@inproceedings{reddy-etal-2024-docfinqa,
title = "{D}oc{F}in{QA}: A Long-Context Financial Reasoning Dataset",
author = "Reddy, Varshini and
Koncel-Kedziorski, Rik and
Lai, Viet Dac and
Krumdick, Michael and
Lovering, Charles and
Tanner, Chris",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-short.42",
doi = "10.18653/v1/2024.acl-short.42",
pages = "445--458",
abstract = "For large language models (LLMs) to be effective in the financial domain {--} where each decision can have a significant impact {--} it is necessary to investigate realistic tasks and data. Financial professionals often interact with documents spanning hundreds of pages, but most financial research datasets only deal with short excerpts from these documents. To address this, we introduce a long-document financial QA task. We augment 7,437 questions from the existing FinQA dataset with full-document context, extending the average context length from under 700 words in FinQA to 123k words in DocFinQA. We conduct extensive experiments over retrieval-based QA pipelines and long-context language models. Based on our experiments, DocFinQA proves a significant challenge for even state-of-the-art systems. We also provide a case study on a subset of the longest documents in DocFinQA and find that models particularly struggle with these documents. Addressing these challenges may have a wide-reaching impact across applications where specificity and long-range contexts are critical, like gene sequences and legal document contract analysis. DocFinQA dataset is publicly accessible.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="reddy-etal-2024-docfinqa">
<titleInfo>
<title>DocFinQA: A Long-Context Financial Reasoning Dataset</title>
</titleInfo>
<name type="personal">
<namePart type="given">Varshini</namePart>
<namePart type="family">Reddy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rik</namePart>
<namePart type="family">Koncel-Kedziorski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Viet</namePart>
<namePart type="given">Dac</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Krumdick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Charles</namePart>
<namePart type="family">Lovering</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Tanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For large language models (LLMs) to be effective in the financial domain – where each decision can have a significant impact – it is necessary to investigate realistic tasks and data. Financial professionals often interact with documents spanning hundreds of pages, but most financial research datasets only deal with short excerpts from these documents. To address this, we introduce a long-document financial QA task. We augment 7,437 questions from the existing FinQA dataset with full-document context, extending the average context length from under 700 words in FinQA to 123k words in DocFinQA. We conduct extensive experiments over retrieval-based QA pipelines and long-context language models. Based on our experiments, DocFinQA proves a significant challenge for even state-of-the-art systems. We also provide a case study on a subset of the longest documents in DocFinQA and find that models particularly struggle with these documents. Addressing these challenges may have a wide-reaching impact across applications where specificity and long-range contexts are critical, like gene sequences and legal document contract analysis. DocFinQA dataset is publicly accessible.</abstract>
<identifier type="citekey">reddy-etal-2024-docfinqa</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.42</identifier>
<location>
<url>https://aclanthology.org/2024.acl-short.42</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>445</start>
<end>458</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DocFinQA: A Long-Context Financial Reasoning Dataset
%A Reddy, Varshini
%A Koncel-Kedziorski, Rik
%A Lai, Viet Dac
%A Krumdick, Michael
%A Lovering, Charles
%A Tanner, Chris
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F reddy-etal-2024-docfinqa
%X For large language models (LLMs) to be effective in the financial domain – where each decision can have a significant impact – it is necessary to investigate realistic tasks and data. Financial professionals often interact with documents spanning hundreds of pages, but most financial research datasets only deal with short excerpts from these documents. To address this, we introduce a long-document financial QA task. We augment 7,437 questions from the existing FinQA dataset with full-document context, extending the average context length from under 700 words in FinQA to 123k words in DocFinQA. We conduct extensive experiments over retrieval-based QA pipelines and long-context language models. Based on our experiments, DocFinQA proves a significant challenge for even state-of-the-art systems. We also provide a case study on a subset of the longest documents in DocFinQA and find that models particularly struggle with these documents. Addressing these challenges may have a wide-reaching impact across applications where specificity and long-range contexts are critical, like gene sequences and legal document contract analysis. DocFinQA dataset is publicly accessible.
%R 10.18653/v1/2024.acl-short.42
%U https://aclanthology.org/2024.acl-short.42
%U https://doi.org/10.18653/v1/2024.acl-short.42
%P 445-458
Markdown (Informal)
[DocFinQA: A Long-Context Financial Reasoning Dataset](https://aclanthology.org/2024.acl-short.42) (Reddy et al., ACL 2024)
ACL
- Varshini Reddy, Rik Koncel-Kedziorski, Viet Dac Lai, Michael Krumdick, Charles Lovering, and Chris Tanner. 2024. DocFinQA: A Long-Context Financial Reasoning Dataset. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 445–458, Bangkok, Thailand. Association for Computational Linguistics.