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Abstract

Multimodal large language models (MLLMs)
like LLaVA and GPT-4(V) enable general-
purpose conversations about images with the
language modality. As off-the-shelf MLLMs
may have limited capabilities on images from
domains like dermatology and agriculture, they
must be fine-tuned to unlock domain-specific
applications. The prevalent architecture of cur-
rent open-source MLLMs comprises two ma-
jor modules: an image-language (cross-modal)
projection network and a large language model.
It is desirable to understand the roles of these
two modules in modeling domain-specific vi-
sual attributes to inform the design of future
models and streamline the interpretability ef-
forts on the current models. To this end, via ex-
periments on 4 datasets and under 2 fine-tuning
settings, we find that as the MLLM is fine-
tuned, it indeed gains domain-specific visual
capabilities, but the updates do not lead to the
projection extracting relevant domain-specific
visual attributes. Our results indicate that the
domain-specific visual attributes are modeled
by the LLM, even when only the projection
is fine-tuned. Through this study, we offer a
potential reinterpretation of the role of cross-
modal projections in MLLM architectures.

1 Introduction

The recent wave of advancements in large language
models (LLMs) has equipped them with the abil-
ity to “see” images, leading to multimodal large
language models (MLLMs) like LLaVA (Liu et al.,
2023c), GPT-4(V) (Achiam et al., 2023), and Gem-
ini (Anil et al., 2023). MLLMs unlock the poten-
tial to converse with visual data using language.
However, existing MLLMs are trained and eval-
uated for general-purpose multimodal tasks like
question-answering on natural images1 (Liu et al.,
2023c; AI, 2024), which limits their applicability in

1We use ‘natural images’ or ‘internet images’ to refer to
common images encountered on social media platforms and
the Web and contrast them with domain-specific images.

Classify this image 
into one of the 
following categories

Classify this 
image into one 
of the following 
categories

“Potato leaf early blight”

“Frilly texture”

🔥 ❄

🔥 🔥

Figure 1: Overview of our study. While the MLLM’s
domain-specific visual capability can be improved us-
ing fine-tuning strategies, the domain-specific richness
of the image’s post-projection representation does not
improve. Results indicate that domain-specific visual
attributes are predominantly modeled by the LLM pa-
rameters (whether frozen or not) and the projection does
not necessarily play a role in mapping visual attributes
to the LLM space.

specific domains like agriculture and dermatology.
MLLMs with domain-specific visual capabilities
can transform workflows in several industries, in-
cluding healthcare, agriculture, circuit design, and
satellite imaging (Miotto et al., 2018; Ferentinos,
2018; Anilturk et al., 2023; Kaselimi et al., 2022).
While fine-tuning can improve domain-specific vi-
sual capabilities of general-purpose MLLMs, we
adopt domain-specific fine-tuning as a strategic ap-
proach to understand the roles that the MLLM’s key
architectural components play in modeling visual
attributes. A better understanding of the roles of
MLLM’s components in modeling visual attributes
can inform future design choices as well as direct
interpretability efforts.

Architecturally, open-source MLLMs comprise
two key components: (i) a cross-modal projection
layer that connects image representations with the
LLM, and (ii) the LLM that processes the pro-
jected image representation and the text tokens;
see Figure 1 (left). In the context of the projec-
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tion, researchers often consider the projection layer
as the unit responsible for aligning features/con-
cepts from the image to the LLM space (Li et al.,
2023; Lin et al., 2023; Moon et al., 2023). Conse-
quently, one prevalent fine-tuning strategy to adapt
MLLMs for domain-specific visual tasks is to up-
date the projection while keeping the LLM param-
eters frozen (Moon et al., 2023). Alternatively, the
projection and the LLM parameters can be fine-
tuned concurrently (Liu et al., 2023b).

In this work, we use domain-specific fine-tuning
using the above two strategies to understand the
role of the projection and the LLM parameters in
acquiring domain-specific image modeling capabil-
ities. We posit that if the projection plays a criti-
cal role in acquiring domain-specific image model-
ing capabilities, the post-projection representation –
i.e., the representation of the image transformed by
the projection, should be richer2 in domain-specific
features. Conversely, if the post-projection repre-
sentation is not richer in domain-specific features,
the domain-specific features are being identified or
modeled by the LLM parameters.3

Our experiments and analysis with 4 different
datasets show that, as expected, both the fine-
tuning strategies boost domain-specific closed-set
image classification performance of the MLLM.
However, none of the strategies lead to extrac-
tion of richer domain-specific features by the up-
date in the projection layer; see Figure 1 (right).
This indicates that as MLLMs are fine-tuned to
classify domain-specific images, the identification
of domain-specific image attributes occurs in the
LLM parameters, whether frozen or not. More
broadly, our results add to the existing evidence
that deep neural networks can be inherently multi-
modal (Goh et al., 2021; Schwettmann et al., 2023),
and LLMs could model visual data with minimal
assistance from the cross-modal projection.

We first discuss the fine-tuning strategies to im-
prove the domain-specific capabilities of MLLMs
(Section 2) and then analyze the role of projection
in acquiring the new domain-specific capabilities
(Section 3). Finally, we discuss the implications of
our work and the future directions (Section 4).

2We use domain-specific richness to indicate the “expres-
sive power” of the representations (Bengio et al., 2012) to-
wards the domain-specific task.

3Project webpage: https://claws-lab.github.io/
projection-in-MLLMs/

2 Effect of Fine-tuning Projection Layer
versus the Entire Multimodal LLM

We are interested in exploring two potential fine-
tuning strategies that could help an MLLM in gain-
ing domain-specific visual capabilities. The first
approach involves simply fine-tuning the vision-to-
language projection, e.g., a simple two-layer MLP
with ∼20M parameters. The second approach in-
volves training the entire MLLM – i.e., the projec-
tion layer + the LLM with ∼7B parameters. We
conduct all our experiments with the LLaVA-1.5
model (Liu et al., 2023b), which uses the LLaMA-
2-7B (Touvron et al., 2023) as the LLM backbone,
as it is a strong representative of open-source state-
of-the-art multimodal LLMs (Ge et al., 2023; Liu
et al., 2023a; Yu et al., 2023).

Setting 1: Only fine-tuning the projection layer.
LLaVA-1.5 involves pre-training the cross-modal
projection layers to align image features with the
pre-trained LLM’s token embeddings by maxi-
mizing the next-token prediction likelihood of the
MLLM. Let Xa denotes the ground-truth output
corresponding to the question Xq regarding the
image encoding Xv, which is obtained from the
frozen vision-encoder of CLIP (Radford et al.,
2021). The projection layer, parameterized by ϕ,
is trained to elicit the correct response from the
frozen LLM, token-by-token while using the pro-
jected image-encoding Hv = ϕ(Xv), and consid-
ering previous tokens of the ground-truth answer.
See Figure 2 (Appendix) for a pictorial illustra-
tion of the formulation. Since our focus is to per-
form domain-specific image classification using
MLLMs, we consider Xa = <label> for a given
image and construct Xq as:

Classify this image into one of the following categories
relating to <task>: <classes_string>. Only output
a single final classification label and NOTHING ELSE.

For each example, we randomly shuffle the order
of classes inside <classes_string> to avoid any
position bias. We fine-tune the projection layers of
the LLaVA-1.5 model for 1 epoch using the default
hyper-parameters (Liu et al., 2023b). During in-
ference, we perform zero-shot classification using
the same prompt above for the MLLM with the
updated projection.

Setting 2: Fine-tuning the MLLM end-to-end.
Alternatively, we fine-tune all the MLLM parame-
ters, i.e., the projection layers and the LLM param-
eters concurrently by maximizing the next token-
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MODELS/VARIANTS AGRICULTURE TEXTURES DERMATOLOGY HUMANITARIAN

F1 Acc. F1 Acc. F1 Acc. F1 Acc.

Random (Uniform) 0.0309 0.0339 0.0214 0.0218 0.0451 0.0483 0.2425 0.2664

CLIP (Zero-shot; LLaVA-1.5’s vision encoder) 0.4165 0.4492 0.4582 0.4984 0.1783 0.2401 0.4139 0.4718

LLaVA-1.5 (Zero-shot) 0.1064 0.1255 0.1882 0.2138 0.0658 0.0672 0.5169 0.5678

LLaVA-1.5 (FT-Proj with labels) 0.2221 0.2478 0.4505 0.4654 0.2932 0.3403 0.6227 0.7151

LLaVA-1.5 (FT-E2E with labels) 0.5984 0.6525 0.7446 0.7496 0.4947 0.5464 0.7950 0.8554

Table 1: Performance on domain-specific image classification datasets. Fine-tuning LLaVA-1.5 end-to-end leads
to the best domain-specific performance, while only fine-tuning the projection leads to a notable gain over LLaVA’s
zero-shot capabilities across all the datasets. It is worth noting that CLIP’s zero-shot performance, which is the
pre-projection image representation that LLaVA uses, is notably better than LLaVA’s zero-shot performance. All the
values are averaged over 5 experimental runs with different random seeds; the σ is < 1% for all values.

prediction likelihood of the MLLM. In other words,
we update both ϕ and θ, where θ denotes the LLM
paramters. We use the same strategy to construct
Xa and Xq as in the previous setting. Again, we
fine-tune the LLaVA-1.5 model for 1 epoch using
the default hyper-parameters. Similar to the above
setting, after training the MLLM, we perform zero-
shot domain-specific image classification using the
Xq constructed above.

We fine-tune the MLLM using these 2 strategies
for each of the 4 datasets from different domains.
Image datasets. The 4 image classification
datasets correspond to the following tasks: leaf
disease classification, visual texture detection, skin
disease identification, and humanitarian category
classification. Figure 3 (Appendix) provides an il-
lustration of the datasets under consideration.
(i) Agriculture: To enable scalable and early plant
disease detection, Singh et al. (2020) curated Plant-
Doc. The dataset comprises 2,598 images catego-
rized into 17 classes of leaf diseases.
(ii) Textures: With an aim to evaluate whether vi-
sual models can identify human-centric attributes
like texture beyond detecting or describing object-
s/scenes, Cimpoi et al. (2014) curated 5,640 images
categorized into 47 texture-related classes (like
polka-dotted, wrinkled, and honeycombed).
(iii) Dermatology: We consider the DermNet
dataset (Rimi et al., 2020), which comprises 19,561
images categorized into 23 types of skin diseases
like Acne, Melanoma, Seborrheic Keratoses, etc.
(iv) Humanitarian: To aid development of compu-
tational methods that can help humanitarian organi-
zations process images posted on social platforms
during crises, Alam et al. (2018) and Ofli et al.
(2020) curated the CrisisMMD dataset, which com-
prises 10,461 images categorized into 4 different

categories. This dataset comprises images that are
the closest to natural/internet images.
Domain-specific classification performance. Ta-
ble 1 shows the image classification performance
(macro-averaged F1 scores and accuracy) of the
MLLMs under various settings. For reference,
we include zero-shot classification performance of
CLIP4, which is the visual encoder of the LLaVA-
1.5 model (see Appendix A.1 for details). First, it is
worth noting that the zero-shot performance of the
original LLaVA-1.5 model is notably worse than
CLIP’s zero-shot performance. This indicates that
while domain-specific image attributes are present
in the pre-projection image embeddings that are ob-
tained from a frozen vision encoder (i.e., Xv), they
are not being used by the MLLM parameters. This
can be attributed to the corpus used to train MLLMs
like LLaVA, which comprises natural images. Sec-
ond, clearly, the results show that finetuning in-
deed improves performance on domain-specific
classification, with significant improvements made
when fine-tuning the entire MLLM (‘FT-E2E’) as
opposed to only the projection layer (‘FT-Proj’).
The greater effectiveness of the FT-E2E can be at-
tributed to greater representational space (∼ 7B)
over FT-Proj (∼ 20M ). With these observations,
next, we focus on investigating the role of projec-
tion in capturing domain-specific image attributes.

3 Role of Projection in Learning
Domain-Specific Image Attributes

Following up on results in Table 1, we ask: does
the projection learn to model the domain-specific
image attributes on fine-tuning the MLLM?

4
https://huggingface.co/openai/

clip-vit-large-patch14-336 (Wolf et al., 2019)
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Task Setting Post-proj MLP
(LLaVA-1.5; F1)

MLLM
(LLaVA-1.5; F1)

Agriculture Original 0.5701 (———–) 0.1064 (————-)

FT-Proj 0.4134 (-27.49%) 0.2221 (+108.74%)

FT-E2E 0.5346 (-06.22%) 0.5984 (+462.41%)

Textures Original 0.6401 (———–) 0.1882 (————-)

FT-Proj 0.4736 (-26.01%) 0.4505 (+139.37%)

FT-E2E 0.6212 (-02.95%) 0.7446 (+295.64%)

Dermatology Original 0.3105 (———–) 0.0658 (————-)

FT-Proj 0.2182 (-29.72%) 0.2932 (+345.59%)

FT-E2E 0.2525 (-18.67%) 0.4947 (+651.82%)

Humanitarian Original 0.7498 (———–) 0.5169 (————-)

FT-Proj 0.6025 (-19.64%) 0.6227 (+020.47%)

FT-E2E 0.7238 (-03.46%) 0.7950 (+053.80%)

Table 2: Estimating the domain-specific richness of
the post-projection image representation using an
independent MLP. Compared to the original LLaVA-
1.5 model, both fine-tuning strategies lead to worsened
domain-specific richness of the post-projection image
representation (second-last column), while the MLLM
performance (last column) improves consistently. This
implies that the domain-specific attributes are identified
in the LLM, even when the LLM parameters are kept
frozen as the projection is updated (i.e., ‘FT-Proj’).

Estimating post-projection richness. To answer
the above question, we develop a reliable-yet-
simple way to estimate domain-specific richness
of the projected image representation, i.e., the
post-projection representation, denoted by Hv =
ϕ(Xv). We do this by training an independent mul-
tilayer perceptron (MLP) to perform the image clas-
sification task using Hv as the image representation.
This classifier helps estimate the extent of domain-
specific information (or expressive power (Bengio
et al., 2012)) that can be extracted from the input, in
this case the post-projection image representation
Hv. In other words, a better classification perfor-
mance by this MLP will denote relative domain-
specific richness of the post-projection embeddings
used for training, and vice versa. We train one MLP
each using the post-projection representation Hv

obtained from the following three settings: (i) orig-
inal LLaVA-1.5, (ii) LLaVA-1.5 with fine-tuned
projection, and (ii) LLaVA-1.5 with end-to-end
fine-tuning, while keeping the architecture of the
MLP the same for consistent comparison. We pro-
vide the additional details, including architecture
and training hyper-parameters, in Appendix A.2.

Comparing domain-specific richness of post-
projection representation across different set-
tings. Table 2 shows: (a) the domain-specific rich-
ness of post-projection representation Hv (‘Post-

proj MLP’), and (b) the corresponding MLLM per-
formance (‘MLLM’), across the three settings men-
tioned above (i.e., ‘Original’, ‘FT-Proj’, and ‘FT-
E2E’). We report the macro-averaged F1 score on
the test set of the respective dataset for both (a)
and (b). There are two key trends in Table 2: first,
when the ‘Original’ LLaVA-1.5 model’s projection
layer is fine-tuned (‘FT-Proj’), the domain-specific
richness of the post-projection representation di-
minishes, while a boost in the MLLM performance
is observed. Similarly, second, with end-to-end
fine-tuning of LLaVA-1.5 (‘FT-E2E’), the domain-
specific richness of the post-projection representa-
tion worsens while the MLLM performance boosts
notably. These two trends are consistent across all
the datasets considered in our study.
Domain-specific attributes are identified within
the LLM. The two trends observed above reinforce
the idea that as the MLLM gains previously-absent
domain-specific image classification abilities via
fine-tuning, the contribution of the projection layer
in identifying relevant image attributes declines.
Let us consider the two fine-tuning settings sepa-
rately. In the first setting, the projection layer un-
dergoes updates to assist the frozen LLM in more
accurate label prediction, and yet captures lesser
domain-specific image attributes. This indicates
that the updates in projection layer merely facili-
tate better use of frozen LLM parameters for the
domain-specific task and do not necessarily involve
mapping image attributes to the frozen LLM space.
In the second setting as well, when both the LLM
parameters and projection layer undergo updates
concurrently, the projection layer captures lesser
domain-specific attributes, which indicates that the
updates in the LLM parameters are predominantly
responsible for the acquired domain-specific image
classification capabilities. In sum, our results indi-
cate that the modeling of domain-specific image at-
tributes in MLLMs is done by the LLM parameters,
whether they are kept frozen or undergo updates.

4 Discussion and Implications

Existing literature on interpretability of neural net-
works has discussed the notion of “multimodal neu-
rons” – neurons that trigger in response to partic-
ular concepts spanning disparate modalities (Goh
et al., 2021; Schwettmann et al., 2023; Pan et al.,
2023). For instance, Goh et al. (2021) demonstrate
that in the CLIP model, a single neuron could re-
spond to the photographs, drawings, or images that
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relate to, let’s say ‘spiderman,’ even though the
input image may differ in terms of low-level visual
attributes like color, edges, and corners. Similarly,
Schwettmann et al. (2023) show that a specific
neurons within a frozen text-only Transformer are
responsible for detecting visual concepts, let’s say
like ‘horses,’ in the input images that are projected
to align with the text-only transformer. Our study
adds to this literature by showing that even the
acquired abilities to detect visual attributes in an
MLLM are reliant on the LLM parameters. No-
tably, when the LLM parameters are frozen, the
cross-modal projection layer adapts to facilitate
detection of visual attibutes in the LLM without ex-
tracting domain-specific attributes. In other words,
when the LLM is frozen and the projection is fine-
tuned, the projection parameters are updated to
leverage the pre-existing domain-specific knowl-
edge in the LLM parameters. In the future, we aim
to interpret the layer- & neuron-level contributions
in LLMs towards acquired multimodal reasoning.

5 Limitations and Broader Perspective

Limitations and future work: Our current work
focuses on a representative cross-modal projec-
tion scheme (multilayer perceptron) in a state-of-
the-art MLLM (LLaVA-1.5). Other open-source
MLLMs have considered other projection schemes
like a trainable linear layer (LLaVa-1; Liu et al.
(2023c)), gated cross-attention (Flamingo; Alayrac
et al. (2022)), and Q-Former (InstructBLIP; Dai
et al. (2023)). Future work could extend the cur-
rent study to other projection schemes and mod-
els. Beyond the adopted strategy of estimating
the post-projection richness of image representa-
tions using an independent classifier, future work
could also probe the MLLM using concept bottle-
neck methods (Koh et al., 2020), or analyze mu-
tual information between representations (Bach-
man et al., 2019). Finally, while outside the scope
of the current work, a holistic evaluation of the
MLLM should focus on domain-specific capabili-
ties as well as the general purpose capabilities.
Broader social impact: The authors do not fore-
see any negative social impacts of this specific
work. However, we acknowledge that existing
LLMs and MLLMs demonstrate different forms
of biases (Wan et al., 2023; Nwatu et al., 2023)
that could be inherited in domain-specific variants.
In line with the ongoing effort towards mitigating
social biases in deep neural networks, future efforts

that aim to interface modality-specific reasoning
with LLMs, should consider the additional biases
that LLMs may introduce on top of the modality-
specific networks.
Datasets and code: The datasets used in this
study are publicly available and were curated by
previous research. We abide by their terms of
use. We release the code for our experiments
to aid reproducibility and enable future research
on this topic: https://github.com/claws-lab/
projection-in-MLLMs
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A Appendix

A.1 Zero-Shot Classification Using CLIP

We perform zero-shot classification using the CLIP
model (clip-vit-large-patch14-336; ), which
is the same as the vision encoder used for obtaining
pre-projection representation of the input image
(i.e., Xv) by the LLaVA-1.5 model. The CLIP
model embeds both image and text data into a com-
mon space using a contrastive learning objective.
We use the pre-trained model to compute the co-
sine similarity between the image representations
and the representation of the dataset-specific label
strings obtained from the textual backbone of CLIP.
Following this, we consider the most similar label
string to be the predicted label for the given image,

Classify this image 
into one of the 
following categories

Classify this image 
into one of the 
following categories

“Potato leaf early blight”
“Frilly texture”

🔥 ❄

🔥 🔥

Figure 2: Architecture of the MLLM considered in
this study. ϕ and θ denote tunable parameters of the
projection and the large language model, respectively.

and compute classification metrics on the test set
to quantify CLIP’s zero-shot performance.

A.2 Multilayer Perceptron for Estimating
Post-Projection Richness

We train a multilayer perceptron for estimating the
domain-specific richness of the post-projection im-
age representation (i.e., Hv). The MLP takes the to-
kens corresponding to the image as input and learns
to perform the classification task using the exam-
ples from the standard train set. Architecturally,
the MLP comprises a token-level average pooling
step to obtain the image representation, followed
by subsequent layers, and eventually the output
layer of size equivalent to the number of classes
in the dataset. We use ReLU activation (Agarap,
2018) to induce non-linearity. We keep the archi-
tecture of this MLP fixed across all the settings
to control for the number of learnable parameters
and the representational power of the neural net-
work, therefore allowing us to estimate the rich-
ness of the input embeddings with respect to the
target task. Each model is trained with a batch size
of 128. We use Adam optimizer (Kingma and
Ba, 2014) with a learning rate initialized at 10−4

and adopt early stopping based on the loss values
to avoid overfitting. As a sanity check, we note
that an MLP trained using our setup on the post-
projection embeddings obtained from the original
LLaVA-1.5 model for the HUMANITARIAN task (a
natural images dataset), achieves close to the state-
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Figure 3: Illustration of the 4 domain-specific im-
age classification datasets used in this study. The
datasets are from diverse domains; for brevity we only
show some of the representative labels from each of the
datasets. Images best viewed with zoom.

Task F1 score Acc.

Agriculture 0.6991 0.7118
Textures 0.7644 0.7638
Dermatology 0.6046 0.6492
Humanitarian 0.7506 0.8238

Table 3: Classification performance of MLP-based
image-only classifiers. A simple MLP performs better
on 3 out of 4 tasks than the fine-tuned multimodal LLM;
see Table 1 for MLLM results.

of-the-art performance reported on this task (Alam
et al., 2018). This indicates that our setup enables
a reliable estimate of the richness/expressive power
of the post-projection representations.

A.3 Performance of Image-only Models
As reference to the performance of MLLM’s
domain-specific capabilities (before and af-
ter fine-tuning), we include the performance
of simple image-only classification models.
We use the 1024-dimensional image embed-
dings obtained from a pre-trained CLIP model
(clip-vit-large-patch14-336) and train a mul-
tilayer perceptron with layers of size (1024 (input
layer), 2000, 3600, 1024, 600, 256, # of classes
(output layer)). We use the same design choices as
used for training the MLPs described in Sec. A.2,
and evaluate the models on respective test sets of
the dataset. The results are presented in Table 3.
Although it is not the primary focus of this work,
it is interesting to note that for the domain-specific
tasks – i.e., all the 3 tasks except HUMANITARIAN

the MLP (with ∼ 20M parameters) performs better
than the fine-tuned MLLM (with ∼ 7B parameters).
Both the model use CLIP embeddings as input rep-
resentation of the image and are fine-tuned with the
same amount of labeled data.

A.4 Compute Resources
All the experiments discussed in this study were
conducted using two NVIDIA A100 GPUs (80
GB). Each fine-tuning run of the MLLM took about
1 hour requiring both the GPUs, with additional
time for inference; multiple inference runs could
be carried over a single GPU. The training and
evaluation of the MLPs took less than 20 minutes
each. Each run of zero-shot evaluation of CLIP
was done on a single GPU in less than 15 minutes.
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