.7 27.8± 2.2
10 28.7± 3.1 30.0± 2.4 27.6± 2.0

Table 2: Success rates for CodeLLama-34B on Bash
with logit-based confidence vs. verbalized (verb.) confi-
dence, averaged across three seeds (± std. dev.).

tions using scores based on token probabilities,
we investigate whether a model has to be well-
calibrated for SOFT-SC to work. We compute the
correlations between two standard calibration met-
rics – ECE (Naeini et al., 2015) and AUROC – and
absolute SOFT-SC performance for CodeLlama-
34B across seeds and values of k on WebShop
and Bash test sets. The full plot is shown in Ap-
pendix B. We find a moderate negative correlation
with AUROC (r=−0.55) on Bash and no signif-
icant correlation on WebShop); there is no signif-
icant correlation for ECE. In other words, having
a well-calibrated model is not a prerequisite for
SOFT-SC. This may be because calibration met-
rics do not measure ranking performance, which is
central to our approach.

Logit-based score outperforms verbalized confi-
dence score. Recent work has explored prompt-
ing language models to express uncertainty or con-
fidence score in human language (Lin et al., 2022;
Tian et al., 2023; Xiong et al., 2024). We study
whether verbalized confidence scores can be used
for selection instead of logit-based scores. We
follow Lin et al. (2022) in prompting models to
generate verbalized scores, which we then use for
selection. As shown in Table 2, verbalized scores
perform poorly when used in place of logit-based
scores on Bash: Soft-SC with logits outperforms
the verbalized method by 2.4% with k = 10.

4 Related Work

Sample and Select Methods for LLMs. En-
sembling via voting over or aggregating outputs
(Breiman, 1996; Freund and Schapire, 1997) can

290

improve a classifier’s performance. Wang et al.
(2023) apply this paradigm to improve LLMs on
reasoning tasks, introducing self-consistency (SC).
We find that the majority voting used in SC is not
suited for LLM-agent domains because the LLM’s
generations may not exactly match when the action
space is large. Chen et al. (2023b) generalize SC
by prompting the LLM to determine consistency.
However, LLMs still struggle to determine con-
sistency in interactive domains where the task is
partially observable (Ruan et al., 2023). In con-
trast to SOFT-SC, past work examining re-ranking
strategies in code generation (Chen et al., 2022;
Li and Xie, 2024) or reasoning (Golovneva et al.,
2023; Prasad et al., 2023b) rely on external test
cases or model-based metrics to score responses.

LLM-Agents. LLMs have proven to be effec-
tive agents across a diverse array of multi-step
tasks, e.g., mathematical reasoning (Wei et al.,
2022), tool-usage (Schick et al., 2023; Qin et al.,
2023), robotic navigation (Ahn et al., 2022; Singh
et al., 2023), and code-generation (Yang et al.,
2023). Standard LLM-agent solutions employ
chain of thought prompting (Wei et al., 2022) inter-
leaved with permissible actions within an environ-
ment (Yao et al., 2023b). Several follow-up works
improve upon this pipeline by building feedback
over multiple trials (Shinn et al., 2023), decom-
posing tasks (Prasad et al., 2023a), or searching
over trajectories (Yao et al., 2023a). SOFT-SC is
complementary to these approaches, which can be
seen as improvements to CoT for a single genera-
tion. Note that our work focuses on a single LLM
agent (Andreas, 2022) interacting with an external
environment to accomplish tasks; this single agent
is compatible with other lines of work on discus-
sion among multiple LLM agents (Du et al., 2023;
Chen et al., 2023a).

5 Conclusion

After establishing the shortcomings of standard
voting-based SC in interactive tasks, we introduced
SOFT-SC, which relaxes the exact-match scoring
function used by SC to a continuous score. On
three commonly used interactive benchmarks, we
showed that SOFT-SC results in improved perfor-
mance and increased efficiency. We also show that
SOFT-SC is compatible with both white-box and
black-box models and that it can be integrated into
a more efficient adaptive variant of self-consistency.
Finally, we find that a well-calibrated model is not

required for SOFT-SC to work well, and that logits
outperform verbalized confidence scores.

6 Limitations and Broader Impacts

Limitations. In Sec. 1, we pointed out that ex-
cessive diversity can lead to failures for SC, as
no majority will emerge. However, both SC and
SOFT-SC rely on some amount of output diver-
sity: if the model generates k identical samples,
then the output will be no better than generating
one. One major motivation for SOFT-SC is effi-
ciency; SOFT-SC substantially improves perfor-
mance and is able to do so with fewer samples than
SC, but it still requires multiple samples from an
LLM. Thus, like all sample and select methods,
SOFT-SC has a greater cost than greedy decod-
ing. In Sec. 3, we demonstrate that SOFT-SC can
be used to rerank outputs from other models that
do not consistently provide logits. While SOFT-
SC shows major improvements in reranking the
outputs of black-box models, it could be applied
directly without a smaller scoring model if the gen-
eration model’s underlying logits (which exist by
design) were made accessible to users.

Broader Impacts. Large language models have
the potential for negative applications and mali-
cious use (Weidinger et al., 2021; Bommasani et al.,
2021). Our work improves LLM performance,
meaning it could also be negatively applied. As
our work is applied to LLMs operating as agents,
it shares the inherent risk of all LLM agent work,
namely that the LLM agent could potentially make
mistakes and that its actions could lead to negative
outcomes for the user. Overall, we believe this risk
is mitigated by our use of simulated benchmarks
(i.e., no agent we evaluate or develop can affect the
world) and by the fact that our work improves agent
accuracy, making adverse outcomes less likely.

Acknowledgements

We thank Justin Chen and Swarnadeep Saha for
their valuable help and feedback on the paper. This
work was supported by NSF-AI Engage Institute
DRL-2112635, DARPA Machine Commonsense
(MCS) Grant N66001-19-2-4031, and the Accel-
erate Foundation Models Research program. The
views contained in this article are those of the au-
thors and not of the funding agencies.

291

References
David H Ackley, Geoffrey E Hinton, and Terrence J Se-

jnowski. 1985. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169.

Pranjal Aggarwal, Aman Madaan, Yiming Yang, and
Mausam. 2023. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with
LLMs. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, pages 12375–12396, Singapore. Association for
Computational Linguistics.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Jacob Andreas. 2022. Language models as agent mod-
els. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 5769–5779, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Anthropic. 2023. Introducing claude.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Leo Breiman. 1996. Bagging predictors. Machine
learning, 24:123–140.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. In
The Eleventh International Conference on Learning
Representations.

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit
Bansal. 2023a. Reconcile: Round-table conference
improves reasoning via consensus among diverse
llms. arXiv preprint arXiv:2309.13007.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Ke-
fan Xiao, Pengcheng Yin, Sushant Prakash, Charles
Sutton, Xuezhi Wang, and Denny Zhou. 2023b. Uni-
versal self-consistency for large language model gen-
eration. arXiv preprint arXiv:2311.17311.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2019. Textworld: A learning environ-
ment for text-based games. In The 7th Computer
Games Workshop at the 27th International Confer-
ence on Artificial Intelligence (IJCAI 2018).

Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu
Shi. 2020. Revisiting the evaluation of uncertainty

estimation and its application to explore model
complexity-uncertainty trade-off. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 4–5.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Jessica Ficler and Yoav Goldberg. 2017. Controlling
linguistic style aspects in neural language generation.
In Proceedings of the Workshop on Stylistic Variation,
pages 94–104.

Yoav Freund and Robert E Schapire. 1997. A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of computer and
system sciences, 55(1):119–139.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2023. ROSCOE: A suite of
metrics for scoring step-by-step reasoning. In The
Eleventh International Conference on Learning Rep-
resentations.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
In The Eleventh International Conference on Learn-
ing Representations.

Zhenwen Li and Tao Xie. 2024. Using llm to select
the right sql query from candidates. arXiv preprint
arXiv:2401.02115.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in
words. Transactions on Machine Learning Research.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated prob-
abilities using bayesian binning. In Twenty-Ninth
AAAI Conference on Artificial Intelligence.

OpenAI. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Sundar Pichai. 2023. An important next step on our ai
journey: Google; 2023 [updated 6 feb 2023].

292

https://doi.org/10.18653/v1/2023.emnlp-main.761
https://doi.org/10.18653/v1/2023.emnlp-main.761
https://doi.org/10.18653/v1/2023.emnlp-main.761
https://doi.org/10.18653/v1/2022.findings-emnlp.423
https://doi.org/10.18653/v1/2022.findings-emnlp.423
https://www.anthropic.com/news/introducing-claude
https://openreview.net/forum?id=xYlJRpzZtsY
https://openreview.net/forum?id=xYlJRpzZtsY
https://aclanthology.org/L18-1491
https://aclanthology.org/L18-1491
https://aclanthology.org/L18-1491

Archiki Prasad, Alexander Koller, Mareike Hartmann,
Peter Clark, Ashish Sabharwal, Mohit Bansal, and
Tushar Khot. 2023a. Adapt: As-needed decompo-
sition and planning with language models. arXiv
preprint arXiv:2311.05772.

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and
Mohit Bansal. 2023b. ReCEval: Evaluating rea-
soning chains via correctness and informativeness.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10066–10086, Singapore. Association for Computa-
tional Linguistics.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Yangjun Ruan, Honghua Dong, Andrew Wang, Sil-
viu Pitis, Yongchao Zhou, Jimmy Ba, Yann Dubois,
Chris J. Maddison, and Tatsunori Hashimoto. 2023.
Identifying the risks of lm agents with an lm-
emulated sandbox. arXiv preprint arXiv:2309.15817.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
2023. Are emergent abilities of large language mod-
els a mirage? arXiv preprint arXiv:2304.15004.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Noah Shinn, Federico Cassano, Beck Labash, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language agents with
verbal reinforcement learning. arXiv preprint
arXiv:2303.11366, 14.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020. Alfred: A bench-
mark for interpreting grounded instructions for ev-
eryday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740–10749.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2021. ALFWorld: Aligning Text and
Embodied Environments for Interactive Learning.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,

Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA),
pages 11523–11530. IEEE.

Elias Stengel-Eskin and Benjamin Van Durme. 2023a.
Calibrated interpretation: Confidence estimation in
semantic parsing. Transactions of the Association for
Computational Linguistics, 11:1213–1231.

Elias Stengel-Eskin and Benjamin Van Durme. 2023b.
Did you mean...? confidence-based trade-offs in se-
mantic parsing. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2621–2629, Singapore. Associa-
tion for Computational Linguistics.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5433–5442, Singapore. Association for
Computational Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
et al. 2021. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2024. Can LLMs
express their uncertainty? an empirical evaluation of
confidence elicitation in LLMs. In The Twelfth Inter-
national Conference on Learning Representations.

John Yang, Akshara Prabhakar, Karthik Narasimhan,
and Shunyu Yao. 2023. Intercode: Standardizing and
benchmarking interactive coding with execution feed-
back. In Advances in Neural Information Processing
Systems.

293

https://doi.org/10.18653/v1/2023.emnlp-main.622
https://doi.org/10.18653/v1/2023.emnlp-main.622
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://doi.org/10.1162/tacl_a_00598
https://doi.org/10.1162/tacl_a_00598
https://doi.org/10.18653/v1/2023.emnlp-main.159
https://doi.org/10.18653/v1/2023.emnlp-main.159
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330
https://doi.org/10.18653/v1/2023.emnlp-main.330

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
In Advances in Neural Information Processing Sys-
tems.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023a. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao.
2023b. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-
guage agent tree search unifies reasoning acting
and planning in language models. arXiv preprint
arXiv:2310.04406.

A Method and Dataset Details

A.1 Hyperparameters
We select the threshold τ on the dev set for both
Adaptive-Consistency baseline and Adaptive SOFT-
SC. For Adaptive-Consistency baseline, we set the
threshold τ of 0.8, 0.85, and 0.8 for Bash, Web-
Shop, and ALFWorld respectively. For Adaptive
SOFT-SC, we set the threshold τ to 0.95, 3.0, and
3.5 for Bash, WebShop, and ALFWorld respec-
tively. Because Adaptive SOFT-SC accumulates
minimum probabilities over k samples for compar-
ing with the threshold, the threshold may be ≥ 1.

For greedy decoding, we use a temperature of 0.7
for all datasets. In case of sampling k > 1 outputs
from the model, we set the temperature of open-
source models to 0.7 for Bash, 0.9 for WebShop,
and 0.9 for ALFWorld, with top-p value of 0.9
and top-k value of 40, and with max_tokens set
to 100. For obtaining generations from the OpenAI
API, we use a temperature of 0.7 for Bash, 0.9 for
WebShop and ALFWorld and top-p value of 1 for
all datasets.

A.2 Model Checkpoints and Licenses
Webshop, Bash, and ALFWorld all have
MIT licenses. CodeLlama is released under
a custom permissive license available here:
https://github.com/facebookresearch/
llama/blob/main/LICENSE. Mistral uses an
Apache License 2.0. For CodeLlama, we used the
CodeLlama-*b-Instruct checkpoints. For Mis-
tral, we used the Mistral-7B-Instruct-v0.2

checkpoint. All open-source models were
accessed via Huggingface Transformers (Wolf
et al., 2019). For OpenAI models, we used the
gpt-3.5-turbo-0613 and gpt-4 checkpoints.
All models were run for inference only with int-8
quantization on Nvidia 40GB A100 GPUs. We
will release our code under an MIT license.

A.3 Bash

Yang et al. (2023) propose an interactive bench-
mark for evaluating LMs on a bash coding task,
created by bootstrapping queries from NLP2Bash
benchmark (Lin et al., 2018). The dataset has 200
user queries or instructions that can be completed
via bash actions, which we split into 50 dev and
150 test. After each action is executed, the agent
observes the corresponding output from the file
system. The agent’s performance is measured via
success rate, which is determined by a reward func-
tion based on modifications to the file system with
respect to a gold command as well the latest execu-
tion output – a success means the reward is 1.0. For
example, given a query "find files in the /workspace
directory and sub-directories, that changed within
last hour", the agent generates a corresponding
command find /workspace -cmin -60.

Setup. We focus on the single-turn setting instead
of the multi-turn setting because we find the obser-
vation (i.e., the execution output of the action) from
the Bash environment and the oracle reward rarely
helps the agent generate correct commands. In our
preliminary experiments, we observed that gener-
ating multiple commands using temperature-based
sampling under the single-turn setting resulted in
a success rate comparable to or even better than
the multi-turn setting. Furthermore, in real-world
scenarios, it is impossible to obtain oracle rewards
to determine whether the generated commands are
correct. Therefore, we prompt the LLM with a
simple description of the task setting to sample
k commands that would address the query. The
final command selected by different methods is ex-
ecuted in the InterCode Bash environment and the
response is scored to get the success rate.

Metric. After submitting the generated action,
the environment returns a reward r ∈ [0, 1]. The
reward function takes into account the differences
in the file system resulting from executing the pre-
dicted command and the file system resulting from
executing the gold command, as well as the latest

294

https://github.com/facebookresearch/llama/blob/main/LICENSE
https://github.com/facebookresearch/llama/blob/main/LICENSE

execution output. The Success Rate (SR) metric is
defined as the proportion of tasks where r = 1.

A.4 WebShop

WebShop (Yao et al., 2022) is a simulated online
shopping website environment with 1.18 million
real-world products. The underlying task requires
an agent to navigate a simulation of a shopping
website via a series of commands and buy a suit-
able product as per the user’s instruction (e.g., 3oz
bottle of natural citrus deodorant for sensitive skin
under $30). At the end of the trajectory, the envi-
ronment returns a numeric score ∈ [0, 1] reflecting
the degree to which the bought product matches the
input criteria. Performance is measured based on
the score as well as the success rate (i.e., a perfect
score of 1). WebShop also has a large action space,
as there are millions of products to select from.
We use 30 user queries not in the test set to final-
ize our prompts and thresholds used for adaptive
consistency as well as adaptive SOFT-SC.

Setup. Following Prasad et al. (2023a), we factor-
ize the underlying agent into two modules: (i) se-
lecting a suitable product, and (ii) buying a selected
product. This simulates a “cart” functionality in
online shopping. Given a user query, the agent
first employs the search functionality and picks a
few relevant products from the search page. It then
explores the corresponding product page, matches
its features, and determines if it can be added to
the cart. We prompt the LLM to generate k such
trajectories, potentially adding up to k products to
the cart. In the end, we select a product by majority
vote over product IDs and use a separate prompt to
get the agent to buy the product while selecting rel-
evant product options such as color, size, etc. The
corresponding prompts are shown in Appendix C.

Note that due to the discrete and discontinuous
nature of exact match (Schaeffer et al., 2023), SC
can only perform selection over products. Given
a description, SC navigates through the environ-
ment and selects multiple product pages, indexed
by their IDs; these IDs can be aggregated via vot-
ing. However, within each product page, there are
numerous follow-up options that must be selected,
and which cannot be voted on as their selection
happens across multi-step trajectories. Once a ma-
jority product is selected, SC uses a greedy action
trajectory based on ReAct (Yao et al., 2023b) to
specify the options for a selected product; this often
results in suboptimal products being bought, as SC

often picks the default option.
In contrast, the scoring criterion in SOFT-SC al-

lows us to score and select from trajectories to first
select products as well as to specify their options
and buy them, generating and scoring k trajectories
overall. Thus, SOFT-SC accounts for diversity in
each stage and yields higher performance. For ex-
ample, for the user query “natural looking long clip
in extensions under $40” SC tallies votes for prod-
ucts IDs the cart after the product selecting stage:
[B09QQLDJ93, B093BKWHFK, B09QQLDJ93], picking
the B09QQLDJ93 as it forms a majority. It then uses
a greedy ReAct trajectory to select the final options
(e.g., the color) and to buy the item. SOFT-SC, on
the other hand, can differentiate between action tra-
jectories sampled for buying the same product ID,
allowing it to distinguish between a final selection
that has the default color “pink” and the correct
product that uses the color “brown” – resulting in
different scores from the environment.

Metric. When the LLM agent generates a buy
action at the end of the trajectory, the environment
returns a reward r ∈ [0, 1] reflecting the degree to
which the bought product matches the input criteria.
The Success Rate metric is defined as the portion
of tasks where r = 1. The Score metric is defined
as (100× avg. reward), which captures the average
reward obtained across different task trajectories.

A.5 ALFWorld
ALFWorld (Shridhar et al., 2021) is a text-game
adaption (Côté et al., 2019) of the embodied AL-
FRED benchmark (Shridhar et al., 2020). The un-
derlying task requires the agent to perform basic
household chores such as finding a mug, cleaning
it, and putting it on a countertop via a series of
low-level actions (e.g., “go to sink”). After each
action, the environment provides textual feedback
(e.g., the contents of the cabinet after it is opened).
We evaluate on 134 unseen tasks spanning 6 task
types and report the overall success rate. In Fig. 1,
due to computational requirements of using a larger
number of samples, we report performance on a
subset of the test split consisting of a total of 30
tasks, picking 5 from each task type. For the dev
set, we use a disjoint set of 12 tasks from the ‘valid
seen’ split of ALFWorld. This is only used to se-
lect the scoring criteria, e.g., mean, min, or product,
and the thresholds for the adaptive variants.

Setup. Unlike WebShop, tasks in ALFWorld can-
not be decomposed uniformly such that each sub-

295

task is handled by an independent agent with-
out significant planning and communication over-
head (Prasad et al., 2023a). For instance, the sub-
tasks involved in “putting a clean mug on a counter-
top” vary considerably from the sub-tasks involved
in “examining a spray-bottle under a desklamp”.
Therefore, in ALFWorld, at each step, we sample
k actions, and for SC perform majority voting over
these k actions. Note that both SOFT-SC and SC
only score actions, not thoughts or comments gen-
erated by the agent to aid in problem-solving. We
continue sampling responses until a valid action is
reached, skipping “thought” actions (i.e., genera-
tions starting with “Think:”) as well as comments.
We only allow the selection of actions, ignoring
the reasoning generated before the action. Note
that both SC and SOFT-SC are more computation-
ally demanding in the case of ALFWorld, since we
perform selection over actions at each step, as com-
pared to WebShop, where selection is performed
once at the end of the selection phase over prod-
ucts. Following Yao et al. (2023b), the prompt to
the LLM includes one in-context trajectory corre-
sponding to a query from the same task type as the
test instance.

Metric. After each action generated by the LLM
agent, the environment provides textual feedback
(e.g., the contents of the cabinet after it is opened).
The feedback “You won!” in addition to reward
r = 1 indicates that the agent has completed the
task successfully. The Success Rate metric is the
percentage of tasks where the agent succeeds.

A.6 Aggregation Methods
For a given input x containing the task description
and a corresponding sampled action y composed of
tokens y1, · · · , yn, we can compute score(y) using
the following probability aggregation methods:

• Mean: score(y) = 1
n

n∑
i=1

PLM(yi|y<i,x)

• Min: score(y) = min
1≤i≤n

PLM(yi|y<i,x)

• Length-Normalized Product: score(y) =
exp

(
1
n

∑n
i=1 logPLM(yi|y<i,x)

)
.

For Bash and ALFWorld, we perform scoring and
selection at the action level, where the mean proba-
bility serves as an effective measure of the overall
confidence in an action being the correct response
to a given query. WebShop involves trajectory-level
evaluations, where the correctness of a sequence of
actions (a trajectory) towards accomplishing a task
is assessed. In the case of WebShop, the trajectory

Method Bash WebShop ALFWorld

SC 20.0 22.0 6.70
min 18.0 33.0 10.0
mean 24.0 30.0 16.7
product 22.0 16.7 13.3

Table 3: Dev success rates for one seed across ag-
gregation methods. For Bash and WebShop we use
CodeLlama-34B and for ALFWorld we use Mistral-7B.

represents a sequence of actions to select a suit-
able product based on the user query by navigating
through a series of webpages; this sequential na-
ture makes min better-suited. We also demonstrate
experimental results on dev set for all aggregation
methods to validate our explanation in Table 3.

A.7 Baselines
Greedy Decoding. We sample trajectories with
greedy decoding on all datasets; prompts are given
in Appendix C. For WebShop and ALFWorld, we
follow a ReAct prompt format (Yao et al., 2023b)
while for Bash we follow the standard format pro-
vided by Yang et al. (2023). This is equivalent to
both SC or SOFT-SC when k = 1 (since with a
single sample, there is no selection needed, making
the selection strategy irrelevant).

Self-Consistency (SC). We use self-consistency
as described by Wang et al. (2023), with majority
voting as the selection criterion. We tally multiple
votes towards a response only if the model gener-
ates the exact response multiple times.

A.8 Adaptive SOFT-SC
To improve sample efficiency, Aggarwal et al.
(2023) introduce adaptive-consistency (AC), which
reduces the number of samples (k) needed for selec-
tion by approximating the final vote tally through
sampling. Specifically, AC adds generations one at
a time (i.e., it increments k starting from 1) and ter-
minates when a stopping criterion is satisfied or the
number of generations has reached the maximum
allowed. The stopping criterion is based on samples
from a discrete distribution over vote distributions,
parameterized by the current vote counts; these
samples represent likely future vote distributions
given the current trends. If the samples have con-
verged, then further generations are unnecessary.
For example, if 5/10 samples have been generated
and 4 are identical, then the probability that the
next 5 will change the majority vote is vanishingly
small, meaning that generating further solutions is

296

8 9 10 11 12
ECE

22

24

26

28

30

32
Su

cc
es

s R
at

e
r = -0.45
p = 0.09

64 66 68 70 72 74
AUROC

25

26

27

28

29

30

31

32

Su
cc

es
s R

at
e

r = -0.55
p = 0.03

(a) Bash

45 50 55 60 65
ECE

15

20

25

30

35

Su
cc

es
s R

at
e

r = 0.27
p = 0.33

45 50 55 60 65 70
AUROC

10

15

20

25

30

35

Su
cc

es
s R

at
e

r = -0.12
p = 0.68

(b) Webshop

Figure 4: The Pearson correlations between two standard calibration metrics – ECE and AUROC – and SOFT-SC
performance for CodeLlama-34B across seeds and values of k on Bash and Webshop test set.

wasteful. On the other hand, if there is no clear
majority winner after 5 samples, further solutions
would be needed.

We can apply a similar methodology to SOFT-
SC. However, instead of estimating k by sampling
from a discrete vote distribution, we estimate the
stopping criterion for sampling by aggregating like-
lihood scores until a sufficient score threshold τ is
reached. While we use average probability across
tokens for selection, we find that this score is
poorly calibrated. Following Stengel-Eskin and
Van Durme (2023a), who found minimum token
probabilities to be better calibrated, we use the min-
imum probability for comparing with the threshold.
Therefore, we sample actions one-at-a-time and
stop when the number of samples k is such that∑k

j=1 min|yj |
i=1Pθ(yi|y<i,x) ≥ τ . The threshold τ

is a domain-specific hyperparameter that we select
based on a dev set (discussed in Appendix A.1).
Specifically, we set the threshold τ to 0.95, 3.0,
and 3.5 for Bash, WebShop, and ALFWorld respec-
tively. Note that in this case, the threshold can be
> 1 as it represents a threshold on cumulative confi-
dence values, rather a threshold on true probability
distribution. This differs from adaptive-consistency,
for which the threshold is over a normalized proba-
bility, i.e., it must be less than ≤ 1.

B Calibration
Following past work (Kuhn et al., 2023; Stengel-
Eskin and Van Durme, 2023a), we use Expected
Calibration Error (ECE) and Area Under the Re-
ceiver Operator Characteristic curve (AUROC) to
check the calibration of scores used in SOFT-SC:

Expected Calibration Error (ECE) (Naeini
et al., 2015) is used to quantify how well a model
is calibrated. It computes the difference between
the accuracy and confidence of the model, where
accuracy is averaged across examples falling into

confidence bins. A well-calibrated model will have
a low ECE, as it will have a smaller difference be-
tween the predicted rate of success (the average
confidence) and the actual rate of success (the aver-
age accuracy) of a given set of predictions. While
ECE is a standard metric, it suffers from sensitiv-
ity to the number of confidence bins used (Ding
et al., 2020). To mitigate this, we use Stengel-Eskin
and Van Durme (2023a)’s implementation of Ding
et al. (2020)’s adaptive binning approach, which
dynamically adjusts bin sizes to reduce bias in the
confidence estimate.

Area Under the Receiver Operator Character-
istic curve (AUROC) assesses the ability of the
estimated confidence to distinguish correct and in-
correct samples. AUROC measures the area under
the curve formed by comparing the true positive
rate to the false positive rate. If a model is well-
calibrated, then there is some threshold for which
we can separate predictions into correct predictions
(above the threshold) and incorrect ones (below the
threshold). In general, as we adjust the threshold
there will be a tradeoff between true positives and
false positives (e.g., a low threshold will result in a
large number of false positives, while a high thresh-
old will reduce the number of true positives). A
higher AUROC score is better, with a perfect clas-
sifier achieving an AUROC of 1 while a random
estimator would score 0.5.

Figure 4 illustrates Pearson correlations between
two standard calibration metrics – ECE and AU-
ROC – with SOFT-SC performance. For Bash,
we find no significant correlation with ECE and a
moderate negative correlation with AUROC. For
Webshop, neither metric is significantly corre-
lated. Therefore, we conclude that a well-calibrated
model is not a prerequisite for SOFT-SC. This may
be because calibration metrics do not measure rank-
ing performance, which is central to our approach.

297

C Prompts

We provide the prompts along with in-context ex-
amples supplied to the LLM for sampling trajecto-
ries for Bash and WebShop in Fig. 5, Fig. 6, and
Fig. 7. As mentioned in Appendix A.5, for ALF-
World, we use the prompts and in-context examples
provided in Yao et al. (2023b).

298

Bash

System: You are a helpful assistant expert specializing in BASH.
User: ## TASK DESCRIPTION
You are a BASH code generator helping me answer a question using BASH.
I will ask you a question , and your task is to interact with a Bourne Shell system using BASH commands
to come up with the answer.

RESPONSE FORMAT
Your response should be a BASH command. Format your BASH command as follows:
‘‘‘BASH
Your BASH code here
‘‘‘

DO NOT WRITE ANYTHING EXCEPT FOR CODE in your response.
Try ‘‘‘sql
SHOW TABLES ‘‘‘ or ‘‘‘sql
DESCRIBE <table_name > to learn more about the database ‘‘‘.

OUTPUT DESCRIPTION
Given your BASH command input , the system will then give back output formatted as follows:

Output: <string >
Reward: [0, 1]

The output is the standard output from executing your BASH command.
The reward is a decimal value between 0 and 1, which tells you how close your BASH command is to the
correct answer.
The closer the reward is to 1, the closer your BASH command is to the correct answer.

You have to try to maximize the reward.

Query: "{query }".
Do not generate any output or reward.
Assistant: {Model Completion}

Figure 5: Prompt for Bash tasks.

299

WebShop (adding a product to cart or selection)

Instruction: Your task is to select a product that matches the user criteria and add it to your ’cart ’.
You can use the following commands with the environment:
- search: To search for a query provided you are on a search page with a [search] button
- click: To click on a link enclosed within ’[]’
- think: To add comments or thoughts without affecting the state of the webpage
- cart: To add an item to the cart from which it can be bought later.

Here are a few examples:
Criteria: I want to buy a 3 ounce bottle of citrus deodorant for sensitive skin and
clinically tested that is priced lower than $30 and natural.

Action: search [3 ounce bright citrus deodorant sensitive skin]
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin , Pregnancy and
Breastfeeding , Contains Organic Calendula 3-Ounce
$10 .99
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin , Pregnancy and
Breastfeeding , Contains Organic Calendula 3-Ounce
$10 .99
[B08KBVJ4XN]
Barrel and Oak - Aluminum -Free Deodorant , Deodorant for Men , Essential Oil -Based Scent , 24
Hour Odor Protection , Cedar & Patchouli Blend , Gentle on Sensitive Skin (Mountain Sage , 2.7
oz , 2-Pack)
$15 .95

Action: think[B078GWRC1J and B078GTKVXY are bright citrus deodorant less then 50 dollars. I
can check B078GWRC1J first to check if it matches all my requirements .]
Observation: OK.

Action: click[B078GWRC1J]
Observation:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non -scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3- ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin , Pregnancy and
Breastfeeding , Contains Organic Calendula 3-Ounce
Price: $10 .99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Attributes]
[Buy Now]

Action: think[I should explore the features of this product to verify it matches all my
requirements .]
Observation: OK.

Action: click[Features]
Observation:
[Back to Search]
[< Prev]
NEW from Earth Mama (formerly Earth Mama Angel Baby), formulated especially for pregnancy ,
breastfeeding and sensitive skin
Contains organic grapefruit , tangerine and calendula
NO propylene glycol , artificial fragrance , parabens or aluminum
Dermatologist tested and clinically tested for irritation
Better than natural organic! NSF/ANSI 305 Certified by Oregon Tilth

Action: think[B078GWRC1J matches my requirements: natural , citrus deodrant , for sensitive
skin , clinincally tested , and price less than $30. Thus , I should put it in my cart.]
Observation: OK.

Action: cart[B078GWRC1J]
Observation: OK.

Criteria: {}

Figure 6: Prompt for selecting and adding products to the cart in WebShop.

300

WebShop (buying a product)

Instruction: Buy product [B078GWRC1J] that matches criteria: 3 ounce bottle of bright
citrus deodorant for sensitive skin , and price lower than 50.00 dollars
You can use the following commands with the environment:
- search: To search for a query provided you are on a search page with a [search] button
- click: To click on a link enclosed within ’[]’. E.g., to buy use ’click[Buy Now]’
- think: To add comments or thoughts without affecting the state of the webpage

Action: think[’I should be on the search page where I can see a list of products , I should
verify that.’]
Observation: OK.

Action: load
Observation:
[Back to Search]
Page 1 (Total results: 50)
[Next >]
[B078GWRC1J]
Bright Citrus Deodorant by Earth Mama | Safe for Sensitive Skin , Pregnancy and
Breastfeeding , Contains Organic Calendula 3-Ounce
$10 .99
[B08KBVJ4XN]
Barrel and Oak - Aluminum -Free Deodorant , Deodorant for Men , Essential Oil -Based Scent , 24
Hour Odor Protection , Cedar & Patchouli Blend , Gentle on Sensitive Skin (Mountain Sage , 2.7 oz , 2-Pack)
$35 .95
[B078GTKVXY]
Ginger Fresh Deodorant by Earth Mama | Natural and Safe for Sensitive Skin , Pregnancy and
Breastfeeding , Contains Organic Calendula 3-Ounce
$10 .99

Action: think[’I can spot product [B078GWRC1J] and it is a clickable link since its
enclosed in square brackets. I should click on it.]
Observation: OK.

Action: click[B078GWRC1J]
Observation:
[Back to Search]
[< Prev]
scent [assorted scents][bright citrus][calming lavender][ginger fresh][simply non -scents]
size [travel set (4-pack)][3 ounce (pack of 1)][3- ounce (2-pack)]
Bright Citrus Deodorant by Earth Mama | Natural and Safe for Sensitive Skin , Pregnancy and
Breastfeeding , Contains Organic Calendula 3-Ounce
Price: $10 .99
Rating: N.A.
[Description]
[Features]
[Reviews]
[Buy Now]

Action: think[I’m already on the product page. I see multiple possible options enclosed in
’[]’ for scent and size for this product. To match the input criteria , I should click on
options ’[bright citrus]’ for scent and ’[3 ounce (pack of 1)]’ for size one by one and
then buy in the end.]
Observation: OK.

Action: click[bright citrus]
Observation: You have clicked bright citrus.

Action: click [3 ounce (pack of 1)]
Observation: You have clicked 3 ounce (pack of 1).

Action: think[My task is to buy the product , for it should to click ’buy now ’]
Observation: OK.

Action: click[Buy Now]
Observation: You have clicked buy now.

Action: think[I finished buying the product. Task completed !]

Here is another task in which you need to buy a product. When you finish buying the product
with the most relevant choices , use ’think[Task completed ’]. If you cannot find the
matching options or proceed , think[’Task failed ’]. Note that you can only click on text
enclosed in ’[]’ on the webpage. Everything else is only a description , not valid with
"click" action.

Instruction: Buy product [{}] that matches the criteria: {}

Figure 7: Prompt for buying products in WebShop.

301

