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Abstract

Despite the remarkable generative capabilities
of language models in producing naturalistic
language, their effectiveness on explicit manip-
ulation and generation of linguistic structures
remain understudied. In this paper, we investi-
gate the task of generating new sentences pre-
serving a given semantic structure, following
the FrameNet formalism. We propose a frame-
work to produce novel frame-semantically an-
notated sentences following an overgenerate-
and-filter approach. Our results show that con-
ditioning on rich, explicit semantic information
tends to produce generations with high human
acceptance, under both prompting and finetun-
ing. Our generated frame-semantic structured
annotations are effective at training data aug-
mentation for frame-semantic role labeling in
low-resource settings; however, we do not see
benefits under higher resource settings. Our
study concludes that while generating high-
quality, semantically rich data might be within
reach, the downstream utility of such genera-
tions remains to be seen, highlighting the out-
standing challenges with automating linguistic
annotation tasks.1

1 Introduction

Large language models (LLMs) have demonstrated
unprecedented capabilities in generating natural-
istic language. These successes hint at LMs’ im-
plicit capabilities to “understand” language; but
are they capable of processing explicit symbolic
structures in order to generate language consistent
with the structures? Not only would this help us
understand the depth of LLMs’ linguistic capabili-
ties but would also serve to efficiently and cheaply
expand existing sources of linguistic structure an-
notation. In this work, we investigate the abilities

1Our code is available at https://github.com/
X-F-Cui/FrameNet-Conditional-Generation.
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Figure 1: Our framework to generate frame semantic
annotated data. Following Pancholy et al. (2021), we
replace a sister LU with the target LU in an annotated
sentence (0;§2). We select FEs appropriate for generat-
ing a new structure-annotated sentence (1;§3.1), and ex-
ecute generation via fine-tuning T5 or prompting GPT-4
(2;§3.2). Finally, we filter out sentences that fail to pre-
serve LU-FE relationships under FrameNet (3;§3.3).

of LLMs to generate annotations for one such re-
source of linguistic structure: FrameNet, a lexical
database grounded in the theory of frame seman-
tics (Fillmore, 1985; Ruppenhofer et al., 2016). We
propose an approach for language generation con-
ditioned on frame-semantic structure such that the
generation (i) is consistent with the frame structure,
(ii) is acceptable by humans and (ii) is useful for
a downstream task, namely frame-semantic role
labeling (Gildea and Jurafsky, 2000b).
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Our framework for generating frame-semantic
annotations leverages both the FrameNet hierar-
chy and LLMs’ generative capabilities to transfer
annotations from existing sentences to new exam-
ples. Specifically, we introduce frame structure-
conditioned language generation, focused on spe-
cific spans in the sentence such that the resulting
sentence follows the given frame structure and is
also acceptable to humans. Overall, we follow an
overgenerate-and-filter pipeline, to ensure seman-
tic consistency of the resulting annotations. Our
framework is outlined in Figure 1.

Our intrinsic evaluation, via both human judg-
ment and automated metrics, show that the gen-
erated sentences preserve the intended frame-
semantic structure more faithfully compared to
existing approaches (Pancholy et al., 2021). As
an extrinsic evaluation, we use our generations to
augment the training data for frame-semantic role
labeling: identifying and classifying spans in the
sentence corresponding to FrameNet frames. Un-
der a low-resource setting, our generation annota-
tions tend to be effective for training data augmen-
tation for frame-semantic role labeling. However,
these trends do not translate to a high-resource set-
ting; these findings are consistent with observations
from others who have reported challenges in lever-
aging LLMs for semantic parsing tasks, such as
constituency parsing (Bai et al., 2023), dependency
parsing (Lin et al., 2023), and abstract meaning
representation parsing (Ettinger et al., 2023). Our
findings prompt further investigation into the role
of LLMs in semantic structured prediction.

2 FrameNet and Extensions

Frame semantics theory (Gildea and Jurafsky,
2000a) posits that understanding a word requires
access to a semantic frame—a conceptual struc-
ture that represents situations, objects, or actions,
providing context to the meaning of words or
phrases. Frame elements (FEs) are the roles in-
volved in a frame, describing a certain aspect of
the frame. A Lexical Unit (LU) is a pairing of
tokens (specifically a word lemma and its part of
speech) and their evoked frames. As illustrated in
Figure 1, the token “disciplined” evokes the LU
discipline.v, which is associated with the frame
REWARDS_AND_PUNISHMENT, with FEs including
Time, Evaluee, and Reason. Grounded in frame
semantics theory, FrameNet (Ruppenhofer et al.,
2006) is a lexical database, featuring sentences that

are annotated by linguistic experts according to
frame semantics. Within FrameNet, the majority
of sentences are annotated with a focus on a spe-
cific LU within each sentence, which is referred
to as lexicographic data; Figure 1 shows such an
instance. A subset of FrameNet’s annotations con-
sider all LUs within a sentence; these are called
full-text data; Figure 1 does not consider other LUs
such as grow.v or break.v.

FrameNet has defined 1,224 frames, covering
13,640 lexical units.The FrameNet hierarchy also
links FEs using 10,725 relations. However, of the
13,640 identified LUs, only 62% have associated
annotations. Our approach seeks to automatically
generate annotated examples for the remaining
38% of the LUs, towards increasing coverage in
FrameNet without laborious manual annotation.

Sister LU Replacement Pancholy et al. (2021)
propose a solution to FrameNet’s coverage problem
using an intuitive approach: since LUs within the
same frame tend to share similar annotation struc-
tures, they substitute one LU (the target LU) with
another (a sister LU) to yield a new sentence. This
replacement approach only considers LUs with the
same POS tag to preserve the semantics of the orig-
inal sentence; for instance, in Figure 1, we replace
the sister LU discipline.v with the target LU re-
ward.v. However, due to the nuanced semantic
differences between the two LUs, the specific con-
tent of the FE spans in the original sentence may no
longer be consistent with the target LU in the new
sentence. Indeed Pancholy et al. (2021) report such
semantic mismatches as their primary weakness.

To overcome this very weakness, our work pro-
poses leveraging LLMs to generate FE spans that
better align with the target LU, as described subse-
quently. For the rest of this work, we focus solely
on verb LUs, where initial experiments showed
that the inconsistency problem was the most severe.
Details of FrameNet’s LU distribution by POS tags,
along with examples of non-verb LU replacements
can be found in Appendix A.

3 Generating FrameNet Annotations via
Frame-Semantic Conditioning

We propose an approach to automate the expansion
of FrameNet annotations by generating new anno-
tations with language models. Given sister LU-
replaced annotations (§2; Pancholy et al., 2021),
we select FE spans which are likely to be semanti-
cally inconsistent (§3.1), generate new sentences
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with replacement spans by conditioning on frame-
semantic structure information (§3.2) and finally
filter inconsistent generations (§3.3).

3.1 Selecting Candidate FEs for Generation
We identify the FEs which often result in semantic
inconsistencies, in order to generate replacements
of the spans corresponding to such FEs. Our se-
lection takes into account the FE type, its ancestry
under FrameNet, and the span’s syntactic phrase
type. Preliminary analyses, detailed in Appendix B,
help us narrow the criteria as below:

1. FE Type Criterion: The FE span to be gen-
erated must belong to a core FE type, i.e., the
essential FEs that are necessary to fully under-
stand the meaning of a frame.

2. Ancestor Criterion: The FE should not pos-
sess Agent or Self-mover ancestors.

3. Phrase Type Criterion: The FE’s phrase type
should be a prepositional phrase.

Qualitative analyses revealed that it suffices to
meet criterion (1) while satisfying either (2) or
(3). For instance, in Figure 1, under REWARDS_AND
_PUNISHMENTS, only the FEs Evaluee and Reason
are core (and satisfy (2)) while Time is not; thus
we only select the last two FE spans for generation.

3.2 Generating Semantically Consistent Spans
We generate semantically consistent FE spans for
selected candidate FEs via two approaches: fine-
tuning a T5-large model (Raffel et al., 2019) and
prompting GPT-4 Turbo, following Mishra et al.
(2021). In each case, we condition the generation
on different degrees of semantic information:
No Conditioning We generate FE spans without
conditioning on any semantic labels.
FE-Conditioning The generation is conditioned
on the type of FE span to be generated.
Frame+FE-Conditioning The generation is
conditioned on both the frame and the FE type.

The above process produces new sentences with
generated FE spans designed to align better with
the target LU, thereby preserving the original
frame-semantic structure. However, despite the
vastly improved generative capabilities of language
models, they are still prone to making errors, thus
not guaranteeing the semantic consistency we aim
for. Hence, we adopt an overgenerate-and-filter ap-
proach (Langkilde and Knight, 1998; Walker et al.,
2001): generate multiple candidates and aggres-
sively filter out those that are semantically incon-
sistent. Details on fine-tuning T5 and prompting

GPT-4 are provided in Appendix C.

3.3 Filtering Inconsistent Generations

We design a filter to ensure that the generated sen-
tences preserve the same semantics as the expert
annotations from the original sentence. This re-
quires the new FE spans to maintain the same FE
type as the original. We propose a new metric
FE fidelity, which checks how often the generated
spans have the same FE type as the original. To
determine the FE type of the generated spans, we
train an FE type classifier on FrameNet by finetun-
ing SpanBERT, the state-of-the-art model for span
classification (Joshi et al., 2019).2 We use a strict
filtering criterion: remove all generations where
the FE classifier detects even a single FE type in-
consistency, i.e. only retain instances with perfect
FE fidelity.

3.4 Intrinsic Evaluation of Generations

We evaluate our generated frame-semantic anno-
tations against those from Pancholy et al. (2021),
before and after filtering (§3.3). We consider three
metrics: perplexity under Llama-2-7B (Touvron
et al., 2023) for overall fluency, FE fidelity, and
human acceptance. We randomly sampled 1000
LUs without annotations under FrameNet and used
our generation framework to generate one instance
each for these LUs. For human acceptability, we
perform fine-grained manual evaluation on 200 ex-
amples sampled from the generated instances.3 We
deem an example acceptable if the FE spans se-
mantically align with the target LU and preserve
the FE role definitions under FrameNet. We pro-
vide a qualitative analysis of generated examples
in Appendix E.

Results in Table 1 shows that our filter-
ing approach—designed for perfect FE fidelity—
improves performance under the other two metrics.
Compared to rule-based generations from Pancholy
et al. (2021), our filtered generations fare better un-
der both perplexity and human acceptability, indi-
cating improved fluency and semantic consistency.
Most importantly, models incorporating semantic
information, i.e., FE-conditioned and Frame+FE-

2Our SpanBERT FE classifier attains 95% accuracy on the
standard FrameNet 1.7 splits; see Appendix D for details.

3Human evaluation is mainly conducted by the first author
of this work. These annotations were validated by two inde-
pendent volunteers unfamiliar with generated data evaluating
the same examples from GPT-4 | Frame+FE, where the ratings
differ by only 1% from our primary ratings. This suggests a
consistent rating quality across different observers.
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Before Filtering (|Dtest|=1K) After Filtering (FE Fid. = 1.0)

FE Fid. ppl. Human (|Dtest|=200) ppl.(|Dtest|) Human (|Dtest|)
Human (FN 1.7) 0.979 78.1 1.000 97.0 (975) 1.000 (199)
Pancholy et al. 0.953 127.8 0.611 146.0 (947) 0.686 (189)

T5 0.784 139.3 0.594 117.5 (789) 0.713 (156)
T5 | FE 0.862 127.6 0.711 112.7 (850) 0.777 (168)
T5 | Frame + FE 0.882 136.8 0.644 124.4 (873) 0.704 (172)

GPT-4 0.704 114.9 0.528 114.2 (724) 0.723 (132)
GPT-4 | FE 0.841 106.3 0.700 103.4 (838) 0.826 (164)
GPT-4 | Frame + FE 0.853 117.2 0.733 111.8 (845) 0.821 (165)

Table 1: Perplexity, FE fidelity and human acceptability of T5 and GPT-4 generations conditioned on different
degrees of semantic information. Number of instances after filtering are in parantheses. Best results are in boldface.

conditioned models, achieve higher human accep-
tance and generally lower perplexity compared to
their no-conditioning counterparts, signifying that
semantic cues improve both fluency and semantic
consistency. Even before filtering, FE fidelity in-
creases with the amount of semantic conditioning,
indicating the benefits of structure-based condition-
ing. We also provide reference-based evaluation in
Appendix F.

4 Augmenting Data for Frame-SRL

Beyond improving FrameNet coverage, we investi-
gate the extrinsic utility of our generations as train-
ing data to improve the frame-SRL task, which
involves identifying and classifying FE spans in
sentences for a given frame-LU pair. Here, we
consider a modified Frame-SRL task, which con-
siders gold-standard frames and LUs, following
Pancholy et al. (2021). This remains a challenging
task even for powerful models like GPT-4, which
achieves a test F1 score of only 0.228 in contrast
to Lin et al. (2021)’s state-of-the-art F1 score of
0.722. For experimental ease, we fine-tune a Span-
BERT model on FrameNet’s full-text data as our
parser4 and avoid using existing parsers due to their
reliance on weaker, non-Transformer architectures
(Swayamdipta et al., 2017), complex problem for-
mulation (Lin et al., 2021), or need for extra frame
and FE information (Zheng et al., 2022).

As a pilot study, we prioritize augmenting the
training data with verb LUs with F1 scores below
0.75 on average. This serves as an oracle aug-
menter targeting the lowest-performing LUs in the
test set. For the generation of augmented data,
we use our top-performing models within T5 and
GPT-4 models according to human evaluation: T5
| FE and GPT-4 | Frame+FE models. Of 2,295

4This parser obtains an F1 score of 0.677, see Table 2.

LUs present in the test data, 370 were selected
for augmentation, resulting in 5,631 generated in-
stances. After filtering, we retain 4,596 instances
from GPT-4 | Frame+FE and 4,638 instances from
T5 | FE. Additional experiments using different aug-
mentation strategies on subsets of FrameNet are in
Appendix G.

All LUs F1 Aug. LUs F1

Unaugmented 0.677 ± 0.004 0.681 ± 0.012
Aug. w/ T5 | FE 0.683 ± 0.000 0.682 ± 0.006
Aug. w/ GPT-4 | Frame+FE 0.684 ± 0.002 0.677 ± 0.010

Table 2: F1 score of all LUs and augmented LUs under
unaugmented setting, augmented settings with gener-
ations from T5 | FE and GPT-4 | Frame+FE, averaged
across 3 random seeds.

Table 2 shows the Frame-SRL performance, with
and without data augmentation on all LUs and on
only the augmented LUs. Despite the successes
with human acceptance and perplexity, our gen-
erations exhibit marginal improvement on overall
performance, and even hurt the performance on the
augmented LUs. We hypothesize that this stagna-
tion in performance stems from two factors: (1) the
phenomenon of diminishing returns experienced by
our Frame-SRL parser, and (2) the limited diversity
in augmented data. Apart from the newly generated
FE spans, the generated sentences closely resem-
ble the original, thereby unable to introduce novel
signals for frame-SRL; see subsection G.3 and Ap-
pendix H for more experiments on generation di-
versity. We speculate that Pancholy et al. (2021)’s
success with data augmentation despite using only
sister LU replacement might be attributed to use of
a weaker parser (Swayamdipta et al., 2017), which
left more room for improvement.
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4.1 Augmenting Under Low-Resource Setting

To further investigate our failure to improve frame-
SRL performance via data augmentation, we sim-
ulate a low-resource scenario and conduct exper-
iments using increasing proportions of FrameNet
training data under three settings: (1) training our
SRL parser with full-text data, (2) training our SRL
parser with both full-text and lexicographic data
(which contains 10x more instances), and (3) train-
ing an existing frame semantic parser (Lin et al.,
2021)5 with full-text data, to control for the use of
our specific parser.
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fulltext data
Lin et al. on SRL
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Figure 2: Learning curves for our frame-SRL model and
Lin et al. (2021)’s end-to-end parser show diminishing
returns on adding more human-annotated training data.
The triangle marker denotes the performance of Lin et al.
(2021)’s parser on SRL with gold frame and LU.

Figure 2 shows that parsers across all three set-
tings exhibit diminishing returns, especially on the
second setting, which utilizes the largest training
set. This indicates that there seems to be little room
for improvement in frame-SRL, even with human
annotated data.

Following our learning curves, we further eval-
uate the utility of our generations without the in-
fluence of diminishing returns, by performing data
augmentation in a low-resource setting. Specifi-
cally, we augment 25% of the full-text training data
with an additional 6.25% of data generated using
our method. As demonstrated in Figure 2, the per-
formance of the model in this scenario not only
exceeds that of the 25% dataset without augmenta-
tion but the results of the 25% dataset augmented
with 6.25% of human-annotated data. This show-

5Lin et al. (2021) break frame-SRL into three subsequent
sub-tasks: target identification, frame identification, and SRL,
contributing to worse overall performance.

cases the high utility of our generations for targeted
data augmentation in a low-resource setting.

5 Related Work

Data Augmentation for FrameNet While
FrameNet annotations are expert annotated for the
highest quality, this also limits their scalability.
In an effort to improve FrameNet’s LU coverage,
Pavlick et al. (2015) proposes increasing the LU
vocabulary via automatic paraphrasing and crowd-
worker verification, without expanding the lexico-
graphic annotations. Others address this limitation
by generating annotations through lexical substitu-
tion (Anwar et al., 2023) and predicate replacement
(Pancholy et al., 2021); neither leverages the gener-
ative capabilities of LLMs, however.

Controlled Generation Other works have ex-
plored using semantic controls for generation tasks.
Ou et al. (2021) propose FrameNet-structured
constraints to generate sentences to help with a
story completion task. Ross et al. (2021) stud-
ied controlled generation given target semantic
attributes defined within PropBank, somewhat
coarse-grained compared to FrameNet. Similarly,
Ye et al. (2024) employ the rewriting capabilities
of LLMs to generate semantically coherent sen-
tences that preserve named entities for the Named
Entity Recognition task. Guo et al. (2022) intro-
duced GENIUS, a novel sketch-based language
model pre-training approach aimed at reconstruct-
ing text based on keywords or sketches, though not
semantic structures; this limits its effectiveness in
capturing the full context.

6 Conclusion

Our study provides insights into the successes and
failures of LLMs in manipulating FrameNet’s lin-
guistic structures. When conditioned on semantic
information, LLMs show improved capability in
producing semantically annotated sentences, indi-
cating the value of linguistic structure in language
generation. Under a low-resource setting, our gen-
erated annotations prove effective for augmenting
training data for frame-SRL. Nevertheless, this suc-
cess does not translate to a high-resource setting,
echoing challenges reported in applying LLMs to
other flavors of semantics (Bai et al., 2023; Lin
et al., 2023; Ettinger et al., 2023). These outcomes
underline the need for further exploration into how
LLMs can be more effectively employed in au-
tomating linguistic structure annotation.
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other than English remains an open direction for
future research.
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ity of the frame semantic role labeling task, which
also considers target and frame identification. Even
for the argument identification task, we use an ora-
cle augmentation strategy. Despite this relaxed as-
sumption, the generations had limited improvement
in performance, except in low-resource settings,
where targeted data augmentation proved more ef-
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complex settings.
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A FrameNet Statistics

A.1 Distribution of Lexical Units
Table 3 illustrates a breakdown of FrameNet corpus
categorized by the POS tags of the LUs. Specif-
ically, we report the number of instances and the
average count of candidate FEs per sentence, cor-
responding to LUs of each POS category. The two
predominant categories are verb (v) LUs and noun
(n) LUs, with verb LUs exhibiting a higher average
of candidate FE spans per sentence compared to
noun LUs.

LU POS # Inst. # FEs # C. FEs # Cd. FEs
v 82710 2.406 1.945 1.354
n 77869 1.171 0.675 0.564
a 33904 1.467 1.211 1.025
prep 2996 2.212 2.013 1.946
adv 2070 1.851 1.717 1.655
scon 758 1.906 1.883 1.883
num 350 1.086 0.929 0.549
art 267 1.547 1.543 1.408
idio 105 2.162 1.933 1.486
c 69 1.957 0.841 0.826

Table 3: Number of instances and average number of all,
core, and candidate FE spans per sentence, categorized
by POS tags of LUs in FrameNet. C. FEs represents
Core FEs and Cd. FEs represents Candidate FEs.

A.2 Replacement of non-verb LUs
Table 4 shows several examples of non-verb LU
replacement, where the resulting sentences mostly
preserve semantic consistency. Given the extensive
number of annotated verb LUs available for LU
replacement and candidate FEs per sentence for
masking and subsequent structure-conditioned gen-
eration, our generation methodology is primarily
applied to verb LUs.

A.3 Full-Text and Lexicographic Data
Table 5 shows the distribution of the training, devel-
opment, and test datasets following standard splits
on FrameNet 1.7 from prior work (Kshirsagar et al.,
2015; Swayamdipta et al., 2017; Peng et al., 2018;
Zheng et al., 2022). Both the development and
test datasets consist exclusively of full-text data,
whereas any lexicographic data, when utilized, is
solely included within the training dataset. Since
our generation approach is designed to produce
lexicographic instances annotated for a single LU,
when augmenting fulltext data (§4), we break down
each fulltext example by annotated LUs and pro-
cess them individually as multiple lexicographic
examples.

Frame LU Sentence
Leadership king.n (rector.n) No prior Scottish king

(rector) claimed his mi-
nority ended at this age.

Sounds tinkle.n (yap.n) Racing down the corri-
dor, he heard the tinkle
(yap) of metal hitting
the floor.

Body_part claw.n (back.n) A cat scratched its claws
(back) against the tree.

Disgraceful
_situation

shameful.a (dis-
graceful.a)

This party announced
his shameful (disgrace-
ful) embarrassments to
the whole world .

Frequency always.adv
(rarely.adv)

The temple is always
(rarely) crowded with
worshippers .

Concessive despite.prep (in
spite of.prep)

Despite (In spite of) his
ambition , Gass ’ suc-
cess was short-lived .

Conditional
_Occurrence

supposing.scon
(what if.scon)

So , supposing (what if)
we did get a search war-
rant , what would we
find ?

Table 4: Example sentences of non-verb LUs where se-
mantic consistency is preserved after sister LU replace-
ment. The original LU is in teal and the replacement
LU is in orange and parentheses.

Dataset Split Size

Train (full-text + lex.) 192,364
Train (full-text) 19,437
Development 2,272
Test 6,462

Table 5: Training set size with and without lexico-
graphic data, development set size, and test set size
in FrameNet 1.7.

B Details on Candidate FEs Selection

There are three criteria for determining a candidate
FE span, i.e., FE Type Criterion, Ancestor Crite-
rion, and Phrase Type Criterion. In preliminary
experiments, we have conducted manual analysis
on the compatibility of FE spans with replacement
LUs on 50 example generations. As demonstrated
through the sentence in Figure 1, the FE Type cri-
terion can effectively eliminate non-core FE that
do not need to be masked, i.e., "Growing up" of
FE type Time. Also, the Phrase Type Criterion can
identify the candidate FE "for breaking the rules",
which is a prepositional phrase. Moreover, we find
that FEs of Agent or Self-mover type describes a
human subject, which is typically independent of
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Sentence After Replacement FE Type
She was bending over a basket
of freshly picked flowers , orga-
nizing them to her satisfaction .

Agent (Agent)

The woman got to her feet ,
marched indoors , was again
hurled out .

Self_mover
(Self_mover)

While some presumed her hus-
band was dead , Sunnie refused
to give up hope .

Cognizer (Agent)

Table 6: Example sentences after LU replacement with
FEs of type Agent, Self_mover, or their descendants,
which are compatible with the new replacement LU.
The ancestors of FE types are reported in parentheses.
The FEs are shown in teal and the replacement LUs are
shown in orange.

the LU evoked in the sentence. Since FE types
within the same hierarchy tree share similar prop-
erties, we exclude FEs of Agent and Self-mover
types, as well as any FEs having ancestors of these
types, from our masking process, as illustrated in
Table 6.

C Details on Span Generation

C.1 T5-large Fine-Tuning

During the fine-tuning process of T5-large, we in-
corporate semantic information using special to-
kens, which is demonstrated in Table 7 through the
example sentence in Figure 1. T5 models are fine-
tuned on full-text data and lexicographic data in
FrameNet for 5 epochs with a learning rate of 1e-4
and an AdamW (Loshchilov and Hutter, 2017) op-
timizer of weight decay 0.01. The training process
takes around 3 hours on 4 NVIDIA RTX A6000
GPUs.

C.2 GPT-4 Few-shot Prompting

When instructing GPT-4 models to generate FE
spans, we provide the task title, definition, specific
instructions, and examples of input/output pairs
along with explanations for each output, as demon-
strated in Table 8.

D FE Classifier Training Details

Our classifier operates on the principle of classify-
ing one FE span at a time. In cases where multiple
FE spans are present within a single sentence, we
split these into distinct instances for individual pro-
cessing. For each instance, we introduce special
tokens—<LU_START> and <LU_END>—around the

Model Input
No Conditioning Growing up, <mask> are re-

warded <mask>.
FE-Conditioning Growing up, <FE: Evaluee>

<mask> </FE: Evaluee> are re-
warded <FE: Reason> <mask>
</FE: Reason>.

Frame-FE-Conditioning Growing up, <Frame:
Rewards_and_Punishments
+ FE: Evaluee>
<mask> </Frame:
Rewards_and_Punishments
+ FE: Evaluee>
are rewarded <Frame:
Rewards_and_Punishments +
FE: Reason> <mask> </Frame:
Rewards_and_Punishments +
FE: Reason>.

Table 7: Template of finetuning T5 models on an exam-
ple sentence.

LU, and <FE_START> and <FE_END> around the FE
span. Additionally, the name of the evoked frame
is appended to the end of the sentence. To train
our classifier to effectively discern valid FE spans
from invalid ones, we augment training data with
instances where randomly selected word spans are
labeled as “Not an FE”, constituting approximately
10% of the training data. The FE classifier is fine-
tuned on full-text data and lexicographic data for 20
epochs with a learning rate of 2e-5 and an AdamW
optimizer with weight decay 0.01. The training
process takes around 4 hours on 4 NVIDIA RTX
A6000 GPUs.

E Human evaluation of generated
examples

We perform fine-grained manual analysis on 200
generated sentences to evaluate the quality of
model generations based on two criteria: (1)
sentence-level semantic coherence and (2) preser-
vation of original FE types. We present 10 example
sentences from the overall 200 in Table 9.

F Intrinsic Evaluation on FrameNet Test
Data

To evaluate the quality of generated sentences
on reference-based metrics such as ROUGE (Lin,
2004) and BARTScore (Yuan et al., 2021), we per-
form §3.1 and §3.2 on the test split of FrameNet
1.7 with verb LUs. As observed in Table 10, the
T5 | FE model surpasses others in ROUGE scores,
signifying superior word-level precision, while
GPT-4 achieves the highest BARTScore, indicat-
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Title Sentence completion using frame elements

Definition You need to complete the given sentence containing one or multiple blanks (<mask>).
Your answer must be of the frame element type specified in FE Type.

Example Input Frame: Rewards_and_Punishments. Lexical Unit: discipline.v. Sentence: Growing
up, <mask> are disciplined <mask>. FE Type: Evaluee, Reason.

Example Output boys, for breaking the rules

Reason The frame "Rewards_and_Punishments" is associated with frame elements "Evaluee"
and "Reason". The answer "boys" fills up the first blank because it is a frame
element (FE) of type "Evaluee". The answer "for breaking the rules" fills up the
second blank because it is an FE of type "Reason".

Prompt Fill in the blanks in the sentence based on the provided frame, lexical unit and
FE type. Generate the spans that fill up the blanks ONLY. Do NOT generate the
whole sentence or existing parts of the sentence. Separate the generated spans
of different blanks by a comma. Generate the output of the task instance ONLY.
Do NOT include existing words or phrases before or after the blank.

Task Input Frame: Experiencer_obj. Lexical Unit: please.v. Sentence: This way <mask> are
never pleased <mask> . FE Type: Experiencer, Stimulus.

Task Output

Table 8: Example prompts for GPT-4 models. Texts in green only appear in FE-Conditioning and
Frame-FE-Conditioning models. Texts in orange only appear in Frame-FE-Conditioning models.

ing its generated sentences most closely match the
gold-standard FE spans in terms of meaning. For
reference-free metrics, GPT-4 | FE performs well in
both log perplexity and FE fidelity, showcasing its
ability to produce the most fluent and semantically
coherent generations.

G More on Augmentation Experiments

G.1 Experiments using Non-oracle
Augmentation Strategy

To evaluate the robustness and generalizability of
our model under realistic conditions, we employed
an augmentation strategy similar to that used by
Pancholy et al. (2021). Specifically, we remove
all annotated sentences of 150 randomly selected
verb LUs from the full text training data and train
our baseline parser using the remaining training
data. Our full model was trained on instances of
the 150 verb LUs re-generated by our framework
along with the data used to train the baseline model.
As a result, the test F1 scores for the baseline model
and full model were 0.689 and 0.690, respectively,
which echos the lack of significant improvement
using the oracle augmentation strategy.

G.2 Experiments on Verb-only Subset
Since our generation method mainly focuses on
augmenting verb LUs, we conduct additional aug-
mentation experiments using a subset of FrameNet
that includes only verb LU instances. To ensure
model performance on a subset of data, we incor-
porate lexicographic data with verb LUs into our

training set, resulting in a training set enriched
with 80.2k examples, a development set compris-
ing approximately 600 examples, and a test set
containing about 2k examples. We experimented
with different augmentation percentages both with
and without filtering, as shown in Table 11. We
use an oracle augmenter to augment LUs inversely
proportional to their F1 scores from the unaug-
mented experiments. To expand coverage on more
LUs during augmentation, we augment all LUs
rather than limiting to those with F1 scores below
0.75. Although the improvements are marginal, the
outcome from filtered augmentations is generally
better than those from their unfiltered counterparts.

G.3 Experiments on Multiple Candidate
Generations

In the main experiments conducted in this paper,
we generated one instance for each LU-sentence
pair. However, instances could be filtered out due to
inconsistent FE spans, which could hurt generation
diversity. To address this, we further experimented
with generating three candidate instances for each
LU-sentence pair to improve generation coverage.

Specifically, we augmented the full-text train-
ing data by 25% under both the 1-candidate and
3-candidate settings. However, as shown in Ta-
ble 12, generating three candidates did not lead to
performance improvements in the F1 score. This
suggests that simply increasing the number of gen-
erated candidates may not be sufficient to enhance
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Frame LU Sentence Original FEs GPT-4 | FE Human
Eval.

Verification verify.v (con-
firm.v)

The bank, upon confirming
<Unconfirmed_content>, re-
leased the goods to the cus-
tomer.

compliance
with the terms
of the credit

the transaction
details

✓ ✓

Distributed
_position

blanket.v
(line.v)

<Theme> lines <Location> and
the lake is covered with ice.

snow many feet
deep, the land

the first snow-
fall, the shore

✓ ✓

Being_located sit.v (stand.v) Against the left-hand wall near-
est to the camera are three stor-
age shelves; <Theme> stands
<Location>.

a lidless unvar-
nished coffin in
the process of
construction, on
the middle shelf

a tall vase, on
the top shelf

✓ ✓

Evoking conjure.v
(evoke.v)

A name like Pauline Gas-
coyne inevitably evoke
<Phenomenon>.

an image of a
bimbo Gazza in
a GTi

memories of a
bygone era

✓ ✓

Event happen.v
(take place.v)

Jamaicans appear to worry little
about the future; sometimes it
seems that they worry little even
about what takes place <Time>.

in the next few
minutes

tomorrow ✓ ✓

Self_motion climb.v
(walk.v)

My mother parked her bicycle in
the shoulder and took my hand,
and we walked <Goal>.

to the top of the
hill

to the park ✓ ✓

Process_materialsstain.v (pro-
cess.v)

If you accidentally process
<Material> <Alterant>, leave
it for a week or two.

walls, with
woodworm
fluid

the wood, too
much

✓ ×

Self_motion creep.v
(make.v)

Matilda took the knife she had
been eating with, and all four of
them make <Path>.

towards the
dining-room
door

their way to the
living room

✓ ×

Hunting hunt.v (fish.v) <Food> too were mercilessly
fished and often left, plucked
and dying, where the sealers
found them.

The albatrosses The penguins ×✓

Change_position
_on_a_scale

dip.v (rise.v) <Attribute> rose <Final
_value> in the summer, but has
recently climbed above $400
and last night was nudging
$410.

The price per
ounce, below
$360

The price, to
$410

×✓

Table 9: Example Generations of GPT-4 | FE, our best model according to human acceptance. The two marks in
human evaluation represent whether the generations satisfy the two criteria individually: (1) sentence-level semantic
coherence and (2) preservation of all FE types. A sentence is deemed acceptable only when it satisfies both criteria.
The new replacement LUs are presented in orange or parentheses. Masked FE spans are presented in teal and their
corresponding FE types in angle brackets.
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BARTScore ROUGE-1 ROUGE-L Perp. FE Fid.
Human - - - 4.82 -
T5 -5.939 0.301 0.298 447.874 0.829

T5 | FE -5.922 0.318 0.316 434.231 0.840
T5 | Frame + FE -6.179 0.276 0.274 441.639 0.843

GPT-4 -4.060 0.228 0.227 85.820 0.880
GPT-4 | FE -4.336 0.218 0.217 82.977 0.930

GPT-4 | Frame + FE -4.395 0.210 0.209 87.548 0.929

Table 10: Log BARTScore, ROUGE scores and perplexity of generations on FrameNet test set without LU
replacement.

All LUs F1 Aug. LUs F1
Unaugmented 0.751 0.779
5% Aug. w/o filter 0.745 0.778
5% Aug. w/ filter 0.752 0.781
25% Aug. w/o filter 0.752 0.776
25% Aug. w/ filter 0.753 0.781

Table 11: F1 score of all verb LUs and augmented LUs
in augmentation experiments using different percent-
ages of augmentations generated by T5 | FE with and
without filtering, compared to baseline results without
data augmentation. Best results are in boldface

generation diversity. Future work may need to
explore more effective strategies to improve the
diversity of generated data.

All LUs F1
Unaugmented 0.693
1-candidate 0.688
3-candidate 0.673

Table 12: F1 score of SRL parsers trained on unaug-
mented data and augmented data generated by T5 | FE
under 1-candidate and 3-candidate strategies.

H Effect of Filtering on Generation
Diversity

To examine the effect of filtering on the diversity
of generated data, we have conducted experiments
to compute the Self-BLEU scores to measure diver-
sity for the same 1,000 instances discussed in §3.4.
A lower Self-BLEU score indicates higher diver-
sity, as it signifies less overlap within the generated
texts. As demonstrated in Table 13, the diversity
of the generated candidates increases after apply-
ing the filter, even surpassing the diversity of the
original instances created by humans. This substan-
tiates the effectiveness of our filtering process in

Before Filtering After Filtering
Human 0.298 -
T5 0.302 0.278
T5 | FE 0.295 0.277
T5 | Frame+FE 0.295 0.271
GPT-4 0.270 0.249
GPT-4 | FE 0.268 0.246
GPT-4 | Frame+FE 0.271 0.253

Table 13: Self-BLEU scores of the 1000 instances cre-
ated in §3.4 before and after filtering.

enhancing the variability and quality of the gener-
ated sentences.
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