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Abstract

Coreference resolution (CR) and Zero Pronoun
Resolution (ZPR) are vital for extracting mean-
ingful information from text. However, lim-
ited research and datasets pose significant chal-
lenges in Thai language. To address this, we de-
veloped an annotated joint CR and ZPR dataset.
Additionally, we introduced the Z-coref model,
capable of simultaneously handling CR and
ZPR tasks by adjusting the span definition of
a prior CR architecture to include token gaps.
The proposed model trained on our dataset out-
performed the state-of-the-art in resolving both
coreference resolution and zero-pronoun reso-
lution, while taking less time to train.

1 Introduction

Coreference resolution (CR) is the task of identi-
fying and linking words or phrases referring to the
same entity in a text. It is a crucial step in natural
language processing (NLP) taken to determine the
meaning of a text by resolving ambiguity. One of
the tasks in CR is known as zero pronoun resolution
(ZPR). The main goal of ZPR is to determine the
reference of a missing pronoun, or so-called a zero
pronoun (ZP) – a linguistic phenomenon in which
a pronoun in a sentence can be omitted because its
referent is clear from the context. This omission is
often easily recognizable by humans but presents a
challenge for machines. Zero pronoun resolution
still remains a difficult task in pro-drop languages
like Thai, Chinese, and Japanese.

Figure 1 illustrating a news headline written in
Thai and its English translation, exemplifies the
challenge of ZPs. Nouns and zero pronouns (∅)
marked with blue squares refer to the wife of a taxi
driver, while those in red squares refer to the taxi
driver. It can be noticed that there are several occur-
rences of ZPs although the headline and language
style are succinct. These brief sentences present a
challenge for a machine to interpret.

Figure 1: Examples of Thai news headline and the trans-
lated versions in English. ZPs are represented as ‘∅’.
The box color scheme indicates entities with the same
reference. The text in gray indicates expression that can
be omitted in Thai

While there exist various baseline models and
large annotated datasets for CR in English, there
is a paucity of research in this area for the Thai
language. Only one dataset and one baseline model
by Han-coref are publicly available (Phatthiyaphai-
bun and Limkonchotiwat, 2023); however, neither
covers the case of zero pronouns. Therefore, this
study makes the following contributions: (1) We
have taken the initiative to create the first dataset
that combines both CR and ZPR for Thai language;
(2) We introduce a novel approach, Z-coref, which
is capable of handling CR in Thai while also ad-
dressing the challenges posed by ZPs, a nature of
the Thai language; (3) We conducted a compar-
ative analysis of our approach with the joint CR
and ZPR model for Chinese language introduced
by Chen et al. (2021). Our model not only signif-
icantly outperforms in terms of training time but
also exhibits a slightly higher performance. Lastly,
our source code, dataset and model are available at
https://github.com/psuwannapich/z-coref.

2 Related Works

In this section, we first introduce previous works
in the topic of coreference resolution, followed by
zero pronoun resolution. Then, CR methods pro-
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posed for Thai language along with zero pronouns
will be discussed.

2.1 Coreference Resolution
A number of neural models for coreference resolu-
tion have been developed. Among them, Lee et al.
(2017) is the first to introduce an end-to-end neu-
ral CR model that employs span representations.
The score to consider pairs of query span q and
candidate antecedent span c is denoted as f(c, q),
which is a combination of query mention score
fm(q), candidate mention score fm(c) and joint
antecedent score fa(q, c) as shown in Equation 1.

f(c, q) = fm(q) + fm(c) + fa(q, c) (1)

The mentions were formed using a span head
layer that averages token representations of consec-
utive tokens. Nevertheless, given that all combina-
tions of spans and coreferential pairs are consid-
ered, the model complexity becomes O(n4), where
n is the number of tokens.

To improve the computational efficiency,
Kirstain et al. (2021) performed the algorithm with-
out using span representation (s2e-coref). The re-
sults demonstrated that the memory usage during
inference time has reduced with insignificant effect
on the performance.

To compute the mention score, only the repre-
sentation of start token mqs and end token mqe are
used, rather than all tokens in the span (Equation 2).
Here mqs and mqe are the vector projections re-
lated to the mention score from the query’s start
token qs and end token qe, respectively, while B
and v are parameters that the model learns during
training.

fm(q) = vs ·mqs+ve ·mqe+mqs ·Bm ·mqe (2)

Similarly, the antecedent score is determined
using the start and end tokens of both the query
span q and the candidate span c, as outlined in
Equation 3. The equation includes four terms that
represent the combinations of the start and end
tokens from q to c. The vector a corresponds to the
projection associated with the antecedent score for
each token.

fa(c, q) = acs ·Bass · aqs + acs ·Base · aqe
+ ace ·Baes · aqs + ace ·Baee · aqe

(3)

Subsequently, Otmazgin et al. (2022) introduced
F-coref, which exhibited enhanced performance
and efficiency through the implementation of dy-
namic batching and knowledge distillation tech-
niques. The transformer model for token represen-
tation calculation was modified from Longformer
(Beltagy et al., 2020), which was widely used in the
CR task to the more lightweight DistilRoBERTa
(Sanh et al., 2019). By leveraging knowledge distil-
lation from the LingMess model (Otmazgin et al.,
2023), the size of the F-coref model was reduced
without compromising its overall performance.

2.2 Zero Pronoun Resolution
In general, ZPR tasks take the location of query ZP
as an input, then find any suitable antecedent for
the pronoun. For instance, (Yin et al., 2018b) em-
ployed recurrent neural networks with an attention
mechanism to extract the antecedent noun phrase
using the input ZP query. Under the same theme,
deep reinforcement learning techniques were em-
ployed for ZPR in (Yin et al., 2018a). The model’s
agent has actions to determine whether to consider
them as coreferential based on a given pair of ZP
and candidate noun phrase.

A ZPR model has also been introduced for Ara-
bic by Aloraini and Poesio (2020), through utiliza-
tion of multilingual BERT model (Devlin et al.,
2018). The model also unexpectedly achieved
higher performance in Chinese compared to previ-
ous state-of-the-art.

However, an iteration over all gaps between
words is required to resolve all ZPs with these ap-
proaches. To address this issue, Chen et al. (2021)
integrated ZPR and CR into a single task; all gaps
in a document are considered as a candidate men-
tion for CR and use an end-to-end model to resolve
the coreferential.

2.3 Thai Coreference and Zero Pronouns
Currently, research in CR for Thai language is lim-
ited due to the lack of public datasets. Earlier
work by Kongwan et al. (2022) used their previ-
ous dataset in Elementary Discourse Units segmen-
tation for the task. They localized the mentions
using a rule-based method on the part of speech
and applied a mention-ranking model (Denis and
Baldridge, 2008) to find the coreferential pair. To
improve the model performance further, Han-coref
(2023) used the architecture from F-coref model
(2022) and added a tokenization module to handle
the ambiguity of word boundary. Additionally, a
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coreference dataset of 1,338 documents along with
an annotation guideline was created.

Resolving cross-document CR, Theptakob et al.
(2023) used agglomerative clustering on pairwise
entity coreference score to determine corefer-
ences across documents. In Thai study on ZPR,
Sumanakul (2022) employed a mask language
model. A masked token was inserted at the ZP’s
location, and a pre-trained transformer model was
utilized to predict the masked token. These mask
predictions were considered as the coreferential
answers. Additionally, they performed token clas-
sification to determine ZP types (first, second or
third person). However, no research has considered
ZPs together with CR in Thai yet.

3 Methodology

In this paper, we established a CR dataset that con-
tains details of ZPs and modified the CR model’s
architecture to handle ZPs.

3.1 Data Annotation

We retrieve 1,338 documents from Han-coref
(Phatthiyaphaibun and Limkonchotiwat, 2023) in-
cluding Thai news headlines and Wikipedia. Due
to the difference in scope, we need to re-annotate
the dataset. We selected as annotators, Thai native
speakers who were not linguists. These annotators
must be fluent in Thai and have the capability to
read and comprehend Thai news. The annotation
guideline was written due to the ambiguity of the
language to ensure the corrective of the annota-
tors. The annotation process is divided into two
steps: (1) identify mentions and (2) link the coref-
erential mentions. Annotators are asked to indicate
mentions; words or phrases that refer to a specific
person or organization. Other specific words such
as items or locations are ignored, in order to main-
tain a manageable scope and enable non-linguistic
annotators to participate more effectively.

3.2 Z-coref

Our Z-coref model employs F-coref (2022) model’s
architecture, a faster and smaller version of s2e
(2021), incorporating knowledge distillation from
LingMess (2023). The s2e model utilizes only the
first and last tokens within a span, rather than all
tokens in the span to create representations. Never-
theless, the s2e model lacks compatibility with ZPs
because the span cannot be a gap between words
without any characters. Normally, span span(s, e)

is a concatenation of consecutive tokens start from
token s (ts) to token e (te). For example, in Figure
2, s(2, 3) is the span "loves dogs".

From the definition, the smallest span is a token
when e = s. We expand this definition further by
also considering the gap between two consecutive
tokens g(s − 1, s) which is the gap between ts−1

and token ts. With this modification, the span that
starts from token s and ends at token s− 1 is con-
sidered a special type of span used to represent a
ZP. Therefore, both the normal span and the to-
ken’s gap can be defined using the modified span
definition:

span(s, e) =

{
[ts; ti+s; ...; te−1; te] if s ≤ e

gap(e, s) if s− 1 = e
(4)

As illustrated in Figure 2, s(5, 4) = g(4, 5) cor-
responds to the gap between "but" and "hates". Fur-
thermore, it becomes necessary to introduce a new
special token at both the document’s beginning and
end to effectively manage instances of ZPs occur-
ring in those positions. This adapted definition
ensures the seamless compatibility of ZPs with the
concept of the s2e model. Due to non-explicit-
word-boundary language, we rely on a subword to-
kenizer that is integrated with the base transformer
model because we aim to tokenize the document
into the smallest units possible, thereby preventing
ZPs from being within the middle of a token.

Figure 2: Tokens and gaps example. "<front_pad>" and
"<back_pad>" tokens are added. Any positions between
consecutive tokens are consider as gaps.

Rather than using Longformer (2020) or Distil-
RoBERTa (2019), we used WangchanBERTa (Low-
phansirikul et al., 2021), a pre-trained transformer
model on Thai corpus to extract contextual repre-
sentations from tokens. The downstream pipeline
is the same as F-coref (2022) model with modi-
fication for ZPs. Normally, F-coref model filters
invalid spans using Equation 5

fm(q) =

{
f(qs, qe) if s ≤ e < s+max_length
−10, 000 otherwise

(5)

134



The mention score of a valid span is calculated
normally using Equation 2. On the other hand, the
score of an invalid span (the span that is longer
than the max length or that the start token comes
after the end token) is fixed to a large negative
number -10,000. To add ZPs to the model, we
simply changed the first condition of Equation 5 to
accommodate the scenario where s− 1 = e, which
signifies a ZP. Consequently, our Z-coref is now
compatible with normal mentions and ZPs.

4 Dataset

The dataset has been annotated by eight annota-
tors. Due to time constraints and the challenging
nature of the task, each annotator was only able
to annotate a subset of the dataset. However, by
combining the annotations from all annotators, the
entire dataset of 1,338 documents was covered with
at least two annotations per document. Details of
dataset are further described in Appendix A

5 Experiment and Results

This experiment aims to evaluate our proposed
model against the e2e-joint-coref model developed
by Chen et al. (2021) using our annotated dataset.
The models were trained for 150 epochs to compare
their performance and training time requirements.
Both models were trained using an Nvidia GeForce
RTX 3090 GPU with no other processes running
concurrently during the training sessions for the
fairness of time comparison. Detailed experiment
setting are discussed in Appendix B

As shown in Table 1, our proposed model sig-
nificantly reduces the training time compared to
e2e-joint-coref. This is due to the removal of span
representation in s2e model (Kirstain et al., 2021),
which reduces memory usage and enables the use
of larger batch sizes. Additionally, dynamic batch-
ing from F-coref (Otmazgin et al., 2022) further
decreases the model training time by optimizing
batch creation. These improvements allow our
model, which modifies the span definition from
the F-coref model, to be trained approximately 9-
14 times faster than e2e-joint-coref, which uses
the architecture from e2e-coref and doubles the
number of tokens by considering all gaps as ad-
ditional tokens. (WangchanBERTa achieving the
lowest improvement at 8.8 times faster and mBERT
achieving the highest at 13.8 times faster)

As illustrated in Table 2, PhayaThaiBERT en-
coder yields the highest F1 score for both settings.

Base encoder e2e-joint-coref Z-coref
WangchanBERTa 3 hr 5 min 21 min
PhayaThaiBERT 3 hr 50 min 23 min
mBERT 4 hr 35 min 20 min
XLM-RoBERTa 4 hr 21 min

Table 1: Model training time comparison.

Base encoder e2e-joint-coref Z-coref
WangchanBERTa 0.716 0.744
PhayaThaiBERT 0.730 0.758
mBERT 0.702 0.658
XLM-RoBERTa 0.677 0.729

Table 2: Model performance (CoNLL F1 score) com-
parison.

In addition, Z-coref with PhayaThaiBERT encoder
exhibits superior performance compared to others.
Nevertheless, when employing mBERT encoder,
Z-coref is unable to surpass the performance of
e2e-joint-coref. In the case of XLM-RoBERTa
and WangchanBERTa, further elaboration on these
results is presented in Appendix B as the perfor-
mance observed in Table 2 alone may not suffice
in drawing a definite conclusion.

6 Conclusion

Due to the lack of a dataset and baseline model
for CR in the Thai language, as well as the nature
of pro-drop languages that can cause original CR
to overlook ZPs that frequently occur in informal
language such as news articles, we have created
the first Thai joint dataset of CR and ZPR. We
also introduce Z-coref, a lightweight joint CR and
ZPR model. Z-coref with PhayaThaiBERT encoder
achieves higher performance than previous work
from Chen et al. (2021) and significantly reduces
training time.

Our method effectively resolves the majority of
ZPs. However, it may face limitations when multi-
ple ZPs occur within the same gap. For example,
in the sentence "They would hit (it) (so) (it) flees",
the words in parentheses can be omitted in Thai.
Consequently, the gap between "hit" and "flees"
contains two ZPs: the object of the first subsen-
tence and the subject of the second subsentence.
This scenario highlights a potential challenge for
our approach.
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A Dataset

A.1 Format

Each document within our dataset is structured
in JSON format, comprising three fields: "text",
"clusters", and "clusters_strings". The "text" key
contains the raw textual content, while the "clus-
ters" key contains coreference information orga-
nized in a nested list format. Mention locations are
recorded in a start-and-end character index format.
In regular pronouns, the start index precedes the
end index. In contrast, when dealing with ZPs, the
start and end indexes are equal, representing the
ZP in front of the start character. Subsequently,
mentions belonging to the same coreference chain
are grouped together within the same list. Lastly, a
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"clusters_strings" key is included for the purpose
of cross-checking with the string obtained from the
"clusters" key.

Figure 3 illustrates an example from the dataset.
Suppose the second sentence is "She loves (him)."
with the word "him" omitted.

Figure 3: Dataset example.

A.2 Annotation agreement

To measure the agreement between annotators, the
metrics both for mention detection F1 score and
coreference resolution CoNLL F1 score were eval-
uated. Pairwise evaluation was performed between
all combinations of annotators. Table 3 provides
the average metrics for each annotator. These val-
ues can be utilized to indirectly evaluate the degree
of agreement between a particular annotator and
others. The zero-pronoun metrics for annotators
4 and 8 are lower compared to those of the other
annotators. Consequently, we attempt to exclude
zero pronoun annotation from these annotators.

A.3 Dataset distribution

We obtain the mentions in each type as presented
in Table 4. As anticipated, the dataset contains a lot
of both normal and zero mentions that refer to indi-
viduals owing to the nature of news writing, which
primarily focuses on individuals and omits numer-
ous expressions. The distribution of the number
of coreference chains is shown in Figure 4. Most
of the documents contain less than 5 coreference
chains.

Mention Type Mention count
PER: Noun 4477
PER: Pronoun 1386
PER: Zero 2665
ORG: Noun 1119
ORG: Pronoun 50
ORG: Zero 67
Unknown 409

Table 4: The number of mentions in each type

Figure 4: The number of coreference chains distribution.

B Experiment setting

To obtain a robust conclusion, random search hy-
perparameter tuning was conducted. Almost all the
hyperparameters remained unchanged except those
hyperparameters listed in Table 5. We aimed at
accomplishing 40 iterations for tuning for both the
models. Regrettably, e2e-joint-coref requires long
training time as specified in Table 1. To ensure
fairness, we aimed to allocate an equal amount of
time for hyperparameter tuning for both models.
As a result, we executed only 5 iterations for the
e2e-coref model, which required a training time
roughly equivalent to 40 iterations of the Z-coref
model.

The distribution of the performance from hy-
perparameter tuning is visualized in histogram as
shown in Figure 5. Z-coref with PhayaThaiB-
ERT encoder exhibits superior performance com-
pared to e2e-joint-coref. However, when employ-
ing mBERT encoders the proposed model is unable
to surpass the performance of e2e-joint-coref.

Although the best performance of Wangchan-
BERTa demonstrates that Z-coref achieves higher
performance, the distribution of Z-coref still ex-
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No. Mention detection F1 Coreference Resolution F1
Normal Zero All Normal Zero All

1 0.846 0.583 0.777 0.754 0.585 0.653
2 0.847 0.492 0.767 0.734 0.492 0.635
3 0.813 0.555 0.750 0.703 0.530 0.623
4 0.787 0.250 0.684 0.664 0.239 0.524
5 0.801 0.572 0.746 0.692 0.549 0.619
6 0.804 0.411 0.698 0.670 0.384 0.545
7 0.727 0.528 0.667 0.614 0.505 0.545
8 0.796 0.305 0.730 0.673 0.298 0.583

Mean 0.803 0.462 0.727 0.688 0.448 0.591

Table 3: Annotation agreement across annotator

Hyperparameter Search space
Max length of the span 20 - 50
Proportion of unpruned spans 0.3 - 0.9
Dropout rate 0.1 - 0.6
Fully connected size 512 - 2048

Table 5: Hyperparemeters and search space.

Type Normal Zero Both
Precision 0.979 0.965 0.974

Recall 0.756 0.922 0.803
F1 0.853 0.943 0.881

Table 6: Mention detection performance in each men-
tion type

hibits high variance, and the two distributions
largely overlap. This can be further analyzed by
utilizing a larger sample size.

In the case of XLM-RoBERTa, only one success-
ful experiment from e2e-joint-coref is available, as
the other experiment remains diverge with zero F1
score after the training process has been completed.
Although the result from XLM-RoBERTa suggests
that the proposed model may outperform e2e-joint-
coref, a single experiment is insufficient to draw a
definitive conclusion.

C Error Analysis

After model training and hyperparameter tuning,
it was observed that employing PhayaThaiBERT
as an encoder resulted in the most optimal perfor-
mance. We further analysis the model performance
both mention detection and coreference resolution
as shown in Table 6 and Table 7, respectively.

Since the model’s performance in detecting nor-
mal mentions is inferior to its performance in de-

Figure 5: Model performace distribution.

tecting zero mentions, and the recall is significantly
lower than the precision, we will attempt to identify
the types of normal mentions in the gold label that
the model frequently fails to detect as shown in
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Type Normal Zero Both
Precision 0.855 0.857 0.842

Recall 0.687 0.847 0.707
F1 0.745 0.852 0.758

Table 7: Coreference resolution performance in each
mention type

Mention Type FN TP Recall
PER: Noun 86 371 0.810
PER: Pronoun 22 191 0.897
ORG: Noun 54 107 0.665
ORG: Pronoun 3 8 0.727

Table 8: Coreference resolution performance in each
mention type

Table 8. The model exhibits higher recall in detect-
ing pronoun mentions compared to noun mentions.
This can be attributed to the greater variability ob-
served in nouns, including names that can consist
of any words. In contrast, the set of possible pro-
nouns is limited, facilitating the model’s ability to
correctly identify them. Furthermore, the model
demonstrates higher accuracy in detecting men-
tions referring to persons rather than organizations.
This can be explained by the nature of the dataset,
which primarily consists of news articles that pre-
dominantly focus on individuals.
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