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Abstract

We introduce a new, extensive multidimen-
sional quality metrics (MQM) annotated
dataset covering 11 language pairs in the
biomedical domain. We use this dataset
to investigate whether machine translation
(MT) metrics which are fine-tuned on human-
generated MT quality judgements are robust to
domain shifts between training and inference.
We find that fine-tuned metrics exhibit a sub-
stantial performance drop in the unseen domain
scenario relative to both metrics that rely on the
surface form and pre-trained metrics that are
not fine-tuned on MT quality judgments.

1 Introduction

Automatic metrics are vital for machine translation
(MT) research: given the cost and effort required
for manual evaluation, automatic metrics are useful
for model development and reproducible compari-
son between research papers (Ma et al., 2019). In
recent years, the MT field has been moving away
from string-matching metrics like BLEU (Papineni
et al., 2002) towards fine-tuned metrics like COMET

(Rei et al., 2020), which start with pre-trained mod-
els and then fine-tune them on human-generated
quality judgments. Fine-tuned metrics have been
the best performers in recent WMT metrics shared
task evaluations (Freitag et al., 2022, 2023) and are
recommended by the shared task organizers, who
go so far as to say, “Neural fine-tuned metrics are
not only better, but also robust to different domains.”
(Freitag et al., 2022).

Given the growing popularity of fine-tuned met-
rics, it is important to better understand their be-
havior. Here, we examine the question of domain
robustness of fine-tuned metrics. Fine-tuned met-
rics contain extra parameters on top of the pre-
trained model which are initialized randomly (or to
zero) and then fine-tuned on human-generated MT
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Figure 1: Automatic machine translation metric perfor-
mance on the WMT and biomedical domains, averaged
across metric types (see Figure 2 for full results).

quality annotations. The primary source of those
annotations is prior WMT metrics shared tasks, and
domains in WMT are often carried over from year
to year (e.g. news). This raises the question: are
fine-tuned metrics in fact robust across any domain
(including domains not seen in training)? Or can
their apparent strong performance be attributed in
part to the artificially good domain match between
training and test data?

To answer these questions, we first collect hu-
man multidimensional quality metrics (MQM) an-
notations in the biomedical (bio) domain. Vocab-
ulary overlap and error analysis suggest that this
new dataset is distinct from the domains used in
WMT. This data covers 11 language pairs and 21
translation systems, with 25k total judgments. In
addition to the MQM annotations, we also create
new high-quality reference translations for all di-
rections. We release this data publicly, along with
code for replication of our experiments.1

Next, we examine how different types of met-
rics perform on our new bio test set relative to
the WMT test set. We find that fine-tuned metrics
have substantially lower correlation with human

1github.com/amazon-science/bio-mqm-dataset
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Architecture Metrics

Surface-Form
score

tgt
ref

Metric
BLEU
CHRF
TER

Pre-trained+Algorithm

score
src
tgt
ref

Model Metric BERTSCORE
PRISM

Pre-trained+Fine-tuned

score
src
tgt
ref

LLM Metric
COMET
UNITE
BLEURT

Pre-trained+Prompt

score
src
tgt
ref

LLM Metric
GEMBA
AUTOMQM

Table 1: Metric types considered in this work. The
components have trainable parameters while use

handcrafted heuristics or algorithms and decodes
from a language model. The ref input is omitted in
the case of reference-free metrics (i.e. quality estima-
tion).

judgments in the bio domain, despite other types
of metrics having higher correlation in the bio do-
main (see Figure 1), indicating they struggle with
the training/inference domain mismatch. Finally,
we present analysis showing that this performance
gap persists throughout different stages of the fine-
tuning process and is not the result of a deficiency
with the pre-trained model.

2 Related Work

Metric types. Table 1 summarizes the different
types of metrics that are commonly used to evaluate
MT. The earliest type of MT metrics are Surface-
Form metrics, which are purely heuristic and use
word- or character-based features. We consider
three common Surface-Form metrics: BLEU (Pa-
pineni et al., 2002), TER (Snover et al., 2006)
and CHRF (Popović, 2015). Metrics like COMET

(Rei et al., 2020), BLEURT (Sellam et al., 2020),
and UNITE (Wan et al., 2022) start with a pre-
trained language model and fine-tune it on human-
generated MT quality judgments. We denote these
metrics Pre-trained+Fine-tuned.2 Another class
of metrics also start with a pre-trained model but
do not perform fine-tuning. Examples of such met-
rics include PRISM (Thompson and Post, 2020a,b),
which uses the perplexity of a neural paraphraser,
and BERTSCORE (Sun et al., 2022), which is
based on cosine similarity of word embeddings.
We denote such metrics Pre-trained+Algorithm
metrics. More recently, metrics like GEMBA

2The WMT metrics task calls these “trained” metrics.

WMT Bio

Error
severity

Critical N/A 8%
Major 26% 44%
Minor 43% 31%
Neutral 31% 16%

Error
category

Fluency 47% 66%
Accuracy 44% 18%
Terminology 6% 10%
Locale 2% 2%
Other 1% 4%

Error-free segments 45% 72%
Errors per erroneous segment 1.9 2.1
Abs. erroneous segment score -4.1 -7.6

Table 2: Error distribution of our new bio dataset and the
existing WMT22 MQM dataset. The MQM annotation
scheme for WMT in most cases did not contain the
Critical category.

(Kocmi and Federmann, 2023) and AUTOMQM
(Fernandes et al., 2023) have proposed prompting
a large language model. We denote these as Pre-
trained+Prompt metrics.

Domain specificity. Domain specificity for MT
metrics was first explored by C. de Souza et al.
(2014) for Surface-Form metrics. Sharami et al.
(2023) brought attention to the issue of domain
adaptation for quality estimation (QE), offering
solutions based on curriculum learning and gener-
ating synthetic scores similar to Heo et al. (2021),
Baek et al. (2020), and Zouhar et al. (2023). Sun
et al. (2022) examined general-purpose natural lan-
guage generation metrics and documented their
bias with respect to social fairness. For word-level
QE, Sharami et al. (2023) reported the lack of ro-
bustness of neural metrics.

3 New Bio MQM Dataset

We create and release new translations and MQM
annotations for the system submissions from 21
participants to the WMT21 biomedical translation
shared task (Yeganova et al., 2021). To explore how
different the bio domain is from the WMT22 metric
task domains, we computed the vocabulary over-
lap coefficient between each domain. Bio had the
smallest average overlap with the WMT domains
(0.436) compared to 0.507, 0.486, 0.507, and 0.582
for e-commerce, news, social, and conversation,
respectively. See Appendix A for full details and
example sentences from each domain.
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Figure 2: Gains in segment-level correlation (Kendall’s τ ) when comparing Surface-Form metrics (average perfor-
mance of BLEU, CHRF, and TER) to a given metric, on the WMT and bio test sets. Gains for Pre-trained+Fine-
tuned metrics are much smaller in the unseen bio domain than the WMT domain. Pre-trained+Algorithm metrics,
which do not train on prior WMT data, do not exhibit the same bias. See Appendix F for results in tabular form.

3.1 Dataset Creation

We created the bio MQM dataset in three steps.
Annotations and translations were performed by
expert linguists with experience in the medical do-
main (see Appendix C for full details).

Step 1: Reference re-translation. The original
bio test set consists of bilingual abstracts from
crawled academic papers, which might be writ-
ten by non-native speakers (Névéol et al., 2020) or
even MT (Thompson et al., 2024). Therefore, we
create new professional reference translations.

Step 2: Reference quality. To ensure a high bar
of quality for the reference translations, we ask a
separate set of annotators to provide MQM annota-
tions for the new references. Any issues identified
by this round of MQM annotation are then fixed by
a new set of translators, resulting in the final refer-
ence translations that we release in this dataset.

Step 3: MQM annotations. Finally, we conduct
the main MQM annotation on the references and
shared task system outputs. In this step, a single
annotator rates all translations of a given document
(from all systems and the reference).3 Our MQM
schema follows Freitag et al. (2021) except that we
add a Critical severity (assigned the same score as
Major for backward compatibility). Full annotator
instructions are in Appendix D.

The resulting dataset contains roughly 25k
segment-level annotations spanning 11 translation
directions.4 In contrast, most publicly available
MQM data to date covers only a few language pairs.

3This allows us to distribute annotation jobs to multiple an-
notators while still allowing the annotator to access document-
level context and ensuring that the whole document is ranked
consistently.

4Pt→En, En↔De, En↔Es, En↔Ru, En↔Fr, Zh↔En

We use ~25% of the segments for each language
pair as the train/dev set, leaving the rest as the test
set (see Appendix B for exact sizes in each pair).

We compare error distributions on our new bio
MQM dataset and the existing WMT MQM dataset
in Table 2. Bio MQM contains more Critical/Major
errors, and lower absolute scores on average. How-
ever, WMT MQM has more overall sentences
where an error occurs. Error category distribution
also diverges, notably in Fluency and Accuracy.

4 Analysis

4.1 Are fine-tuned metrics robust across
domains?

Measuring domain robustness. The perfor-
mance of a MT metric is typically measured by
a certain meta-evaluation metric, such as segment-
level Kendall’s τ correlation with human judg-
ments. Intuitively, one could simply measure do-
main robustness by comparing the performance
of a certain metric on domain A and domain B.
This, however, is not straightforward with meta-
evaluations for metrics, since performance mea-
sured by those meta-evaluations is also affected
by factors such as the quantity and quality of the
translations included in the dataset, which is often
hard to control for.

As a result, we resort to comparisons of relative
performance measured against a domain-invariant
baseline. To establish such comparison, we make
two assumptions:

1. We assume Surface-Form metrics can serve
as a domain-invariant baseline, as they are
purely based on heuristics and do not involve
parameters specifically tuned on a certain do-
main. We use average performance of BLEU,
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CHRF, and TER as the baseline to minimize
the impact of specific choice of heuristics.

2. We assume segment-level Kendall’s τ corre-
lation with human judgments has a linear re-
lationship with the objective performance of
a metric. Hence, relative performance can be
measured by simple linear subtraction.

Observations. Compared to Surface-Form met-
rics, we find that Pre-trained+Fine-tuned metrics
provide a substantially smaller (sometimes even
negative) improvement in human correlation in the
bio domain than the WMT domain (see Figure 2).
On the other hand, Pre-trained+Algorithm metrics,
which have not been trained on WMT data, do
not exhibit the same gap. This gap suggests that
fine-tuned metrics struggle with unseen domains.

We also observe a very large performance gap
for Pre-trained+Prompt metrics. Unfortunately,
these metrics rely on closed-source LLMs without
published training procedures, so we do not know
what data the underlying LLMs were trained on.

4.2 How does fine-tuning affect domain
robustness?

Model description. For this section, we focus
on COMET (reference-based) and COMET-QE
(reference-free) as they are among the most com-
monly used MT metrics. The COMET model works
by representing the source, the hypothesis and the
reference as three fixed-width vectors using a lan-
guage model, such as XLM-Roberta-large (Con-
neau et al., 2019). These vectors and their combi-
nations serve as an input to a simple feed-forward
regressor which is fine-tuned to minimize the MSE
loss with human MQM scores. A COMET model
is trained in two stages, first on direct assessment
(DA) quality annotations and then on MQM anno-
tations, both from WMT shared tasks.

Setup. We limit our experiments to the En-De,
Zh-En and Ru-En language directions because of
WMT MQM availability. We largely followed the
training recipe in the COMET Github repo5. For
details, please refer to our code.

There is high inter-annotator variance in the
WMT and bio MQM data. Training on the raw
MQM scores is very unstable and therefore per-
annotator z-normalizing is necessary to replicate
our setup. Note that the publicly available WMT
MQM data are not z-normalized.

5github.com/Unbabel/COMET/tree/master/configs

Test:WMT MQM epochs

D
A

ep
oc

hs

0 1 2 4 8
0 0.118 0.285 0.281 0.279 0.295
1 0.324 0.333 0.318 0.317 0.323
2 0.326 0.337 0.323 0.323 0.325
4 0.322 0.335 0.323 0.322 0.321
8 0.311 0.335 0.324 0.322 0.316

Test:Bio MQM epochs

D
A

ep
oc

hs

0 1 2 4 8
0 0.071 0.234 0.229 0.240 0.250
1 0.282 0.280 0.282 0.274 0.270
2 0.270 0.265 0.273 0.268 0.266
4 0.255 0.246 0.258 0.259 0.253
8 0.240 0.242 0.261 0.260 0.253

Table 3: Segment-level correlation (Kendall’s τ ) be-
tween metrics and human judgments on the WMT (top)
and bio (bottom) test sets, for COMET with varying
epochs of WMT domain DA and MQM training.
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Figure 3: Average performance (8 seeds) of COMET
fine-tuned on varying amounts of MQM bio data.

Observation 1: Domain gap persists throughout
the fine-tuning process. We would like to under-
stand which stage among the two training stages
for COMET accounts for the domain gap. To this
end, we retrained COMET with varying epochs on
DA/MQM data, shown in Table 3. In contrast to
catastrophic forgetting (Goodfellow et al., 2013;
Thompson et al., 2019a,b), where a model starts
with good general-domain performance and then
overfits while being adapted to a new task or do-
main, we do not see a sharp dropoff in the bio
domain performance when training on more WMT
(DA and/or MQM) data. This indicates that the
model is a weak bio metric at all stages, as opposed
to first learning and then forgetting.

Observation 2: In-domain data dramatically im-
proves COMET. Generally, including bio MQM
annotations in training improves COMET’s perfor-
mance in the bio test set, increasing correlation
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□. Perplexity is average of MLM and TLM objectives
on the text portion of the MQM dataset for both do-
mains.

from 0.287 to 0.328 with 6k bio judgments. Indeed,
just 1k judgements improves correlation to 0.313
(see Figure 3). This rules out the possibility that bio
is inherently problematic for COMET’s architecture
or fine-tuning strategy.

4.3 How does the pre-trained model affect
domain robustness?

COMET and BERTSCORE are both based on XLM-
Roberta-large (Conneau et al., 2019), allowing us
to explore how the same changes to the pre-trained
model affect each metric. To see whether im-
proving the underlying pre-trained model improves
Pre-trained+Algorithm metrics built on those pre-
trained models, we fine-tune XLM-Roberta with
data similar to the WMT and bio domain setup,
respectively. Similarly, we also investigate how
PRISM, another Pre-trained+Algorithm metric, is
affected with changes to the pre-trained model. We
use PRISM with the NLLB multilingual MT mod-
els (NLLB Team et al., 2022) as they are larger and
more recent than the model released with PRISM.

Setup. Our fine-tuning data covers the four lan-
guages of interest, namely English, German, Rus-
sian, and Chinese (see Appendix E.2 for a detailed
data list). Since NLLB is a translation model,
we use only parallel data to fine-tune the model.
For the XLM-Roberta case, note that it was fine-
tuned with two objectives: masked language model
(MLM) and translation language model (TLM). We
use both parallel and monolingual data for MLM
training and parallel data for TLM training.
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Figure 5: Multiple NLLB MT models are used as the
base model for PRISMSRC. Fine-tuning the underlying
MT model improves the metric. Compute constraints
preclude finetuning NLLB-3.3B.

Observations: XLM-Roberta. For both do-
mains, improving the pre-trained model improves
BERTSCORE but not COMET (see Figure 4). This
indicates that the limiting factor for the poor per-
formance of COMET on bio is the effect from its
various fine-tuning stages (discussed in Section
4.2), not an underlying weakness in the pre-trained
model on bio.

Observations: NLLB. Our findings are shown
in Figure 5. In general, we found that improving
the pre-trained models performance (as measured
by BLEU on a held out test set) also improved
PRISM’s performance.

5 Conclusion and Future Work

This paper investigated the performance of machine
translation metrics across divergent domains. To
this end, we introduced a new, extensive MQM-
annotated dataset covering 11 language pairs in
the bio domain. Our analysis showed that Pre-
trained+Fine-tuned metrics (i.e. those that use
prior human quality annotations of MT output) ex-
hibit a larger gap between in-domain and out-of-
domain performance than Pre-trained+Algorithm
metrics (like BERTSCORE). Further experiments
showed that this gap can be attributed to the DA
and MQM fine-tuning stage.

Despite the gap between in-domain and out-of-
domain performance, COMET is still the best per-
forming metric on the bio domain in absolute terms.
Thus, our findings suggest potential directions for
future work including collecting more diverse hu-
man judgments for Pre-trained+Fine-tuned met-
rics and exploring ways to improve the generaliza-
tion of such metrics during fine-tuning.
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Limitations

Our findings are dependent on two empirical as-
sumptions we discussed in section 4.1. To the best
of our knowledge, those assumptions are neces-
sary to achieve a fair comparison of metrics across
domains, but conclusions may change if our as-
sumptions are refuted in future studies.

We draw conclusions based on a single unseen
domain (biomedical). While additional domains
would have been preferable, data collection was
cost prohibitive.

Context has been shown to be beneficial in ma-
chine translation evaluation (Läubli et al., 2018;
Toral, 2020) and some metrics used in this work
have document-level versions (Vernikos et al.,
2022). However, in order to draw fair compar-
isons with existing metrics which do not yet have a
document-level version, we only evaluated metrics
at the sentence level.

We focused on segment-level evaluation and did
not attempt system-level comparisons because of
the limited number of system submissions to the
WMT biomedical translation shared task.
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WMT Bio
Langs Test Train Test Dev Total

De-En - - 2457 903 3360
En-De 18k 28k 2695 917 3612
Es-En - - 1013 309 1322
En-Es - - 1112 330 1442
Ru-En - - 1324 388 1712
En-Ru 19k 16k 825 237 1062
Fr-En - - 1108 352 1460
En-Fr - - 1228 308 1536
Zh-En 23k 27k 2838 913 3751
En-Zh - - 3900 1200 5100
Pt-En - - 701 222 924

All 60k 71k 19k 6k 25k

Table 4: Data split of the bio MQM data released in this
work, and WMT22 MQM (Freitag et al., 2022) data.
All test results are reported with the test split which
is approximately 75% of total. Splits were created to
respect document-level boundaries. For WMT, 2022 is
used for testing and 2020 and 2021 for training.

A Domain Overlap Between WMT and
bio

To evaluate the overlap between the WMT and bio
domains, we calculate the vocabulary overlap co-
efficient ( |A∩B|

min(|A|,|B|)) between our new bio MQM
dataset and the domains used in the WMT22 met-
rics shared task. The per-domain overlap matrix is
shown in Figure 6. Randomly selected sentences
from each domain are provided for illustration in
Figure 7.

B Corpus Statistics

Table 4 shows the size per language pair of our bio
MQM dataset, as well as the WMT MQM dataset
for comparison. The bio MQM dataset contains
roughly 25k annotated segments, covering 11 lan-
guage pairs. We split the data into test (roughly
75%) and development (roughly 25%) sets.

C Translator/Annotator Qualifications

There were 2-4 MQM annotators for each language
pair, and a total of 46 annotators. All linguists had
experience in translating/post-editing/reviewing
content in the bio domain. This was the main re-
quirement to be able to work on the project. The
other qualification criteria for this project were in
line with the ISO standard 17100. In particular, the
linguists met one or more of the following crite-
ria: (1) A recognized higher education degree in
translation; (2) Equivalent third-level degree in an-
other subject plus a minimum of two years of doc-

umented professional translation experience; (3) A
minimum of five years of documented professional
translation experience; (4) Native speaker of the
target language. Although linguists were experts
in the bio domain, not all of them were experts
in MQM annotation. For this reason, the annota-
tors completed an MQM quiz before onboarding
them to ensure they understood the guidelines and
requirements.

For the translation and post-editing tasks, we
used a two step process (initial post editor + re-
viewer). In each case the reviewer was a linguist
with experience translating medical texts. There
were no specific educational or vocational stipula-
tions on that medical qualification, however they
were asked to provide a medical-text-specific trans-
lation test for us to be onboarded for the project.
The initial post-editor in each case was a linguistic
expert, but not specifically an expert in medical
translations, which is why we followed up with
reviewers to ensure contents were translated accu-
rately. Linguists had to demonstrate the following
to onboard to the project: (1) At least 3+ years
of professional translation experience (2) Proven
proficiency in English writing skills (3) In-depth
understanding and exposure to the language (4)
Strong ability in translating, reviewing, adjusting,
and providing adaptation for various writing styles
of particular requests.

D MQM Annotation Guidelines

Below, we reproduce the MQM annotation guide-
lines that we provided to the annotators.

Overview: You are asked to evaluate the transla-
tions using the guidelines below, and assign error
categories and severities considering the context
segments available.

Task:

1. Please identify all errors within each trans-
lated segment, up to a maximum of five.

(a) If there are more than five errors, identify
only the five most severe.

(b) If it is not possible to reliably identify
distinct errors because the translation is
too badly garbled or is unrelated to the
source, then mark a single Unintelligible
error that spans the entire segment

(c) Annotate segments in natural order, as
if you were reading the document. You
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e-commerce news social conversation biomedical

e-commerce 1.000 0.349 0.511 0.662 0.369
news 0.349 1.000 0.517 0.592 0.359
social 0.511 0.517 1.000 0.494 0.462
conversation 0.662 0.592 0.494 1.000 0.554
biomedical 0.369 0.359 0.462 0.554 1.000

Figure 6: Vocabulary overlap coefficient between the English source-side data for each domain in the WMT22 and
our bio dataset.

e-commerce This was one of the first albums I purchased of Keith’s "back in the day".

news Sean Combs has been variously known as Puff Daddy, P. Diddy or Diddy, but
this year announced his preference for the names Love and Brother Love.

social The comment about boiling being inefficient is probably correct bc even though
the water heater is running continuously, that thing has SO MUCH insulation.

conversation Let me know if you were able to create your new password and sign in with it

biomedical Though neither perfectly sensitive nor perfectly specific for trachoma, these signs
have been essential tools for identifying populations that need interventions to
eliminate trachoma as a public health problem.

Figure 7: Randomly selected English example sentences from each domain in the WMT22 metrics shared task as
well as our new bio dataset.

may return to revise previous segments.

2. To identify an error, highlight the relevant
span of text.

(a) Omission and Source error should be
tagged in the source text.

i. All other errors should be tagged in
the target text.

(b) Unintelligible error should have an entire
sentence tagged; if you think a smaller
span is needed, then you should select
another error category (Mistranslation,
etc.).

3. Select a category/sub-category and severity
level from the available options.

4. When identifying errors, please be as fine-
grained as possible.

(a) If a sentence contains more than one er-
ror of the same category, each one should
be logged separately. For example, if
a sentence contains two words that are
each mistranslated, two separate mis-
translation errors should be recorded.

(b) If a single stretch of text contains multi-
ple errors, you only need to indicate the
one that is most severe.

i. If all have the same severity, choose
the first matching category listed
in the error typology (e.g. Accu-
racy, then Fluency, then Terminology,
etc.).

(c) For repetitive errors that appear system-
atically through the document: please an-
notate each instance with the appropriate
weight.

5. Please pay particular attention to the context
when annotating. You will be shown several
context segments before and after the segment
for evaluation. If a translation is questionable
on its own but is fine in the context of the
document, it should not be considered erro-
neous; conversely, if a translation might be
acceptable in some context, but not within
the current document, it should be marked as
wrong.

Delivery format:

• file format: a TSV with additional columns
for error categories and severity + JSON
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– for multiple errors in one segment: addi-
tional row for each error + severity

– text spans will be highlighted for the an-
notation process and exported as tag

Error categories: Table 5

Severity (no weights, just severity): Table 6

E Supplementary Information on
Experiments

E.1 Training Steps and Compute Time for
Experiments

The overall training consists of the following steps
(compute times using a single A10 GPU). The
times are per epoch and some experiments require
training for multiple epochs.

• Language modeling → XLM-Roberta, 10hr/ep.
• DA scores regression → COMETDA, 10hr/ep.
• MQM scores regression → COMET, 1hr/ep.

E.2 List of Data for Fine-Tuning Pre-Trained
Model

For WMT domain, we used news-commentary
v18.1 dataset6 for all languages. For the bio do-
main, we list the data in Table 7.

Data Type Language(s) Dataset Lines

Parallel

en-de
UFAL Medical Corpus
(Yeganova et al., 2021)

3M

en-de
MEDLINE
(Yeganova et al., 2021)

35k
en-ru 29k
en-zh 19k

Monoling.

En CORD (Wang et al., 2020) 1M

De
Animal Experiments7

GERNERMED
(Frei and Kramer, 2023)

250k

Ru Medical QA 250k
Zh Chinese Medical Dataset8 2M

Table 7: Collection of bio domain data used in pre-
trained model fine-tuning experiments.

F Raw Scores for Figure 2

The segment-level correlation (Kendall’s τ ) scores
used to compute improvements in Figure 2 are
provided in Table 8. Note that there is no public
COMET 22 MQM model.

6data.statmt.org/news-commentary/v18.1/
7www.openagrar.de/receive/openagrar_mods_

00046540?lang=en
8huggingface.co/datasets/shibing624/medical

498

https://data.statmt.org/news-commentary/v18.1/
https://www.openagrar.de/receive/openagrar_mods_00046540?lang=en
https://www.openagrar.de/receive/openagrar_mods_00046540?lang=en
https://huggingface.co/datasets/shibing624/medical


Tag
Location

Accuracy – errors occurring
when the target text does not
accurately correspond to the
propositional content of the
source text, introduced by
distorting, omitting, or adding
to the message

Mistranslation Target content that does not accurately represent
the source content.

Target

Addition Target content that includes content not present
in the source.

Target

Omission Errors where content is missing from the trans-
lation that is present in the source.

Source

Untranslated Errors occurring when a text segment that was
intended for translation is left untranslated in the
target content.

Target

Linguistic Conventions
(former Fluency) - errors
related to the linguistic
well-formedness of the text,
including problems with, for
instance, grammaticality and
mechanical correctness.

Grammar Error that occurs when a text string (sentence,
phrase, other) in the translation violates the
grammatical rules of the target language.

Target

Punctuation Punctuation incorrect for the locale or style. Target
Spelling Error occurring when the letters in a word in

an alphabetic language are not arranged in the
normally specified order.

Target

Character encod-
ing

Error occurring when characters garbled due to
incorrect application of an encoding.

Target

Register Errors occurring when a text uses a level of for-
mality higher or lower than required by the spec-
ifications or by common language conventions.

Target

Terminology - errors arising
when a term does not conform
to normative domain or
organizational terminology
standards or when a term in the
target text is not the correct,
normative equivalent of the
corresponding term in the
source text.

Inconsistent use of
terminology

Use of multiple terms for the same concept (tech-
nical terms, medical terms, etc.)

Target

Wrong term Use of term that it is not the term a domain
expert would use or because it gives rise to a
conceptual mismatch.

Target

Style Non-fluent Text does not sound fluent or natural as if it were
translated by a non-native speaker or because the
translation is following the source too closely.

Target

Locale Conventions - errors
occurring when the translation
product violates locale-specific
content or formatting
requirements for data elements.

Number format Target
Currency format Target
Measurement for-
mat

Target

Time format Target
Date format Target
Address format Target
Telephone format Target

Other any error that does not fit the categories above Target
Source errors source error The error that occurs in the source. All source er-

rors (e.g. non-fluent source) should be annotated
as source errors — no sub-categories need to be
selected. If the source error caused a target
error: - if the source error and target errors
belong to the same category, then only flag the
source. -If source and target errors belong to
different categories - even if you know that the
source error caused the translation error - do flag
both.

Source

Unintelligible So many errors, or errors are so outrageous, that
text becomes incomprehensible, and it is hard to
pinpoint a specific error type.

Target. Tag the
entire sentence.
If the span is
smaller, then a
different cate-
gory should be
applied, such as
Mistranslation,
Untranslated,
etc.

Table 5: MQM error categories provided in annotator instructions.
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severity Definition Source example Translation example
Neutral Neutral issues are items that need to be noted

for further attention or fixing but which should
not count against the translation. This severity
level can be perceived as a flag for attention
that does not impose a penalty. It should be
used for “preferential errors” (i.e, items that are
not wrong, per se, but where the reviewer or
requester would like to see a different solution).

Source: Join us in cele-
brating 10 years of the
company!

Target: Join us to cel-
ebrate 10 years of the
company!

Minor Minor issues are issues that do not impact us-
ability or understandability of the content. If the
typical reader/user is able to correct the error
reliably and it does not impact the usability of
the content, it should be classified as minor.

S1: Accurately distin-
guish between legiti-
mate and high-risk ac-
count registrations
S2: See how organiza-
tions worldwide are us-
ing fraud detection.

T1: Accurately dis-
tinguish between legiti-
mate and high- risk ac-
count registrations
T2: See how organiza-
tion worldwide are us-
ing fraud detection.

Major errors that would impact usability or understand-
ability of the content but which would not render
it unusable. For example, a misspelled word that
may require extra effort for the reader to under-
stand the intended meaning but does not make
it impossible to comprehend should be labeled
as a major error. Additionally, if an error cannot
be reliably corrected by the reader/user (e.g., the
intended meaning is not clear) but it does not
render the content unfit for purpose, it should be
categorized as major.

Source: Set the perfor-
mance to 50 percent

Target: Set performance
50 percent

Critical errors that would render a text unusable, which
is determined by considering the intended au-
dience and specified purpose. For example, a
particularly bad grammar error that changes the
meaning of the text would be considered Critical.
Critical errors could result in damage to people,
equipment, or an organization’s reputation if not
corrected before use. If the error causes the text
to become unintelligible, it would be considered
Critical.

S1: Set the device on
the highest temperature
setting.
S2: The next step would
be to identify the point
of leakage.
S3: 1.3 degrees

T1: Set the device on
the lowest temperature
setting.
T2: It would be to iden-
tify the next point of
leakage.
T3: 1,300 degrees

Table 6: Severity examples and explanations provided in MQM annotation instructions.

Type Metric Test:WMT Test:Bio

Surface-Form
BLEU 0.134 0.213
ChrF 0.151 0.192
TER 0.140 0.100

Pre-trained+Algorithm
PRISMREF 0.216 0.242
PRISMSRC 0.121 0.267
BERTScore 0.216 0.227

Pre-trained+Prompt GEMBADAV3 0.280 0.159
GEMBADAV3.QE 0.222 0.173

Pre-trained+Fine-tuned

COMETMQM.21 0.328 0.249
COMETQE.21 0.294 0.205
COMETDA.21 0.309 0.284
COMETINHO.21 0.255 0.182
COMETDA.22 0.304 0.269
UniTE 0.301 0.249
BLEURT 0.214 0.100

Table 8: Segment-level correlation (Kendall’s τ ) between metrics and human judgments on the WMT and bio
domain. Pre-trained+Fine-tuned metrics have lower correlation on bio than on WMT, while Surface-Form and
Pre-trained+Algorithm tend to have higher correlation.
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