
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 75–84
August 11-16, 2024 ©2024 Association for Computational Linguistics

Isotropy, Clusters, and Classifiers

Timothee Mickus♡ Stig-Arne Grönroos♡♠ Joseph Attieh♡

♡ University of Helsinki, ♠ Silo.AI, Finland
firstname.lastname@helsinki.fi

Abstract

Whether embedding spaces use all their dimen-
sions equally, i.e., whether they are isotropic,
has been a recent subject of discussion. Evi-
dence has been accrued both for and against
enforcing isotropy in embedding spaces. In
the present paper, we stress that isotropy im-
poses requirements on the embedding space
that are not compatible with the presence of
clusters—which also negatively impacts linear
classification objectives. We demonstrate this
fact both empirically and mathematically and
use it to shed light on previous results from the
literature.

1 Introduction

Recently, there has been much discussion centered
around whether vector representations used in NLP
do and should use all dimensions equally. This
characteristic is known as isotropy: In an isotropic
embedding model, every direction is equally prob-
able, ensuring uniform data representation without
directional bias. At face value, such a character-
istic would appear desirable: Naively, one could
argue that an anisotropic embedding space would
be overparametrized, since it can afford to use some
dimensions inefficiently.

The debate surrounding isotropy was initially
sparked by Mu and Viswanath (2018), who high-
lighted that isotropic static representations fared
better on common lexical semantics benchmarks,
and Ethayarajh (2019), who stressed that contextual
embeddings are anisotropic. Since then, evidence
has been accrued both for and against enforcing
isotropy on embeddings.

In the present paper, we demonstrate that this
conflicting evidence can be accounted for once we
consider how isotropy relates to embedding space
geometry. Strict isotropy, as assessed by IsoScore
(Rudman et al., 2022), requires the absence of clus-
ters, and thereby also conflicts with linear classifi-
cation objectives. This echoes previous empirical

studies connecting isotropy and cluster structures
(Ait-Saada and Nadif, 2023, a.o.). In the present pa-
per, we formalize this connection mathematically
in Section 2. We then empirically verify our math-
ematical approach in Section 3, discuss how this
relation sheds light on earlier works focusing on
anisotropy in Section 4, and conclude with direc-
tions for future work in Section 5.

2 Some conflicting optimization objectives

We can show that isotropy—as assessed by
IsoScore (Rudman et al., 2022)—impose require-
ments that conflict with cluster structures—as as-
sessed by silhouette scores (Rousseeuw, 1987)—as
well as linear classifier objectives.

Notations. In what follows, let D be a multiset
of points in a vector space, Ω a set of labels, and
ℓ : D → Ω a labeling function that associates a
given data-point in D to the relevant label. Without
loss of generality, let us further assume that D is
PCA-transformed. Let us also define the following
constructs for clarity of exposition:

Dω = {d : ℓ (d) = ω}

sign(ω, ω′) =

{
−1 if ω = ω′

+1 otherwise

Simply put, Dω is the subset of points in D with
label ω, whereas the sign function helps delineate
terms that need to be maximized (inter-cluster) vs.
terms that need to be minimized (intra-cluster).

2.1 Silhouette objective for clustering

We can consider whether the groups as defined
by ℓ are in fact well delineated by the Euclidean
distance, i.e., whether they form natural clusters.
This is something that can be assessed through
silhouette scores, which involve a separation and a
cohesion score for each data-point. The cohesion
score consists in computing the average distance
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between the data-point and other members of its
group, whereas separation consists in computing
the minimum cohesion score the data-point could
have received with any other label than the one it
was assigned to. More formally, let:

cost(d,S) = 1

|S|
∑

d′∈S

√∑

i

(di − d′
i)
2

then we can define the silhouette for one sample as

coh(d) = cost
(
d,Dℓ(d) \ {d}

)

sep(d) = min
ω′∈Ω\{ℓ(d)}

cost (d,Dω′)

silhouette(d) =
sep(d)− coh(d)

max{sep(d), coh(d)}
Or in other words, the silhouette score is maxi-

mized when separation cost (sep) is maximized and
cohesion cost (coh) is minimized. Hence, to maxi-
mize the silhouette score across the whole dataset
D, one needs to (i) maximize all inter-cluster dis-
tances, and (ii) minimize all intra-cluster distances.

We can therefore define a maximization objec-
tive for the entire set D:
∑

d∈D

∑

d′∈D
sign(ℓ(d), ℓ(d′))

√∑

i

(di − d′
i)
2

which, due to the monotonicity of the square root
in R+, will have the same optimal argument D∗ as
the simpler objective OS

OS =
∑

d∈D

∑

d′∈D
sign(ℓ(d), ℓ(d′))

∑

i

(
di − d′

i

)2

(1)

2.2 Incompatibility with IsoScore
How does the objective in (1) conflict with isotropy
requirements? Assessments of isotropy such as
IsoScore generally rely on the variance vector. As
we assume D to be PCA transformed, the covari-
ance matrix is diagonalized, and we can obtain
variance for each individual component through
pairwise squared distances (Zhang et al., 2012):

V(D)i =
1

2|D|2
∑

d∈D

∑

d′∈D

(
di − d′

i

)2

In IsoScore, this variance vector is then normal-
ized to the length of the 1⃗ vector of all ones, before
computing the distance between the two:

√√√√∑

i

(
∥⃗1∥2

∥V(D)∥2
V(D)i − 1

)2

ca

cb
r

Figure 1: Relation between angle and chord.

This distance is taken as an indicator of isotropy
defect, i.e., isotropic spaces will minimize it.

Given the normalization applied to the variance
vector, the defect is computed as the distance be-
tween two points on a hyper-sphere. Hence it is
conceptually simpler to think of this distance as
an angle measurement: Remark that as the cosine
between V(D) and 1⃗ increases, the isotropy defect
decreases. A diagram illustrating this relation is
provided in Figure 1: For a given reference point
r and two comparison points ca and cb, we can
observe that the shortest chord (from r to ca) also
corresponds to the smallest angle.

More formally, let ṽ = ∥1⃗∥2
∥V(D)∥2V(D) be the

renormalized observed variance vector. We can
note that both ṽ and the ideal variance vector 1⃗
are points on the hyper-sphere centered at the ori-
gin and of radius ∥⃗1∥2. As such, the defect is then
equal to the distance between two points on a circle,
i.e., the length of the chord between the renormal-
ized observed variance vector and the ideal vari-
ance vector—which can be computed by simple
trigonometry means, as 2∥⃗1∥2 sin (α/2), with α
the angle between ṽ and 1⃗. This can be converted
to the more familiar cosine by applying a trigonom-
etry identity (given that 0 ≤ α ≤ π/4):

∥ṽ − 1⃗∥2 = 2∥⃗1∥2
√
1− cos2(α/2)

1

4d
∥ṽ − 1⃗∥22 − 1 = − cos2(α/2)

where d is the dimension of the vectors in our point
cloud. Hence we can exactly relate the isotropic
defect (squared) to the cosine (squared) of the angle
between ideal and observed variance vectors.

By monotonicity arguments, we can simplify
this as follows: To maximize isotropy, we have to
maximize the objective OI

OI = cos
(
1⃗,V (D)

)

∝
∑

d∈D

∑

d′∈D

∑

i

(
di − d′

i

)2 (2)

This intuitively makes sense: Ignoring vector
norms, we have to maximize all distances between
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every pair of data-points to ensure all dimensions
are used equally, i.e., spread data-points out evenly
on a hyper-sphere. However, in the general case, it
is not possible to maximize both the isotropy ob-
jective in (2) and the silhouette score objective in
(1): Intra-cluster pairwise distances must be min-
imized for optimal silhouette scores, but must be
maximized for optimal isotropy scores. In fact, the
two objectives can only be jointly maximized in
the degenerate case where no two data-points in D
are assigned the same label.1

2.3 Relation to linear classifiers

Informally, latent representations need to form clus-
ters corresponding to the labels in order to optimize
a linear classification objective. Consider that in
classification problems (i) any data-point d is to be
associated with a particular label ℓ(d) = ωi and
dissociated from other labels Ω\{ℓ(d)}, and (ii) as-
sociation scores are computed using a dot product
between the latent representation to be classified
and the output projection matrix, where each col-
umn vector cω corresponds to a different class label
ω. As such, for any point d to be associated with
its label ℓ(d), one has to maximize

⟨d, cℓ(d)⟩ = 1
2

(
∥d∥22 + ∥cℓ(d)∥22 − ∥d− cℓ(d)∥22

)

In other words, one must either augment the norm
of d or cℓ(d), or minimize the distance between d
and cℓ(d). Note however that this does not factor
in the other classes ω′ ∈ Ω \ {ℓ(d)} from which
d should be dissociated, i.e., where we must mini-
mize the above quantity. To account for the other
classes, the global objective OC to maximize can
be defined as

OC =−
∑

d∈D

∑

ω∈Ω
sign (ω, ℓ (d)) ⟨d, cω⟩

=−
∑

d∈D

|Ω| − 2

2
∥d∥22 −

∑

ω∈Ω

|D| − 2|Dω|
2

∥cω∥22

+
1

2

∑

d∈D

∑

ω∈Ω
sign (ω, ℓ (d))

∑

i

(di − cωi )
2

(3)
where the weights |Ω| − 2 and |D| − 2|Dω| stem
from counting how many other vectors a given data
or class vector is associated with or dissociated
from: we have one label to associate with any data-
point d, and |Ω| − 1 to dissociate it from; whereas

1Hence some NLP applications and tasks need not be im-
peded by isotropy constrains, e.g., linear analogies that rely
on vector offsets are a prima facie compatible with isotropy.

a class vector cω should be associated with the cor-
responding subset Dω and dissociated from the rest
of the dataset (viz. D \ Dω).2

Focusing on the last line of Equation (3), we find
that maximizing classification objectives entails
minimizing the distance between a latent repre-
sentation d and the vector for its label cℓ(d), and
maximizing its distance to all other class vectors.
It is reminiscent of the silhouette score in Equa-
tion (1): In particular any optimum for OC is an
optimum for OS, since it entails D∗ such that

∀d,d′ ∈ D∗ ℓ(d) = ℓ(d′) ⇐⇒ d = d′ (4)

Informally: The cluster associated with a label
should collapse to a single point. Therefore the
isotropic objective OI in Equation (2) is equally
incompatible with the learning objective OC of a
linear classifier.

In summary, (i) point clouds cannot both con-
tain well-defined clusters and be isotropic; and (ii)
linear classifiers should yield clustered and thereby
anisotropic representations.

3 Empirical confirmation

To verify the validity of our demonstrations in Sec-
tion 2, we can optimize a set of data-points for
a classification task using a linear classifier: We
should observe an increase in silhouette scores, and
a decrease in IsoScore. Note that we are therefore
evaluating the behavior of parameters as they are
optimized; i.e., we do not intend to test whether
silhouettes and IsoScore behave as expected on
held-out data. This both allows us to precisely test
the argument laid out in Section 2 and cuts down
computational costs significantly.

3.1 Methodology
We consider four setups: (i) optimizing SBERT sen-
tence embeddings (Reimers and Gurevych, 2019)3

on the binary polarity dataset of Pang and Lee
(2004); (ii) optimizing paired SBERT embeddings3

on the validation split of SNLI (Bowman et al.,
2015); (iii) optimizing word2vec embeddings4 on

2The corresponding two sums can be understood as proba-
bilistic priors over the data: The objective entails that the norm
of a class vector cω should be proportional to the number of
data-points with this label ω, whereas one would expect a
uniform distribution for vectors d. These terms cancel out for
balanced, binary classification tasks.

3all-MiniLM-L6-v2
4http://vectors.nlpl.eu/repository/,

model 222, trained on an English Wikipedia dump of
November 2021.
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Dataset N. items N. params.

Pang and Lee (2004)
10 662 4 094 976

through nltk (Bird and Loper, 2004)

Bowman et al. (2015)
9 842 4 987 395

from nlp.stanford.edu

Mickus et al. (2022b)
11 462 4 341 004

from codwoe.atilf.fr

Fellbaum (1998)
2 275 690 326

from github.com/altsoph

Table 1: Dataset vs. number of datapoints (N. items)
and corresponding number of trainable parameters (N.
params.).

POS-tagging multi-label classification using the En-
glish CoDWoE dataset (Mickus et al., 2022b); and
(iv) optimizing word2vec embeddings4 for Word-
Net supersenses multi-label classification (Fell-
baum, 1998; pre-processed by Tikhonov et al.,
2023). All these datasets and models are in English
and CC-BY or CC-BY-SA.5 Relevant information
is available in Table 1; remark we do not split the
data as we are interested on optimization behavior.
We also replicate and extend these experiments on
GLUE in Appendix A.

For (i) and (ii), we directly optimize the output
embeddings of the SBERT model rather than up-
date the parameters of the SBERT model. In all
cases, we compute gradients for the entire dataset,
and compute silhouette scores with respect to the
target labels and IsoScore over 1000 updates. In
multi-label cases (iii) and (iv), we consider distinct
label vectors as distinct target assignments when
computing silhouette scores. Models are trained us-
ing the Adam algorithm (Kingma and Ba, 2014);6

in cases (i) and (ii) we optimize cross-entropy, in
cases (iii) and (iv), binary cross-entropy per label.
Remark that setups (ii), (iii) and (iv) subtly depart
from the strict requirements laid out in Section 2.

Training per model requires between 10 min-
utes and 1 hour on an RTX3080 GPU; much of
which is in fact devoted to CPU computations for
IsoScore and silhouette scores values. Hyperparam-
eters listed correspond to default PyTorch values
(Paszke et al., 2019), no hyperparameter search
was carried out. IsoScore is computed with the
pip package IsoScore (Rudman et al., 2022)
on unpaired embeddings, silhouette scores with
scikit-learn (Pedregosa et al., 2011).

5Our use is consistent with the intended use of these re-
sources. We trust the original creators of these resources that
they contain no personally identifying data.

6Learning rate of 0.001, β of (0.9, 0.999).
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(b) Log-normalized IsoScore across training

Figure 2: Evolution of silhouette score and IsoScore
across classification optimization (avg. of 5 runs).
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Figure 3: Relationship between silhouette scores and
IsoScore (avg. of 5 runs).

3.2 Results

Results of this empirical study are displayed in
Section 3.1. Performances with five different ran-
dom initialization reveal negligible standard devia-
tions (maximum at any step < 0.0054, on average
< 0.0008). Our demonstration is validated: Across
training to optimize classification tasks, the data-
points become less isotropic and better clustered.
We can also see a monotonically decreasing rela-
tionship between IsoScore and silhouette scores,
which is better exemplified in Figure 3: We find
correlations with Pearson’s r of −0.808 for the
polarity task, −0.878 for SNLI, −0.947 for POS-
tagging and −0.978 for supersense tagging; Spear-
man’s ρ are always below −0.998.

In summary, we empirically confirm that
isotropy requirements conflict with silhouette
scores and linear classification objectives.
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4 Related works

How does the connection between clusterability
and isotropy that we outlined shed light on the
growing literature on anisotropy?

While there is currently more evidence in fa-
vor of enforcing isotropy in embeddings, the case
is not so clear cut that we can discard negative
findings, and a vast majority of the positive evi-
dence relies on improper techniques for quantify-
ing isotropy (Rudman et al., 2022). Ethayarajh
(2019) stressed that contextual embeddings are ef-
fective yet anisotropic. Ding et al. (2022) provides
experiments that advise against using isotropy cal-
ibration on transformers to enhance performance
in specific tasks. Rudman and Eickhoff (2023)
finds that anisotropy regularization in fine-tuning
appears to be beneficial on a large array of tasks.
Lastly, Rajaee and Pilehvar (2021a) find that the
contrasts encoded in dominant dimensions can, at
times, capture linguistic knowledge.

On the other hand, the original study of Mu and
Viswanath (2018) found that enforcing isotropy on
static embeddings improved performances on se-
mantic similarity, both at the word and sentence
level, as well as word analogy. Subsequently, a
large section of the literature has focused on this
handful of tasks (e.g., Liang et al., 2021; Timkey
and van Schijndel, 2021). Isotropy was also found
to be helpful beyond these similarity tasks: Haem-
merl et al. (2023) report that isotropic spaces per-
form much better on cross-lingual tasks, and Jung
et al. (2023) stress its benefits for dense retrieval.

These are all applications that require graded
ranking judgments, and therefore are generally hin-
dered by the presence of clusters—such clusters
would for instance introduce large discontinuities
in cosine similarity scores. To take Haemmerl
et al. (2023) as an example, note that language-
specific clusters are antithetical to the success of
cross-lingual transfer applications. It stands to rea-
son that isotropy can be found beneficial in such
cases, although the exact experimental setup will
necessarily dictate whether it is boon or bane: For
instance Rajaee and Pilehvar (2021b) tested fine-
tuning LLMs as Siamese networks to optimize per-
formance on sentence-level similarity, and found
enforcing isotropy to hurt performances—here, we
can conjecture that learning to assign inputs to spe-
cific clusters is a viable solution in their case.

The literature has previously addressed the topic
of isotropy and clustering. Rajaee and Pilehvar

(2021a) advocated for enhancing the isotropy on
a cluster-level rather than on a global-level. Cai
et al. (2021) confirmed the presence of clusters in
the embedding space with local isotropy properties.
Ait-Saada and Nadif (2023) investigated the cor-
relation between isotropy and clustering tasks and
found that fostering high anisotropy yields high-
quality clustering representations. The study pre-
sented here provides a mathematical explanation
for these empirical findings.

5 Conclusion

We argued that isotropy and cluster structures are
antithetical (Section 2), verified that this argument
holds on real data (Section 3), and used it to shed
light on earlier results (Section 4). This result how-
ever opens novel and interesting directions of re-
search: If anisotropic spaces implicitly entail clus-
ter structures, then what is the structure we observe
in our modern, highly anisotropic large language
models? Prior results suggest that this structure
is in part linguistic in nature (Rajaee and Pilehvar,
2021a), but further confirmation is required.

Another topic we intend to pursue in future work
concerns the relation between non-classification
tasks and isotropy: Isotropy constraints have been
found to be useful in problems that are not well
modeled by linear classification, e.g. word analogy
or sentence similarity. Our present work does not
yet offer a thorough theoretical explanation why.
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Limitations

The present paper leaves a number of important
problems open.

Idealized conditions. Our discussion in Sec-
tion 2 points out optima that are incompatible, but
says nothing of the behavior of models trained until
convergence on held out data. In fact, enforcing
isotropy could be argued to be a reasonable regu-
larization strategy in that it would lead latent repre-
sentations to not be tied to a specific classification
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structure.
Relatedly, a natural point of criticism to raise

is whether our reasoning will hold for deep classi-
fiers with non-linearities: Most (if not all) modern
deep-learning classification approaches rely on non-
linear activation functions across multiple layers
of computations. The present demonstration has
indeed yet to be expanded to account for such more
common cases.

Insofar neural architectures trained on classifi-
cation objectives are concerned, we strongly con-
jecture their output embeddings would tend to be
anisotropic. The anisotropy of inner representa-
tions appears to be a more delicate question: For
Transformers, there has been extensive work show-
casing that their structure is for the most part ad-
ditive (Ferrando et al., 2022a,b; Modarressi et al.,
2022; Mickus et al., 2022a; Oh and Schuler, 2023;
Yang et al., 2023; Mickus and Vázquez, 2023), and
we therefore expect anisotropy to spread to bottom
layers to some extent. For architectures based on
warping random distributions such as normalizing
flows (Kobyzev et al., 2021), GANs (Goodfellow
et al., 2014), or diffusion models (Ho et al., 2020),
the fact that (part of) their input is random and
isotropic likely limits how anisotropic their inner
representations are.

Thoroughness of the mathematical framework.
The mathematical formalism is not thorough. For
the sake of clarity and given page limitations, we
do not include a formal demonstration that the lin-
ear classification optimum necessarily satisfies the
clustering objective. Likewise, when discussing
isotropy in Equation (2), we ignore the cosine de-
nominator.

Choice of objectives. Our focus on silhouette
scores and linear classifier objectives may seem
somewhat restrictive. Our use of the silhouette
score in the present derivation is motivated by two
facts. First, our interest is in how the point cloud
will cluster along the provided labels—this rules
out any external evaluation metric comparing pre-
dicted and gold label, such as ARI (Hubert and
Arabie, 1985) or purity scores. Second, we can
also connect silhouette scores to a broader fam-
ily of clustering metrics such as the Dunn index
(Dunn, 1974), the Caliński–Harabasz index (Cal-
iński and Harabasz, 1974) or the Davies–Bouldin
index (Davies and Bouldin, 1979). Silhouette
scores have the added benefit of not relying on

centroids in their formulation, making their rela-
tion to the variance vector V(D) more immediate.
We conjecture that these other criteria could be ac-
counted for by means of triangular inequalities, as
they imply the same optimum layout D∗ as Equa-
tion (4).

As for our focus on the linear classifier objective,
we stress this objective is a straightforward default
approach; but see Appendix B for a discussion of
triplet loss within a similar framework as sketched
here.
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A Supplementary experiments on GLUE

We reproduce experiments described in Section 3
on GLUE tasks (Wang et al., 2018).7 We train our
models on the provided training sets—hence we
only consider tasks for which there is a training
set (all but ax) and that correspond to a classifi-
cation problem (all but stsb, a regression task);
we remove all datapoints where no label is pro-
vided. Given our earlier results, we limit training
to 250 updates; we directly update sentence-bert
output embeddings by computing gradients for the
entire training set all at once. We compute IsoScore
and silhouette scores after every update; to allevi-
ate computational costs, they are evaluated on ran-
dom samples of 20, 000 items whenever the train-
ing set is larger than this (samples are performed
separately for each update). We test three differ-
ent publicly available pretrained SBERT models:
all-mpnet-base-v2 (referred to as “mpnet”
in what follows), all-distilroberta-v1
(viz. “roberta”) and all-MiniLM-L6-v2
(viz. “miniLM”). Training details otherwise match
those of Section 3; see Table 2 for further informa-
tion on the number of datapoints and parameter
counts of all models considered.

Corresponding results are depicted in Figure 4.
While there is some variation across models and

7From huggingface.co.
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Dataset N. items N. params.
miniLM mpnet roberta

cola 8 551 3 277 058 6 554 114 6 554 114
mnli 392 702 199 380 483 398 760 963 398 760 963
mrpc 3 668 2 709 506 5 419 010 5 419 010
qnli 104 743 42 617 090 85 234 178 85 234 178
qqp 363 846 189 649 154 379 298 306 379 298 306
rte 2 490 1 738 370 3 476 738 3 476 738
sst2 67 349 25 720 322 51 440 642 51 440 642
wnli 635 356 738 713 474 713 474

Table 2: Supplementary experiments on GLUE: Dataset
vs. number of datapoints (N. items) and corresponding
number of trainable parameters (N. params.).
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Figure 4: Supplementary experiments on GLUE: Evolu-
tion of silhouette score and IsoScore across classifica-
tion optimization (avg. of 5 runs).

GLUE tasks, all the setups considered display
the same trend: Silhouette score increases and
IsoScore decreases across training. We can quan-
tify this trend by computing correlation scores
between IsoScore and silhouette scores. Corre-
sponding correlations are listed in Table 3: As is
obvious, we find consistent and pronounced anti-
correlations in all setups, with Pearson’s r always
below −0.838 and Spearman’s ρ always below
−0.966. This further consolidates our earlier con-
clusions in Section 3.

B Relation to triplet loss

To underscore some of the limitations of our ap-
proach, we can highlight a connection with the
triplet loss, which is often used to learn clusters.

setup r ρ

m
i
n
i
L
M

cola −0.882 91 −0.999 96
mnli −0.852 17 −0.999 38
mrpc −0.939 73 −0.996 62
qnli −0.911 88 −0.985 88
qqp −0.928 90 −0.996 66
rte −0.926 48 −0.999 85
sst2 −0.845 51 −0.999 97
wnli −0.896 90 −0.999 87

m
p
n
e
t

cola −0.872 99 −0.999 98
mnli −0.844 58 −0.999 20
mrpc −0.924 56 −0.999 70
qnli −0.905 06 −0.966 50
qqp −0.915 83 −0.995 04
rte −0.913 48 −0.999 80
sst2 −0.838 64 −0.999 95
wnli −0.890 77 −0.999 94

r
o
b
e
r
t
a

cola −0.871 37 −0.999 99
mnli −0.838 65 −0.999 20
mrpc −0.918 83 −0.998 49
qnli −0.899 18 −0.969 38
qqp −0.911 15 −0.994 24
rte −0.915 15 −0.999 41
sst2 −0.841 03 −0.999 95
wnli −0.890 20 −0.999 91

Table 3: Supplementary experiments on GLUE: Corre-
lations (Pearson’s r and Spearman’s ρ) of IsoScore and
silhouette scores in GLUE task

It is defined for a triple of points da,dp,dn

where ℓ(da) = ℓ(dp) ̸= ℓ(dn) as

Lapn = max (∥da − dp∥2 − ∥da − dn∥2, 0)
= max (∥da − dp∥2, ∥da − dn∥2)− ∥da − dn∥2
≥ ∥da − dp∥2 − ∥da − dn∥2

=
∑

dc∈{dp,dn}
−sign (ℓ (da) , ℓ (dc)) ∥da − dc∥2

The objective across the entire dataset D is thus:

OT =
∑

ω∈Ω

∑

da∈Dω

∑

dp∈Dω\{da}

∑

dn∈D\Dω

−Lapn

≤
∑

ω∈Ω

∑

da∈Dω

∑

dp∈Dω\{da}

∑

dn∈D\Dω∑

dc∈{dp,dn}
sign (ℓ (da) , ℓ (dc)) ∥da − dc∥2

=
∑

d∈D

∑

d′∈D
signwgt

(
ℓ (d) , ℓ

(
d′)) ∥d− d′∥2

(5)
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using a weighted variant of our original sign func-
tion:

signwgt(ω, ω
′) =

{
|Dω| − |D| if ω = ω′

|Dω| − 1 otherwise

Remark that this is in fact an upper bound on
both the silhouette objective as defined in Equa-
tion (1) and the triplet objective OT. However,
as they are to be maximized, the above does not
entail that models trained with a triplet loss will
necessarily develop anisotropic representations.
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