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Abstract

State-of-the-art sign language translation (SLT)
systems facilitate the learning process through
gloss annotations, either in an end2end manner
or by involving an intermediate step. Unfortu-
nately, gloss labelled sign language data is usu-
ally not available at scale and, when available,
gloss annotations widely differ from dataset to
dataset. We present a novel approach using
sentence embeddings of the target sentences
at training time that take the role of glosses.
The new kind of supervision does not need any
manual annotation but it is learned on raw tex-
tual data. As our approach easily facilitates
multilinguality, we evaluate it on datasets cov-
ering German (PHOENIX-2014T) and Ameri-
can (How2Sign) sign languages and experiment
with mono- and multilingual sentence embed-
dings and translation systems. Our approach
significantly outperforms other gloss-free ap-
proaches, setting the new state-of-the-art for
data sets where glosses are not available and
when no additional SLT datasets are used for
pretraining, diminishing the gap between gloss-
free and gloss-dependent systems.

1 Introduction

Sign Language Translation (SLT) aims at gener-
ating text from sign language videos. There are
several approaches to SLT reported in the literature,
with sign2text and sign2gloss2text the most widely
used. While sign2text directly translates video into
text with or without the help of glosses (Camgöz
et al., 2018), sign2gloss2text passes through an
intermediate gloss step before translation into spo-
ken language text (Ormel et al., 2010). That is,
sign2gloss2text breaks down the problem into two
independent sub-problems using glosses as a pivot
language. A gloss is a textual label associated
with a sign, and, although human signers do not in
general use them, performance in automatic SLT
has long been upper bounded by the gloss supervi-
sion and their use as an intermediate representation

(Camgöz et al., 2018). The advantage of transla-
tion without glosses is that collecting data is much
easier. Even though translation results are better
for approaches that use glosses as intermediate rep-
resentation (Chen et al., 2022a,b), this comes at the
cost of annotating all the video data with glosses
which is a time consuming manual task. For many
data sets glosses are simply not available. On the
plus side, with gloss supervision-based SLT archi-
tectures, one can take full advantage of the maturity
of text2text machine translation between glosses
and spoken language text.

In this work, we present a novel approach
sign2(sem+text), a model that gets rid of glosses
and adds supervision through sentence embeddings,
SEM, pretrained on raw text and finetuned for sign
language. Our experimental results demonstrate
the strength of the novel approach on both stan-
dard small datasets with gloss annotation and larger
datasets without. In the latter case, we achieve
state-of-the-art results for the American Sign Lan-
guage (ASL) dataset How2Sign when no additional
SLT datasets are used1 improving over Tarrés et al.
(2023) by 4 BLEU points. For German Sign Lan-
guage (DGS), our new approach achieves transla-
tion quality scores between the previous best gloss-
free system (Zhou et al., 2023) and the current
state-of-the-art using glosses (Chen et al., 2022b)
on the PHOENIX-2014T dataset. Our code and
models are publicly available.2

2 Related Work

Camgöz et al. (2018) proposed three formalisations
considering SLT as a seq2seq problem that con-
verts a sequence of signs into a sequence of words:
(i) sign2text, a model that encodes video frames us-
ing pretrained 2D CNNs as spatial features and then

1Uthus et al. (2023) and Rust et al. (2024) obtain better
results by using the YouTube-ASL dataset for pretraining.

2https://github.com/yhamidullah/sem-slt
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Figure 1: sign2sem and sem2text independent modules for the SLT task (left plot). End2end architectures: pipeline
system sign2sem2text and multitask system sign2(sem+text) (right plot).

uses an RNN to generate the text; (ii) gloss2text, a
model learning the translation between a sequence
of textual glosses and fluent spoken language text;
and (iii) a sign2gloss2text model that adds an extra
intermediate gloss layer between the video and out-
put text levels of a sign2text architecture to provide
additional gloss supervision using a CTC loss.

In follow-up work, Camgöz et al. (2020) pro-
posed an architecture for joint learning continu-
ous sign language recognition (CSLR) and SLT
which uses the same input as Camgöz et al. (2018);
Zhou et al. (2021), that is, pretrained visual fea-
tures, but a transformer (Vaswani et al., 2017) for
text generation. Camgöz et al. (2020) conjectured
that gloss2text results with ground-truth glosses
provide an upper bound for SLT. Supporting this
assumption, their translation quality on PHOENIX-
2014T as measured by BLEU (Papineni et al.,
2002) achieved 24.5 on gloss2text and 21.8 on
sign2text.

Yin and Read (2020) used a different visual rep-
resentation with a multi-cue network (Zhou et al.,
2020) to encode videos. Cues included face, hands
and pose besides the full frame. With a BLEU
score of 24.0 they impoved over sign2gloss2text
Camgöz et al. (2020) and concluded that their vi-
sual representation was better than the spatial frame
embeddings used by the Camgöz et al. (2020).

Chen et al. (2022a,b) used both pretraining of
a network based on S3Ds (Xie et al., 2018) on
action recognition for CSLR (sign2gloss) and pre-
training of a textual transformer (gloss2text) with
mBART-25 (Liu et al., 2020). Both types of pre-
training are progressively adapted to the domain
of the task by adding data closer to the domain.
An additional mapping network between the vision
and language parts allows Chen et al. (2022a) to
build an end2end sign2text model relying on inter-

nal gloss supervision. To the best of our knowledge,
Chen et al. (2022b) is the current state of the art for
both sign2text (BLEU=28.95) and sign2gloss2text
(BLEU=26.71), all on the PHOENIX-2014T data
set.

Over the last few years, several gloss-free mod-
els have emerged (Li et al., 2020; Zhao et al., 2022;
Yin et al., 2023). Zhou et al. (2023) obtains the
current state-of-the-art in this category by utilis-
ing visual-language pretraining following CLIP
(Radford et al., 2021). On the datasets (Camgöz
et al. (2018); Zhou et al. (2021)) where the two
approaches can be compared, translation quality
diminishes by up to 7 BLEU points when the
glosses are not used (Yin et al., 2023; Zhou et al.,
2023). Tarrés et al. (2023) uses the How2Sign
dataset (Duarte et al. (2021)) (where no gloss in-
formation is available) with I3D (Carreira and
Zisserman (2017)) features for video representa-
tions and a Transformer. Uthus et al. (2023) in-
troduces a new dataset, YouTube-ASL, 10 times
larger than the previous one (Duarte et al. (2021)),
and uses 2D pose estimation and pretraining to
improve on Tarrés et al. (2023) best results on
How2Sign (BLEU=8.09 vs BLEU=12.4). Simulta-
neously with our work, Rust et al. (2024) pretrains
a self-supervised and privacy-aware visual model
on YouTube-ASL to achieve the new state-of-the-
art performance on How2Sign (BLEU=15.5).

3 SEM-based Architectures

In our work we build two systems that revolve
around textual sentence embeddings, SEM, as de-
picted in Figure 1. The figure presents two in-
dependent modules sign2sem and sem2text (left
plots) that we later combine in sign2sem2text and
sign2(sem+text) in an end2end setting (right plot).

426



• sign2sem Module This module predicts an in-
termediate SEM vector. Given a set of frames
(video) features, sign2sem produces a vector rep-
resenting the sentence signed in the video using a
transformer encoder.

Pretraining the visual feature sentence em-
bedding model on text. We follow Reimers and
Gurevych (2019) and train a Siamese network with
twin subnetworks 1 and 2. We compute the loss as
the minimum squared error (MSE):

Le =
1

N

N∑

i=1

(cos(S1,i, S2,i)− cos(E1,i, E2,i))
2

where N is the batch size, and S and E contain the
target text SEM vectors and the predicted output
SEM vectors respectively. In our experiments, the
target SEM vector is given by sBERT (Reimers and
Gurevych, 2019) here and in our models below.

• sem2text Module This module is responsible
for the text reconstruction from sentence embed-
dings SEM. It produces the text translation of the
video features encoded in a given SEM vector. The
core sem2text model is a transformer model; we
compare encoder–decoder and only decoder sys-
tems for the task:

- Encoder–decoder (SLTr): this version uses
the sign language transformer (SLTr) architecture
as in Camgöz et al. (2020). We use a transformer
base with a linear projection from the SEM vector
input instead of the usual word embedding layer.

- Decoder only with pretrained mBART: this
version uses a pre-trained mBART-25 decoder and
a linear layer to project the SEM vectors into the
mBART model dimensions.

Pretraining We train both transformers (SLTr
from scratch and the already pretrained mBART-
25) with Wikipedia data and then finetune them on
the SL datasets. We compute the translation output
loss as the cross-entropy:

Lo = CE(T,O) = − 1

N

N∑

i=1

M∑

j=1

(Tij · log(Oij))

where N is the batch size, M the vocabulary size,
T is the target text and O is the output text.

After pretraining each component (sign2sem and
sem2text), we combine them together for end2end
training. We explore two approaches: an approach
that only uses the output loss Lo, sign2sem2text,
and an approach that integrates an additional super-
vision loss Le, sign2(sem+text).

• sign2sem2text is a simple pipeline combina-
tion of sign2sem and sem2text where the output
SEM of the first module is used as input by the sec-
ond module to obtain the final text prediction. The
two pretrained modules (with both variants SLTr
and mBART) are put together and trained in an
end2end manner without any intermediate supervi-
sion. This formalisation is the sentence embedding
equivalent to the sign2gloss2text approach.

• sign2(sem+text) performs translation using the
same components as sign2sem2text. However, it
uses the sign2sem SEM output as additional in-
termediate supervision using MSE loss computed
against the target text SEM in a multitask learning
approach. Both, Le (sentence embedding) and Lo

(output text), are used jointly to train the model.
For SLTr, we take the SEM before the tanh and

pooling (see Figure 1 (left–middle)), and project it
into the SLTr model dimension. The supervision is
applied after the SLTr encoder. For mBART, the
supervision happens right before the mBART.

Our architectures can be trained both monolin-
gually and mutilingually simply by using multilin-
gual embeddings and merging multilingual training
data.

4 Experimental Settings

We use two diverse (language and domain)
datasets for our experiments:

RWTH-PHOENIX-2014T (Camgöz et al., 2018)
11 hours of weather forecast videos from 9 sign-
ers. Signers use German Sign Language and both
transcriptions and glosses are available.

How2Sign (Duarte et al., 2021) 80 hours of in-
structional videos with speech and transcriptions
and their corresponding American Sign Language
videos (glosses unavailable) from 11 signers.

Detailed statistics for each dataset are provided
in Appendix A. We preprocess the textual part of
the datasets in a way that allows us to compare to
the results obtained by Camgöz et al. (2018). We
tokenise and lowercase the input for both training
and evaluation. We apply BPE (Sennrich et al.,
2016) with a vocabulary size of 1500 for Phoenix-
2014T and 5000 for How2Sign. When pretraining
sem2text SLTr, we use a shared (en–de) vocabulary
size of 32000. In cases where we use pretrained
models, we keep the tokenisation of the model.
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PHOENIX-2014T (DGS) How2Sign (ASL)

BLEUval BLEU chrF BLEURT BLEUval BLEU chrF BLEURT

SL
Tr

sign2sem2text - mono 14.22 13.4±1.4 33.5±1.5 0.379±0.016 6.69 5.7±0.4 21.2±0.4 0.382±0.005
sign2sem2text - multi 13.05 12.7±1.3 32.3±1.3 0.343±0.014 6.48 6.4±0.4 22.0±0.5 0.403±0.006
sign2(sem+text) - mono 19.10 18.8±1.7 40.1±1.5 0.437±0.016 10.41 9.5±0.5 27.4±0.5 0.445±0.006
sign2(sem+text) - multi 17.03 16.6±1.6 37.9±1.5 0.412±0.016 7.85 7.8±0.4 25.4±0.5 0.430±0.006

m
B

A
R

T sign2sem2text - mono 16.67 17.3±1.6 38.2±1.5 0.434±0.016 9.32 9.8±0.5 31.2±0.5 0.477±0.006
sign2sem2text - multi 16.91 16.5±1.6 37.3±1.5 0.425±0.016 9.11 9.6±0.5 31.2±0.5 0.475±0.006
sign2(sem+text) - mono 24.07 24.2±1.9 46.3±1.6 0.483±0.017 12.20 11.7±0.5 32.0±0.5 0.487±0.006
sign2(sem+text) - multi 24.12 24.1±1.9 46.1±1.6 0.481±0.017 12.34 12.0±0.5 31.8±0.5 0.483±0.006

Table 1: Translation performance of our models on validation (val) and test. Best models at 95% confidence level are
highlighted. Previous state-of-the-art for gloss-free systems is BLEU=21.44 for PHOENIX (Zhou et al., 2023) and
8.03 for How2Sign (Tarrés et al., 2023). Chen et al. (2022b) achieves 28.95 on PHOENIX with their gloss-assisted
system sign2text and 26.71 with sign2gloss2text. Rust et al. (2024) achieves 15.5 on How2Sign pretraining with
YouTube-ASL.

For video files, we extract frames using ffm-
peg. We normalise the images, and resize them to
224x224. In this step, we initially obtain frame fea-
tures from a pretrained model (Tan and Le, 2019),
which does not contain gloss information. We then
apply pooling to remove the spatial dimensions, fol-
lowed by batch normalisation with ReLU, follow-
ing the approach outlined by Camgöz et al. (2020).
This generic approach facilitates the combination
of datasets in the multilingual setting.

We use two multilingual pretrained models that
cover both German and English, sBERT (Reimers
and Gurevych, 2019)3 for sentence embeddings
and mBART (Liu et al., 2020)4 as a language
model. For further pretraining we use 26 million
sentences per language from the English and Ger-
man Wikipedia dumps extracted with Wikitailor
(España-Bonet et al., 2023).

Following Müller et al. (2022) and Müller et al.
(2023), we evaluate the models using three com-
mon automatic metrics in machine translation:
BLEU (Papineni et al., 2002), chrF (Popović, 2015)
and BLEURT (Sellam et al., 2020). Specifics can
be found in Appendix C. In all cases, we estimate
95% confidence intervals (CI) via bootstrap resam-
pling (Koehn, 2004) with 1000 samples.

5 Results and Discussion

Table 1 presents the results for our models and
variants. Two major trends are observed: (i) mas-
sive pretraining of the sem2text module (mBART
vs SLTr) significantly improves the results, con-
firming the observations by Chen et al. (2022a)

3We use all-MiniLM-L12-v2 model with 384 dimensions.
4We use mBART-25 1024 dimensions.

and (ii) the multitask approach sign2(sem+text) is
better than the pipeline approach sign2sem2text.
These findings hold for all three evaluation metrics
at 95% confidence level.

Potentially beneficial effects of multilinguality
are less evident. Monolingual and multilingual ap-
proaches are not distinguishable within the 95%
CIs, possibly due to large differences in the do-
main of the datasets preventing effective transfer
between languages.

Our best system, sign2(sem+text) with the pre-
trained text decoder, achieves state-of-the-art re-
sults on How2Sign when no additional SLT dataset
is used for pretraining, improving from 8 to 12
BLEU points over Tarrés et al. (2023). For
PHOENIX-2014T, we surpass all previous gloss-
free approaches (24 vs 21 BLEU), but we are still
below the best approach that uses glosses (Chen
et al., 2022b) (24 vs 29 BLEU).

Reconstruction quality: sem2text. In our
approach, sentence embeddings take the role
of manually produced glosses in previous
work. Our sem2text translation module defines
the upper-bound results for the full system
as gloss2text did in previous work. Our
best sign2(sem+text) models with mBART
produce a reconstruction score of BLEU
38.0±2.4/23.3±1.0, chrF 57.5±1.9/43.9±0.9
and BLEURT 0.588±0.019/0.571±0.008 for
PHOENIX-2014T/How2Sign (see Table 2).
Where the comparison with glosses is available
(PHOENIX), we improve over gloss2text by up to
10 BLEU points. We hypothesise that a sentence is
better represented by its embedding than by a string
of glosses and this explains why the translation
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Figure 2: Average BLEURT score on different token length intervals on PHOENIX-2014T and How2Sign test.

PHOENIX-2014T (DGS)

BLEUval BLEU chrF BLEURT

Camgöz (2018) 20.16 19.26 – –
Chen (2022a) 27.61 28.39 – –

SLTr - mono 31.53 30.1±2.0 52.2±1.7 0.526±0.018
SLTr - multi 29.20 31.3±2.1 52.9±1.7 0.530±0.018

mBART - mono 37.11 38.0±2.4 57.5±1.9 0.588±0.019
mBART - multi 36.91 37.5±2.3 57.4±1.8 0.584±0.018

How2Sign (ASL)

BLEUval BLEU chrF BLEURT

SLTr - mono 13.24 14.6±0.6 34.3±0.6 0.489±0.006
SLTr - multi 16.17 16.4±0.7 36.5±0.7 0.529±0.007

mBART - mono 23.04 22.8±1.0 43.3±0.9 0.577±0.008
mBART - multi 24.60 23.3±1.0 43.9±0.9 0.571±0.008

Table 2: Reconstruction quality for the sem2text subtask
of our models and gloss2text state-of-the-art on valida-
tion (val) and test. Best models at 95% confidence level
are highlighted.

quality for sem2text is higher than for gloss2text.
If these components (sem2text and gloss2text)
are the upper-bound to the end2end sign2text
translation, SEM-based systems are potentially
at an advantage. These results, together with the
fact that SEM models can be applied to raw data
without annotations, highlight the promising future
prospects of, especially, sign2(sem+text).

SEM-based vs gloss-based SLT. For compari-
son purposes, we integrate SEM supervision in a
state-of-the-art gloss-based SLT system, Signjoey
(Camgöz et al., 2020), by replacing their gloss su-
pervision by SEM supervision. We perform no
pretraining and train the two systems under the
same conditions. We observe that convergence
with SEM is faster and requires less than half of the
iterations to finish (5k vs 12k) using the same set-
ting and resources. The detailed training evolution

is shown in Appendix D.

Translation quality vs output length. Figure 2
shows the token length distribution of PHOENIX-
2014T and How2Sign along with the average
BLEURT score on each interval. The equivalent
plots for chrF and BLEU are in Figures 4 and 5
in Appendix E respectively. In the PHOENIX test
set, almost 90% of the sentences contain 20 tokens
or less, while the number decreases to 60% for
How2Sign. The 10-20 token range is the one with
the best scores. While the drop in performance in
translation quality for long sentences is smaller in
How2Sign, the difference in the distribution affects
the global quality.

6 Conclusions

We present a new approach to sign language trans-
lation using automatically computed sentence em-
beddings instead of manual gloss labels as inter-
mediate representation with (sign2(sem+text)) and
without (sign2sem2text) SEM supervision. We out-
perform the state-of-the-art of gloss-free SLT when
no additional SLT datasets are used for pretraining,
closing the gap to gloss-based SLT.

According to the upper-bound set by sem2text
translation quality, there is still room for improve-
ment for the end2end SEM-based SLT models. In
this work, we limited ourselves to existing visual
feature extractors, in the future we plan to train a
SEM-based visual feature extractor on SL datasets
in order to get closer to our sem2text upper-bound
and match gloss-based performance.

Limitations

Our SL datasets cover American English and Ger-
man. Sentence embeddings for these languages
are good quality as lots of textual data is available
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for pre-training. It remains to be studied how the
quality of the embeddings affects the final transla-
tion quality. This is important for low-resourced
languages, i.e. languages with limited amounts of
monolingual text data but, to the best of our knowl-
edge, no public sign language data set exists for
them.
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A Datasets Statistics

Table 3 summarises the statistics for the corpora
used in the experiments.

Phoenix-2014T How2Sign

Src. Lang. German Am. English
Tgt. Lang DGS ASL
Hours 11 80
Signers 9 11
Sentences 7000 35191
Val. Size 540 1741
Test Size 629 2322

Table 3: Statistics of the corpora used in the experiments.
Source (Src.Lang.) and target (Tgt.Lang.) refer to the
direction in which the corpora were created; all our
experiments involve sign2text.

B Infrastructure and Network
Hyperparameters

We implement our SLT framework using PyTorch,
and libraries from sBERT (Reimers and Gurevych,
2019) and Huggingface (Wolf et al., 2019). Our
code is publicly available at Github.5

Tables 4, 5 and 6 show the hyperparameters and
training times for the sign2sem and sem2text with
SLTr and mBART transformers respectively. We
run our experiments using 8 A100-80GB GPUs.
For sign2sem2text and sign2(sem+text), each ex-
periment runs for 72 hours and the configura-
tions are inherited from the standalone modules
sign2sem and sem2text.

Parameter Value
model all-MiniLM-L12-v2

batch_size_per_device 16
learning_rate 1e-5

input_projection_dim 1024
scheduler warmuplinear

Training time 72 hours (5 GPU)

Table 4: Hyperparameters for the sign2sem module, we
use the defaults of sBERT trainer for the rest.

C Automatic Evaluation

Following Müller et al. (2022) and Müller et al.
(2023), we evaluate the models using three com-
mon automatic metrics in machine translation:
BLEU (Papineni et al., 2002), chrF (Popović, 2015)
and BLEURT (Sellam et al., 2020). Notice that
even though other semantic metrics based on em-
beddings might correlate better with human judge-

5https://github.com/yhamidullah/sem-slt

Parameter Value
num_encoder_layers 3
num_decoder_layers 3

d_model 512
ff_size 2048

input_projection_dim 1024
batch_size_per_device_train 32
batch_size_per_device_val 32

learning_rate 1e-5
lr_scheduler reduceLROnPlateau

freeze_word_embeddings True
Training time 1 hour (1GPU)

Table 5: Hyperparameters for the sem2text module with
SLTr transformer, the rest are inherited from Camgöz
et al. (2020).

Parameter Value
input_projection_dim 1024

batch_size_per_device_train 4
batch_size_per_device_val 4

learning_rate 1e-5
fp16 True

freeze_word_embeddings True
Training time 156 hours (8 GPUs)

Table 6: Hyperparameters for the sem2text module with
mBART decoder, the rest are inherited from the Hug-
gingface trainer default values.

ments (Kocmi et al., 2021; Freitag et al., 2022),
they cannot be used for sign language translation
because the source is video and not text. We use
sacreBLEU (Post, 2018) for BLEU6 and chrF7 and
the python library for BLEURT.8

Previous work starting with Camgöz et al. (2018)
does mainly report only BLEU scores, but they do
not specify the BLEU variant used or the signa-
ture in sacreBLEU. Therefore, comparisons among
systems might not be strictly fair.

D Gloss-based vs SEM-based Systems’
Training Performance

Figure 3 shows the training evolution for a simple
SLT system with no additional supervision (top),
additional gloss supervision (middle) and SEM su-
pervision (bottom) implemented in the Signjoey
framework (Camgöz et al., 2020) and trained on
PHOENIX-2014T. We use the best hypeparameters
in Camgöz et al. (2020) and add our SEM supervi-
sion as a replacement of their recognition loss.

The three plots in Figure 3 include a red line at

6BLEU|nrefs:1|bs:1000|seed:16|case:
mixed|eff:no|tok:13a|smooth:exp|version: 2.4.0

7chrF2|nrefs:1|bs:1000|seed:16|case:
mixed|eff:yes|nc:6|nw:0|space:no|version: 2.4.0

8BLEURT v0.0.2 using checkpoint BLEURT-20.
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Figure 3: Validation BLEU on PHOENIX without su-
pervision (top plot), with gloss supervision (middle plot)
and with SEM supervision (bottom plot).

translation quality BLEU=20 for reference. The
first thing to notice is that both supervision meth-
ods reach the red line, but the one lacking any addi-
tional supervision lays behind. Second, we observe
that the system with the additional SEM supervi-
sion reaches BLEU=20 earlier than the system with
glosses: the gloss system needs 12k to finish and
only 5k iterations are needed in the case of SEM.
In both cases, we use early stopping with BLEU
patience 7. Finally, notice that the gloss and SEM
systems achieve the same translation quality but
one does not need any data annotation with SEM.

E Ablation Study on Sentence Length

Following the analysis of Section 5, we include
the translation quality scores BLEU and chrF per
sentence length.

Figure 4: Variation of the average BLEU score on dif-
ferent token length intervals on PHOENIX-2014T (top)
and How2Sign (bottom) test sets.

Figure 5: Variation of the average chrF score on differ-
ent token length intervals on PHOENIX-2014T (top)
and How2Sign (bottom) test sets.
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