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Abstract

Topic modeling is a widely used technique to
analyze large document corpora. With the ever-
growing emergence of scientific contributions
in the field, non-technical users may often use
the simplest available software module, inde-
pendent of whether there are potentially bet-
ter models available. We present a Simpli-
fied Topic Retrieval, Exploration, and Anal-
ysis Module (STREAM) for user-friendly topic
modelling and especially subsequent interac-
tive topic visualization and analysis. For better
topic analysis, we implement multiple intruder-
word based topic evaluation metrics. Addi-
tionally, we publicize multiple new datasets
that can extend the so far very limited num-
ber of publicly available benchmark datasets in
topic modeling. We integrate downstream in-
terpretable analysis modules to enable users to
easily analyse the created topics in downstream
tasks together with additional tabular informa-
tion. The code is available at the following
link: https://github.com/AnFreTh/
STREAM

1 Introduction

Identifying latent topics within extensive text cor-
pora is a fundamental task in the field of Natu-
ral Language Processing (NLP) and has been of
larger scientific interest since the early 2000s (Hof-
mann, 2001; Blei et al., 2003). Especially with
the emergence of contextualized embeddings, ex-
traction algorithms and topic models continue to
evolve and achieve increasingly impressive results
in terms of topic coherence (Larochelle and Lauly,
2012; Srivastava and Sutton, 2017; Chien et al.,
2018; Wang et al., 2019; Dieng et al., 2020). Even,
methodologically simpler methods achieve state-of-
the-art results by leveraging document and word-
embeddings (Sia et al., 2020; Grootendorst, 2022;
Angelov, 2020).

The publication of open source software like
Gensim (Řehůřek and Sojka, 2010), the Natural

Language Tool Kit (nltk) (Bird et al., 2009) or
SpaCy (Vasiliev, 2020) have enabled researchers
to apply such models in various fields, including
education (Granić and Marangunić, 2019), offsite
construction (Liu et al., 2019), bioinformatics (Liu
et al., 2016), communication sciences (Maier et al.,
2018), finance (Thormann et al., 2021) and nu-
merous other applications (e.g., (Hall et al., 2008;
Daud et al., 2010; Boyd-Graber et al., 2017; Kant
et al., 2022; Thielmann et al., 2021; Hannigan et al.,
2019; Tillmann et al., 2022)).

The OCTIS (optimizing and comparing topic
models is simple) (Terragni et al., 2021a) frame-
work in particular has found favor in the scientific
community and made fitting and evaluating sophis-
ticated topic models easy and efficient. However,
OCTIS lacks the methodologically simpler yet
very performant models such as clustering based
topic extraction (Sia et al., 2020; Angelov, 2020)
and the user-centric implementation of BERTopic
(Grootendorst, 2022). Especially the user-friendly
implementation and visualization possibilities of
BERTopic allow non-technical users to easily an-
alyze their document corpora and visualize their
results which has led to a variety of use cases espe-
cially in the social sciences (e.g. (Falkenberg et al.,
2022; Jeon et al., 2023; Zankadi et al., 2023)).

We thus contribute the STREAM (Simplified
Topic Retrieval Exploration and Analysis Module)
software package. It gets its acronym not only
from the easy to use, user-centric topic modelling,
evaluation and exploration implementation but also
from the integration of downSTREAM models to
analyze topic contributions to regression or classi-
fication problems.

The core of the STREAM package is built on
top of the OCTIS framework and allows seamless
integration of all of OCTIS’ multitude of models,
datasets, evaluation metrics and hyperparameter
optimization techniques.
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1.1 Contributions
The contributions of STREAM can be summarized
as follows:

• STREAM integrates multiple clustering based
topic models into the OCTIS framework (see
the Appendix for a full list of all available
models).

• Through interactive visualization methods,
STREAM allows easy exploration and analy-
sis of all models.

• We publicize multiple multi-modal datasets
to enable researchers to compare their models
beyond the standard topic modeling datasets,
such as 20NewsGroups and Reuters (Mitchell,
1999; Lewis, 1997).

• STREAM integrates interpretable down-
stream modeling by introducing a Neural Ad-
ditive Topic Model (NAM) (Agarwal et al.,
2021) that incorporates the documents topic-
prevalences along further structural variables
into an interpretable downstream regression
or classification model.

2 Model Fitting and OCTIS Integration

STREAM is effectively built upon the core con-
cepts of the OCTIS package and inherits from the
AbstractModel, AbstractMetric and OctisDataset
classes. Thus, all models, evaluation metrics, visu-
alization functions, datasets and downstream mod-
els are perfectly integrable with all of OCTIS’ mod-
els and metrics.

Datasets Creating custom datasets including tab-
ular data is as simple as running the following few
lines of code:� �
from stream .data_utils import TMDataset
df = pd .read_csv ("your_data.csv" )

dataset = TMDataset ( )
dataset .create_load_save_dataset (

data=df ,
dataset_name="your_name" ,
save_dir="save directory" ,
doc_column="text" , #column name where documents
are stored
label_column="popularity"
)� �

All textual data is preprocessed according to the
users specifications of the preprocessing pipeline
and therefore, e.g., lower cased, stopwords re-
moved and lemmatized. In the specified directory,
the necessary files and a .csv file storing the tabular
data are saved.

Model fitting Fitting a model (here e.g. a simple
Kmeans clustering topic model) can subsequently
be done simply by running the following code:� �
from stream .models import KmeansTM

model = KmeansTM (num_topics=20)
model_output = model .train_model (dataset )� �
Depending on the model, the hyperparameters can
easily be adjusted. Note, that all STREAM datasets
are fully usable with all OCTIS models and users
can thus easily fit e.g. a LDA (Blei et al., 2003) or
ETM (Dieng et al., 2020) on the TMDataset class.

Evaluation STREAM offers multiple new,
intruder-word based topic evaluation metrics
(Thielmann et al., 2024b) alongside classical NPMI
coherence scores (Lau et al., 2014), computed over
the complete documents and not over sliding win-
dows, and also Embedding based Coherence met-
rics (Terragni et al., 2021b). See the Appendix
for an overview over all available metrics. The
evaluation of a model can thus be done by simply
running:� �
from stream .metrics import ISIM
metric = ISIM (dataset )
metric .score (model_output )� �
2.1 Available Datasets

In addition to the implemented models, metrics and
downstream tasks, we publicize multiple datasets
suited for topic model comparison.

• Multiple Spotify datasets comprised of the
songs’ lyrics and various tabular features,
such as the popularity, danceability or acous-
ticness of the songs.

• A new Reddit dataset, which is filtered
for "Gamestop" (GME) from the Subreddit
"r/wallstreetbets". The data is taken from the
thread "What are your moves tomorrow?". It
is covering the time around the GME short
squeeze of 2021.

• A new Stocktwits dataset also filtered for
"Gamestop" (GME). It is covering the time
around the GME short squeeze of 2021.

• In addition, we upload the preprocessed
Reuters and Poliblogs (Roberts et al., 2018)
datasets that are well suited for comparing
topic model outputs.
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Figure 1: STREAM model architecture. After fitting a topic model, a downstream NAM can be fit and analyzed.

Table 1: Overview over preprocessed datasets that
are available in STREAM. Additionally, the OCTIS
datasets, BBC-News, 20 Newsgroups, M10, DBLP are
available.

Name # Docs # Words
Reuters 8,929 24,803
Reddit_GME 21,549 21,309
Poliblogs 13,246 70,726
Spotify_most_popular 4,538 53,181
Spotify_least_popular 4,374 111,738
Spotify_random 4,185 80,619
Stocktwits_GME 11,114 19,383
Stocktwits_GME_large 136,138 80,435

2.2 Topic Analysis

One of the core concepts of topic modelling is the
subsequent qualitative and visual analysis of the
created topics. In addition to the available topic-
word-lists and matrices, STREAM implements
multiple visualization methods to easily analyze
the created topics. Besides classical wordclouds,
the created topic clusters, topical distances, or top
word distributions can be interactively visualized.� �
from stream .visuals import visualize_topic_model
visualize_topic_model (model , port=8050)� �
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Figure 2: Topical distances of all topics towards an interactively selected topic. The distances are calculated based
on topical centroids and cosine similarities in the embedding space.

3 Downstream Tasks

While the visual analysis of topics is often very
helpful in analyzing a large corpus, the contents
of documents often also have effects on other vari-
ables. Roberts et al. (2018) e.g. introduced a model
that captures the effects of additional tabular vari-
ables on topics. STREAM offers the possibility to
analyze the effects of topics and additional tabular
variables on any given target variable, via imple-
menting a downstream NAM1. The general form
of a NAM can be written as:

E(y) = h


β +

J∑

j=1

fj(xj)


 , (1)

where h(·) is the activation function used in the
output layer, e.g. linear activation for a simple
regression task or softmax activation for a classi-
fication task. x ∈ Rj are the input features, β
describes the intercept. The shape-functions are
expressed as fj : R → R and represent the Multi-
Layer Perceptron (MLP) corresponding to the j-th
feature. The model structure of a simple NAM is
given in Figure 3.

1see an example in the appendix

f1

fJ
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∑J
j=1 ŷ
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Figure 3: Architecture of a classical NAM. All features
are fit independently through a Multi-Layer Perceptron
and summed before the activation function and final
output layer

Further, let x ≡ (xtab,xdoc) denote the categor-
ical and numerical (continuous) structural features
xtab and xdoc denote the documents. After fitting a
topic model (see section 2), STREAM extracts the
documents topical prevalences and thus "creates"
z ≡ (xtab,xtop), a probability vector over the doc-
uments and topics. Note, that x(i)j(tab) denotes the j-

th tabular feature of the i-th observation and x
(i)
k(top)

denotes document i-th topical prevalence for topic
k. In order to preserve interpretability the available
downstream model is given by:

h(E [y]) = β +
J∑

j=1

fj(xj(tab)) +
K∑

k=1

fk(xk(top)),

(2)
Thus, the visualization of shape-function fk shows
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the impact topic k has on a target variable y and
the visualization of fj shows the impact of tabular
feature j. With the given datasets and examples
available in STREAM, this could represent the ef-
fect a topic created from the Spotify dataset and a
songs duration have on a songs popularity. With a
fitted topic model (see section 2), fitting a down-
stream model is straight forward leveraging the
pytorch trainer class. Subsequently, all shape func-
tions can easily be visualized similar to the plots
introduced by Agarwal et al. (2021).� �
from pytorch_lightning import Trainer
from stream .NAM import DownstreamModel

# Instantiate the DownstreamModel
downstreammodel = DownstreamModel (

trained_topic_model=topic_model , #your trained
topic model
target_column='day' , #specify your target column
task='regression' , #or 'classification'
dataset=dataset ,
batch_size=128 ,
lr=0.0005

)� �� �
# Use PyTorch Lightning's Trainer to train and

validate the model
trainer = Trainer (max_epochs=10)
trainer .fit (downstreammodel )

# Plotting
from stream .visuals import plot_downstream_model
plot_downstream_model (downstream_model )� �
4 Conclusion

In this paper, we present the STREAM framework.
A user-friendly topic modeling module for creating
datasets, training and evaluating topic models, visu-
alizing results and fitting interpretable downstream
models. The proposed framework is a python li-
brary and closely interacts with the existing OCTIS
framework from Terragni et al. (2021a).

Future adaptations could include the integration
of further more performant or e.g. distributional
downstream models (Chang et al., 2022; Luber
et al., 2023; Thielmann et al., 2024a) to further
allow researchers to analyze the effect a topic has
on a regression or classification task.

5 Limitations

We present a python package for topic modeling.
While all implemented models, visualizations and
the downstream models are straightforward, the ac-
tual interpretation of the results and figures is still
done by the user. Given that especially textual data
might include a lot of noise or harmful language,
we must therefore stress the users to be careful
in their final assessment of their created results.

Additionally, while NAMs (Agarwal et al., 2021)
offer visual interpretability, they do not allow for
statistical significance as the more theoretical Gen-
eralized Additive Models (Wood, 2017) or direct
causal inference.
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A Appendix

A.1 Available Models
Multiple topic model/document clustering and sub-
sequent topic extraction models are available in
STREAM. Additionally, STREAM inherits from
all models available in OCTIS. Thus, the following
models are available:

Table 3: Available Models

Name Implementation
WordCluTM STREAM
CEDC STREAM
DCTE STREAM
KMeansTM STREAM
SomTM STREAM
CBC STREAM
CTMneg STREAM
TNTM STREAM
CTM OCTIS
ETM OCTIS
HDP OCTIS
LDA OCTIS
LSI OCTIS
NMF OCTIS
NeuralLDA OCTIS
ProdLDA OCTIS

The SomTM is described in Honkela (1997). Word-
CluTM follows the word clustering approach in-
troduced by Sia et al. (2020). CEDC is described
in Thielmann et al. (2024b). The KMeansTM is
similar to Grootendorst (2022) and often used as a
fast-compute benchmark model. DCTE is a semi-
supervised few-shot model introduced in Thiel-
mann et al. (2024c). TNTM is introduced in Reuter
et al. (2024). CTMneg is based on CTM (Bianchi
et al., 2021) and introduced by Adhya et al. (2022).
CBC is the only model of the STREAM models
not based on document embeddings and focuses on
coherence scores between documents, described
in Thielmann et al. (2023) with adaptations from
Luber et al. (2021). The neural topic models im-
plemented in OCTIS and thus also available in
STREAM are the CTM introduced by Bianchi et al.
(2021), the ETM (Dieng et al., 2020), NeuralLDA
and ProdLDA introduced by Srivastava and Sutton
(2017). Further models are LDA (Blei et al., 2003),
HDP (Teh et al., 2004), LSI (Landauer et al., 1998)
and classical NMF (Lee and Seung, 2000).

A.2 Available Datasets
The available datasets are described in the paper in
section 2.1. Since most of STREAMs models are
centered around Document embeddings (Reimers
and Gurevych, 2019), STREAM comes along with
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Table 2: Comparison between STREAM and the most well-known topic modeling libraries

Features STREAM OCTIS Gensim STTM PyCARET MALLET TOMODAPI
Pre-processing tools ✓ ✓ ✓ ✓ ✓ ✓
Pre-processed datasets ✓ ✓ ✓ ✓ ✓ ✓ ✓
Pre-embedded datasets ✓
Classical topic models ✓ ✓ ✓ ✓ ✓ ✓ ✓
Neural topic models ✓ ✓ ✓
Clustering topic models ✓
Coherence metrics ✓ ✓ ✓ ✓ ✓ ✓
Diversity metrics ✓ ✓
Significance metrics ✓ ✓
Classification metrics ✓ ✓ ✓ ✓ ✓ ✓
Intruder word metrics ✓
Downstream Model ✓
Visualization ✓
Hyper-parameters tuning BO BO MLE grid-search MLE

a set of pre-embedded datasets. Once a user fits
a model that leverages document embeddings, the
embeddings are saved and automatically loaded the
next time the user wants to fit any model with the
same set of embeddings, thus enabling very fast
model fitting and comparison.

Table 4: Dataset Overview

Name # Docs # Words # Features
Reuters 8,929 24,803 -
Reddit_GME 21,549 21,309 6
Poliblogs 13,246 70,726 4
Spotify_most_popular 4,538 53,181 14
Spotify_least_popular 4,374 111,738 14
Spotify 4,185 80,619 14
Stocktwits_GME 11,114 19,383 3
Stocktwits_GME_large 136,138 80,435 3

A.3 Available Metrics
In addition to the metrics from OCTIS, STREAM
offers the following available topic evaluation met-
rics: ISIM, INT and ISH are all intruder based
metrics proposed by Thielmann et al. (2024b). Em-
bedding Coherence is similarly implemented as
by Terragni et al. (2021b) without the normaliza-
tion of the embeddings. NPMI describes classical
NPMI scores proposed by Lau et al. (2014) and
Embedding Coherence is similar to the Coherence
metrics from Terragni et al. (2021b). Expressivity
and Embedding Topic Diversity are both diversity
metrics calculated in the embedding space. Future
developments could include e.g. metrics proposed
by Rahimi et al. (2024) or Weisser et al. (2023).

• Intruder Metrics

– ISIM: Average cosine similarity of top
words of a topic to an intruder word.

– INT: For a given topic and a given in-
truder word, Intruder Accuracy is the
fraction of top words to which the in-
truder has the least similar embedding
among all top words.

– ISH: Calculates the shift in the centroid
of a topic when an intruder word is re-
placed.

• Diversity Metrics

– Expressivity: Cosine Distance of topics
to meaningless (stopword) embedding
centroid.

– Embedding Topic Diversity: Topic di-
versity in the embedding space.

• Coherence Metrics

– Embedding Coherence: Cosine similar-
ity between the centroid of the embed-
dings of the stopwords and the centroid
of the topic.

– NPMI: Classical NPMi coherence com-
puted on the source corpus.

A.4 Downstream task
As a demonstration of the downstream task, we
have simulated some simple data. We have created
three data generating topics, consisting of fruits,
vehicles and animals. The documents are gener-
ated by having a random draw with 60% out of
one specified topic and the remaining 40% out ran-
dom topics. Additionally, we have generated two
continuous variables and made the target variable
a function of two effects of the continuous vari-
ables as well as an effect of the number of words
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Figure 4: The animal topic as detected by the CDEC
model and visualized via a wordcloud generating func-
tion available in STREAM.

Figure 5: The effect of the animal topic on the target
variable. Put simple: The "more" a document is about
animals, the larger y gets.

taken from each generated topic. We subsequently
fit a CDEC (Thielmann et al., 2024b) model and
extracted the topics. The animal topic is depicted
in Figure 4.

Figure 6: The numerical effect of feature x1 on y vi-
sualized with a function available in STREAM. The
visualizations closely follow the ones created by Agar-
wal et al. (2021).

The downstream model is then simply specified
as defined in equation 2. The continuous feature
effects are accurately detected and visualized in
figures 6 and 7. The topic effects, one continuous
5 and one more complicated 8 are also accurately
depicted. It is clearly recognizable, that the animal
topic from figure 4 has a continuous positive effect

on the target variable whereas the effect of the
second topic is more refined and roughly follows a
squared function.

Figure 7: The numerical effect of feature x2 on y vi-
sualized with a function available in STREAM. The
visualizations closely follow the ones created by Agar-
wal et al. (2021).

Figure 8: A more complicated topical effect of topic 1,
vehicles on the target variable.
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