@inproceedings{keleg-etal-2024-estimating-level,
title = "Estimating the Level of Dialectness Predicts Inter-annotator Agreement in Multi-dialect {A}rabic Datasets",
author = "Keleg, Amr and
Magdy, Walid and
Goldwater, Sharon",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-short.70",
doi = "10.18653/v1/2024.acl-short.70",
pages = "778--789",
abstract = "On annotating multi-dialect Arabic datasets, it is common to randomly assign the samples across a pool of native Arabic speakers. Recent analyses recommended routing dialectal samples to native speakers of their respective dialects to build higher-quality datasets. However, automatically identifying the dialect of samples is hard. Moreover, the pool of annotators who are native speakers of specific Arabic dialects might be scarce. Arabic Level of Dialectness (ALDi) was recently introduced as a quantitative variable that measures how sentences diverge from Standard Arabic. On randomly assigning samples to annotators, we hypothesize that samples of higher ALDi scores are harder to label especially if they are written in dialects that the annotators do not speak. We test this by analyzing the relation between ALDi scores and the annotators{'} agreement, on 15 public datasets having raw individual sample annotations for various sentence-classification tasks. We find strong evidence supporting our hypothesis for 11 of them. Consequently, we recommend prioritizing routing samples of high ALDi scores to native speakers of each sample{'}s dialect, for which the dialect could be automatically identified at higher accuracies.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="keleg-etal-2024-estimating-level">
<titleInfo>
<title>Estimating the Level of Dialectness Predicts Inter-annotator Agreement in Multi-dialect Arabic Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Amr</namePart>
<namePart type="family">Keleg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Walid</namePart>
<namePart type="family">Magdy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sharon</namePart>
<namePart type="family">Goldwater</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>On annotating multi-dialect Arabic datasets, it is common to randomly assign the samples across a pool of native Arabic speakers. Recent analyses recommended routing dialectal samples to native speakers of their respective dialects to build higher-quality datasets. However, automatically identifying the dialect of samples is hard. Moreover, the pool of annotators who are native speakers of specific Arabic dialects might be scarce. Arabic Level of Dialectness (ALDi) was recently introduced as a quantitative variable that measures how sentences diverge from Standard Arabic. On randomly assigning samples to annotators, we hypothesize that samples of higher ALDi scores are harder to label especially if they are written in dialects that the annotators do not speak. We test this by analyzing the relation between ALDi scores and the annotators’ agreement, on 15 public datasets having raw individual sample annotations for various sentence-classification tasks. We find strong evidence supporting our hypothesis for 11 of them. Consequently, we recommend prioritizing routing samples of high ALDi scores to native speakers of each sample’s dialect, for which the dialect could be automatically identified at higher accuracies.</abstract>
<identifier type="citekey">keleg-etal-2024-estimating-level</identifier>
<identifier type="doi">10.18653/v1/2024.acl-short.70</identifier>
<location>
<url>https://aclanthology.org/2024.acl-short.70</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>778</start>
<end>789</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Estimating the Level of Dialectness Predicts Inter-annotator Agreement in Multi-dialect Arabic Datasets
%A Keleg, Amr
%A Magdy, Walid
%A Goldwater, Sharon
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F keleg-etal-2024-estimating-level
%X On annotating multi-dialect Arabic datasets, it is common to randomly assign the samples across a pool of native Arabic speakers. Recent analyses recommended routing dialectal samples to native speakers of their respective dialects to build higher-quality datasets. However, automatically identifying the dialect of samples is hard. Moreover, the pool of annotators who are native speakers of specific Arabic dialects might be scarce. Arabic Level of Dialectness (ALDi) was recently introduced as a quantitative variable that measures how sentences diverge from Standard Arabic. On randomly assigning samples to annotators, we hypothesize that samples of higher ALDi scores are harder to label especially if they are written in dialects that the annotators do not speak. We test this by analyzing the relation between ALDi scores and the annotators’ agreement, on 15 public datasets having raw individual sample annotations for various sentence-classification tasks. We find strong evidence supporting our hypothesis for 11 of them. Consequently, we recommend prioritizing routing samples of high ALDi scores to native speakers of each sample’s dialect, for which the dialect could be automatically identified at higher accuracies.
%R 10.18653/v1/2024.acl-short.70
%U https://aclanthology.org/2024.acl-short.70
%U https://doi.org/10.18653/v1/2024.acl-short.70
%P 778-789
Markdown (Informal)
[Estimating the Level of Dialectness Predicts Inter-annotator Agreement in Multi-dialect Arabic Datasets](https://aclanthology.org/2024.acl-short.70) (Keleg et al., ACL 2024)
ACL