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Abstract
Active learning (AL) aims to reduce the burden
of annotation by selecting informative unanno-
tated samples for model building. In this paper,
we explore the importance of conscious experi-
mental design in the language documentation
and description setting, particularly the distribu-
tion of the unannotated sample pool. We focus
on the task of morphological inflection using a
Transformer model. We propose context moti-
vated benchmarks: a baseline and skyline. The
baseline describes the frequency weighted dis-
tribution encountered in natural speech. We
simulate this using Wikipedia texts. The sky-
line defines the more common approach, uni-
form sampling from a large, balanced corpus
(UniMorph, in our case), which often yields
mixed results. We note the unrealistic nature of
this unannotated pool. When these factors are
considered, our results show a clear benefit to
targeted sampling.

1 Introduction

Active learning (AL) (Cohn et al., 1996) is a
data annotation approach, where the aim is to di-
rect annotation effort at examples that are maxi-
mally helpful for model performance. Most ac-
tive learning work in NLP involves pool-based
active learning (McCallum et al., 1998) where a
small seed training set is used to create an initial
model, and additional examples are selected and an-
notated from a large pool of unannotated data. Sev-
eral selection strategies exist, including confidence-
based (Lewis, 1995; Cohn et al., 1996; Muradoglu
and Hulden, 2022), diversity-based (Brinker, 2003;
Sener and Savarese, 2018; Yuan et al., 2020) and
committee-based approaches (Liere and Tadepalli,
1997; Farouk Abdel Hady and Schwenker, 2010);
these approaches aim to outperform a uniform ran-
dom selection baseline.

AL is often advocated as a method to rapidly
improve model performance in low-resource set-
tings (Baldridge and Palmer, 2009; Ambati, 2012;
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Figure 1: Accuracies reported across the eight languages
considered, for the seed, LMC(LEMMA,MSD),
LMC(WORDFORM, MSD) and TMC experiments. The
maroon lines mark the Frequency Stratified (Baseline) accu-
racy, and the blue lines mark the Uniform sampling (Skyline)
accuracy.

Grießhaber et al., 2020), where limited annotation
capacity needs to be directed intelligently. Never-
theless, AL performance is inconsistent in practice
and both success-stories and failures are reported
in the literature (Settles et al., 2008; Baldridge and
Palmer, 2009; Althammer et al., 2023), demonstrat-
ing that it is non-trivial to beat a uniform random
selection baseline.

Language documentation is a natural application
for active learning. Approximately half the world’s
languages face the grim forecast of extinction, with
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around 35–42% of these still substantially undocu-
mented (Krauss, 1992; Wurm, 2001; Bianco, 2002;
Crystal, 2002; Austin and Sallabank, 2011; Seifart
et al., 2018). However, data for training automated
systems is often limited, and additional annotation
bears a high opportunity cost, limited not only by
resources but also native speaker availability.

Simulated active learning The gold standard
of active learning experiments for language doc-
umentation is the use of human annotators in a
genuine low-resource setting, as in studies such as
Baldridge and Palmer (2009). However, for prac-
tical reasons, most AL research uses simulated
active learning, where a small seed training set
is sampled from a large existing annotated dataset,
and the remaining annotated examples represent
the pool from which new examples are selected.
While this approach allows for experimentation
without costly manual annotations, it introduces a
number of confounding factors which can compli-
cate interpretation of results.

Baldridge and Palmer (2009) note that unit anno-
tation cost is generally assumed in simulated active
learning experiments, but this approach can be un-
realistic when selection strategies tend to choose
ambiguous examples that are harder, and therefore
slower, to annotate. In a similar vein, Margatina
and Aletras (2023) argue that in simulations, the
unannotated pool tends to be carefully curated and
preprocessed (as it is formed from an existing an-
notated training set). These pools often display
unrealistic distributions of classes and lexical and
structural diversity, which can be a highly inac-
curate reflection of data in the wild, where noise,
irrelevant examples and repetitions abound. To
ensure validity of the results of simulated active
learning experiments (particularly for low-resource
settings), it is important to mimic a setting with
limited lexical diversity and characteristic class im-
balance, as is present in natural language datasets.

Active learning for morphology In this paper,
we analyze pool-based active learning for language
documentation, focusing on models for morpho-
logical inflection. We first argue that existing type-
level morphological resources (such as Unimorph,
Batsuren et al. 2022) are a poor representation of
a realistic unannotated pool in language documen-
tation settings, unless some notion of lexical fre-
quency is injected into the data. We then present
experiments on morphological inflection, which
demonstrate that the composition of the unanno-

tated pool is highly influential for performance in
simulated active learning experiments.

We employ two selection criteria: transformer
model confidence as previously investigated by
Muradoglu and Hulden (2022) and a novel lan-
guage model-based selection criterion. Given
a carefully designed, frequency stratified, pool of
unannotated examples mimicking naturalistic text,
these methods can beat a uniform random base-
line by a sizable margin. However, given a naïvely
constructed, unannotated pool (based on the Uni-
morph database), neither of the methods confers an
advantage over the baseline.

2 Data

We conduct experiments on the UniMorph database
of inflection tables (Batsuren et al., 2022)1 on a ty-
pologically diverse set of eight languages: Arapaho
(arp), Finnish (fin), Georgian (kat), Quechua (que),
Sakha (sah), Turkish (tur), Tuvan (tyv) and Zulu
(zul). Our choice of languages is motivated by a
balance between morphological complexity, data
availability (both UniMorph and Wikipedia) and
endangerment classification according to UNESCO
Atlas of the World’s Languages in Danger (Mose-
ley, 2010). Where possible, we have attempted to
maximise the diversity of our subject languages.
Across 8 languages, 6 language families2. Further,
three of the languages considered (sah, tyv and arp)
are considered endangered. We exclusively include
adjectives and nouns in our experiments.3 This sim-
plifies analysis while still representing substantial
morphological diversity as nouns make up a sizable
portion of text cross-linguistically (Hudson, 1994;
Liang and Liu, 2013).

To model word frequencies, we extract the
Wikipedias for each language and form the inter-
section of word types present in UniMorph (U)
and Wikipedia (W): U ∩ W. We also retain the
much larger part of the UniMorph database U \
W, representing types not found in the Wikipedia.
Data sampling is visualized in Figure 2.4 Our de-
velopment and initial seed training set are formed
by sampling (without replacement) 500 and 1,000

1Released under the CC BY-SA 3.0 license
2Uralic, Kartvelian, Turkic (South Siberian, North Siberia,

Western Oghuz), Quechuan, Algonquian, Bantu.
3If these inflect identically, we combine them into a cate-

gory of nominals. See Table 4 for details.
4All data and code will be made avail-

able at https://github.com/michaelpginn/
active-learning-for-morphology/. Code released
under the MIT license.
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Figure 2: Overview of data sampling, where U and W notes
the UniMorph and Wikipedia databases respectively, U ∩ W
denotes the intersection and U \ W the difference. Arrows
note a sampling without replacement.

forms, respectively, from U ∩ W (with their Uni-
Morph lemmata and MSDs). For each language,
we additionally supplement the seed training set
with four complete inflection paradigms extracted
from U \ W to ensure that all inflections are cov-
ered by the seed training data5. From the remaining
types in U \ W, we then sample 1,000 for testing.
Thus, we ensure that there is no overlap between
the data splits.

Using each of the different active learning se-
lection strategies presented below in Section 3, we
sample an additional 500 training examples. For
our baseline method, those are sampled from U ∩
W, while for all the other methods, additional data
comes from U \ W.

3 Experimental Setup

We perform experiments on the word inflection
task (Cotterell et al., 2016; Goldman et al., 2023)
with datasets consisting of triplets ⟨lexeme, MSD,
inflected form⟩, e.g. ⟨smile, V;PST, smiled⟩.
Models are trained to predict the correct inflected
form based on the lemma and MSD. We train trans-
former (Vaswani et al., 2017) inflection models

5In a language documentation setting, this information
could be supplied by the linguist.

using fairseq (Ott et al., 2019).6 In all experiments,
we apply data augmentation using the lemma-copy
mechanism (Liu and Hulden, 2022). We initially
train models on the seed training set and use various
sampling strategies to select 500 additional exam-
ples from the unused pool, evaluating the change
in inflection performance when training on the aug-
mented set. The test and development sets, disjoint
with all training data, remain unchanged through
this process.

We experiment with the following strategies:
Frequency Stratified (Baseline) We use word

frequencies from Wikipedia to perform weighted
random sampling from the pool U ∩ W. This
method serves as a linguistically motivated, real-
istic baseline, accounting for the Zipfian nature of
language, and approximating realistic lexical di-
versity and the naturalistic distribution of inflected
forms.

Wiki Uniform We additionally report results
on a baseline which samples from U ∩ W without
frequency weighting.

Uniform sampling (Skyline) Our second base-
line (which we call Skyline, as it is near-unbeatable)
uses uniform sampling without word frequency in-
formation from U \ W. This setting is unrealistic in
a language documentation setting—due to the lexi-
cal diversity and balanced class distribution of the
samples, rare paradigm slots are over-represented.

Oracle Inspired by Muradoglu and Hulden
(2022), we sample forms which the model fails
to inflect correctly. Since this requires knowledge
of gold standard forms, the method can only be
used for comparison. This strategy mimics feed-
back from a linguist or language expert. In many
cases, there are more than 500 incorrectly inflected
forms to choose from. When this happens, we
select maximally erroneous examples, that is, the
examples with the greatest Levenshtein distance to
the gold standard form.7 In contrast, when there are
fewer than 500 incorrectly inflected forms, we aug-
ment the set using correctly inflected forms with
the lowest confidence.

Transformer model confidence (TMC) Again
following Muradoglu and Hulden (2022), we train
an initial inflection model on the seed training set.
We use this model to make predictions and select
the examples with the lowest confidence scores.

6Our model and training hyperparameters follow Liu and
Hulden (2020), described in Appendix A.

7This can be thought of as maximizing the informativity
of the examples.
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Language model confidence scores (LMC)
We train two character-level language models
(LM) over lemma+MSD and wordform+MSD
sequences (respectively) from the seed training
set. This means that our LMs return proba-
bilities for sequences like walk+V+PAST and
walked+V+PAST. We use the LMs to select ex-
amples with low probability or, equivalently, high
negative log-likelihood (NLL).8 We experiment
with using NLL from either the input lemma or
the predicted inflected forms (not gold forms), and
term these approaches LMC(LEMMA,MSD) and
LMC(WORDFORM,MSD), respectively.

4 Results and Discussion

Experiment ∆ accuracy

Baseline 0.067
Wiki Uniform 0.122

LMC(lemma,MSD) 0.124
Oracle 0.193

LMC(Wordform,MSD) 0.230
TMC 0.247

Skyline 0.298

Table 1: Average change in accuracy observed across
each sampling strategy.

Table 1 reports the average change in accuracy from
the seed models for each sampling strategy. The
two benchmarks provide upper and lower limits
for sample selection. The baseline underperforms
on average, an expected result given the Zipfian
nature of language. As the sampling strategy is
dependent on natural texts, the samples have less
diverse lemmas and MSDs. Meanwhile, the sky-
line outperforms every other strategy for five of the
eight languages; again, this result is unsurprising,
as the UniMorph database provides highly diverse
examples. However, it is nearly impossible to repli-
cate this approach, which treats all words equally
regardless of rarity, in a realistic setting.

While the WIKI UNIFORM strategy shows
greater average improvements than the baseline,
the results across languages are mixed9. For exam-
ple, while Finnish shows a 28.8% accuracy gain,
performance on Quechua decreases by 0.05%.

8This approach is inspired by the observation that novel
words are often inflected based on analogy to know words
(Skousen, 1990; Derwing and Skousen, 1994; Prasada and
Pinker, 1993). The LMC approach aims to seek out examples
which are not represented by the seed training set.

9See Table 5 for details.

It is surprising that the oracle, intended to mimic
a language expert, is outperformed by the either
the TMC or LMC(WORDFORM, MSD) strategies
for six of the languages considered. For almost all
of the languages examined, the Levenshtein dis-
tance is the primary weighing factor10. The edit
distance fails to consider the diversity of vocabu-
lary or MSD. Compound words can also skew the
Levenshtein distance significantly. For example,
for the Turkish compound otomatik bilet makinası
(“automatic ticket machine”), if the model does
not capture the space between otomatik and bilet,
though characters are merely shifted to the left, the
Levenshtein distance is artificially high.

4.1 Edit Diversity

Figure 3: Change in edit diversity (H), compared to the
base train set, for each sampling method. While the baseline
method leads to reduced edit diversity, most of the sampling
methods instead result in increased diversity.

We seek to understand the effects of the various
sampling strategies by estimating the relative edit
diversity for each sample. For each dataset, we enu-
merate the edits (insertion, deletion, or replacement
of subwords) needed to transform each lexeme to
the inflected word. We collect edits of the same
type and subword to give an edit distribution. Us-
ing this distribution, we compute entropy, which
is higher for a distribution with a more diverse set
of edits, and lower when the dataset is dominated
by a few frequent edits. We provide the entropy,
relative to the base training set, in Figure 3.

We observe that the strategies that sample from
Wikipedia (which tend to be less successful) have
lower entropy on average, while the Oracle, TMC,
and skyline samples (which are more successful)

10Since there are more than 500 incorrect predictions for
the remaining U \ W dataset. The only exception is Georgian,
with < 500 incorrect predictions.

50



have higher entropy. We also find correlations be-
tween lower cross-entropy with the test set and
better performance (see section 4.1.1).

The distinction between the naïve UniMorph
pool and the frequency stratified sampling is mir-
rored in the language documentation and descrip-
tion (LDD) community with the elicitation or nat-
uralistic speech debate. Chelliah (2001) notes
that ‘language description based solely on textual
data results in patchy and incomplete descriptions’.
Similarly, Evans (2008) highlights the necessity of
both linguistic phenomena targeting elicitation and
observed communicative events11 (often narratives,
conversations, etc.).

4.1.1 Cross-entropy and performance

Figure 4: Regression between accuracy and cross-
entropy for various sampling strategies on Turkish in-
flection.

We compute the cross-entropy between the test
set edit distribution and each of the sampled sets.
We find that across languages, increased cross-
entropy, which indicates that the sampled set is
more dissimilar from the test set, tends to correlate
with decreased performance. For example, Fig-
ure 4 plots the performance and cross entropy for
the various sampling strategies for Turkish.

This is an intuitive result, confirming the impor-
tance of sampling a training set that is similar in
distribution to the target test set. We run linear
regression for each language and report the slopes
and R2 values.

It is clear that in most cases, reducing cross-
entropy by choosing a sampling strategy that ap-
proximates the test distribution is beneficial to per-
formance. However, since the test distribution is
not necessarily known in real-world active learning
scenarios, this remains a difficult task to solve.

11Himmelmann (1998) distinguishes these categories fur-
ther, with a third ‘Staged communicative events’. This refers
to tasks that are prompted for linguistic purposes, such as a
picture task.

Language Slope R2

arp -0.25 0.381
fin -0.03 0.148
kat -0.05 0.731**
que -0.49 0.512*
sah -0.06 0.716**
tur -0.01 0.842**
tyv -0.05 0.321
zul -0.08 0.847**

Table 2: Linear regressions for each language between
cross-entropy of sampled sets with test sets (x) and
accuracy on the test set (y). * indicates significance
with n = 8 and p < 0.05, ** indicates significance with
p < 0.01.

5 Conclusion

Computational methods can aid language docu-
mentation and description projects by processing
and analyzing recorded data. Active learning ap-
proaches can greatly aid in the rapid development
of robust automated systems by focusing annota-
tion on highly beneficial samples, but existing re-
search on simulated AL often makes unrealistic
assumptions. We compare a standard approach
(skyline), where data is sampled from unrealistic
linguistic resources, an approach based on natural-
istic word frequencies (baseline), and a number of
strategies motivated by encouraging lexical diver-
sity. Our skyline and baseline approaches serve as
analogs to elicitation and naturalistic recording.

We find that the skyline approach is difficult to
beat, but as few languages have sufficient corpora
with complete, diverse paradigms, we argue this
approach is an unrealistic baseline for AL. Mean-
while, we find clear benefits from targeted sampling
strategies, with inflection model confidence (TMC)
and character LM scores (LMC(WORDFORM,
MSD)) yielding the greatest improvements.

6 Limitations

Three of our eight languages are members of the
Turkic language family. Despite our best efforts,
it was not possible to have a set of languages that
covered a significant range of typological features,
particularly pertaining to phonology and morphol-
ogy. In most cases, either the existing Wikipedia
was too small or there were issues with orthogra-
phy that did not map neatly with the UniMorph
database. This is a limitation of the study presented
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and remains an intended future rectification for the
authors.

It is important to note that the style and reg-
ister of Wikipedia is limited. As such, certain
MSDs are underrepresented or over-represented,
compared with natural speech. Our experiments
use Wikipedia articles to simulate texts/recordings
of language, a limited approximation of the natural
setting that does not cover a broad range of genres.
However, constructing a representative corpus in
the language documentation context is an almost
impossible endeavour.

7 Ethics Statement

If our results do not hold across a wide variety
of languages, our suggested AL approaches may
result in annotator effort that is not beneficial to
the model. This would be a significant opportunity
cost, particularly in the case of languages which
are considered critically endangered.

Automated systems for inflection and language
documentation are limited in scope and carry some
degree of error. While they can greatly aid in doc-
umentation projects, they should not be used to
entirely replace human annotators and linguists
in the documentation, study, and preservation of
languages. Particularly for Indigenous and endan-
gered languages, care should be taken to use data
and automated systems in a way consistent with
the desires of the language community (Schwartz,
2022).

Finally, training models carries an unavoidable
environmental cost (Bender et al., 2021). While
our research uses small models, we strive to ensure
the benefits outweigh these costs.
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A Model details

Across preliminary experiments and the runs listed
in this paper, training took around 1,500 compute
hours. We ran experiments on the UBC computing
cluster and Google Colab. Models were trained
with the hyperparameters listed in Table 3. Models
had around 10M parameters.

Hyperparameter Value

Encoder/Decoder layers 4
Encoder/Decoder attention heads 4

Optimization Adam
Embedding size 256

Hidden layer size 1024
Learning rate 0.001

Batch Size 400
Label Smoothing 0.1

Gradient clip threshold 1.0
Warmup updates 1000

Max updates 6000

Table 3: Our hyperparameters follow the setup de-
scribed by Liu and Hulden (2020).

B Data Composition

Information about the composition for each lan-
guage is given in Table 4.

C Language-Specific Model Accuracies

Accuracy scores are reported in Table 5
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Language POS present N=adj Wikipedia
sample

Four lemma
tables size

COPY
size

Total training
set size Test size

tyv N ? 1000 336 10 1346 1008
ara A,N N 1000 320 10 1330 1147
kat N Y 1000 64 65 1129 1040
que N Y 1000 768 5 1773 1152
zul A,N N 1000 236 20 1256 992
sah N ? 1000 350 10 1360 1092
tur A,N N 1000 216 30 1246 1068
fin N Y 1000 104 40 1140 1092

Table 4: Seed training and test set composition for each language. The wikipedia sample refers to the frequency
weighted sample taken from Wikipedia. The four lemma table size describes the added full paradigms from the
Unimorph database. Copy size denotes the number of unique lemma found in the test size. The test size varies for
each language as the paradigm sizes differ (and thus the number of lemma).

Language Seed ± std Skyline ± std Wiki
Uniform ± std Baseline ± std Oracle ± std TMC ± std

tyv 0.416 0.028 0.909 0.013 0.686 0.020 0.561 0.034 0.733 0.036 0.711 0.033
ara 0.256 0.007 0.616 0.031 0.336 0.010 0.318 0.019 0.556 0.023 0.448 0.023
kat 0.870 0.023 0.931 0.004 0.926 0.018 0.896 0.020 0.949 0.014 0.922 0.029
que 0.514 0.032 0.820 0.021 0.509 0.023 0.604 0.031 0.811 0.027 0.786 0.012
zul 0.391 0.044 0.791 0.025 0.400 0.016 0.424 0.019 0.576 0.025 0.763 0.026
sah 0.664 0.062 0.972 0.011 0.863 0.021 0.728 0.026 0.912 0.021 0.972 0.004
tur 0.100 0.021 0.227 0.026 0.177 0.026 0.142 0.015 0.167 0.018 0.251 0.030
fin 0.402 0.028 0.727 0.047 0.690 0.020 0.473 0.032 0.453 0.050 0.732 0.024

Language Seed ± std LMC
(WF,MSD) ± std LMC

(Lem,MSD) ± std LMC(WF) ± std LMC(Lem) ± std

tyv 0.416 0.028 0.751 0.027 0.580 0.031 0.695 0.045 0.571 0.014
ara 0.256 0.007 0.600 0.024 0.520 0.042 0.498 0.040 0.372 0.009
kat 0.870 0.023 0.936 0.011 0.918 0.009 0.931 0.010 0.908 0.028
que 0.514 0.032 0.749 0.042 0.707 0.038 0.654 0.044 0.688 0.055
zul 0.391 0.044 0.695 0.029 0.547 0.031 0.625 0.019 0.571 0.021
sah 0.664 0.062 0.861 0.035 0.737 0.019 0.865 0.023 0.787 0.017
tur 0.100 0.021 0.197 0.032 0.171 0.016 0.197 0.037 0.154 0.025
fin 0.402 0.028 0.664 0.038 0.421 0.040 0.683 0.037 0.472 0.042

Table 5: Model accuracies for all sampling strategies considered. The reported standard deviation is calculated
across five equal partitions on the test set. TMC = "Transformer Model Confidence", LMC = "Language model
confidence", WF = "Wordform", and Lem = "Lemma".
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