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Abstract

Large Language Models (LLMs) are consid-
ered to have potentially extensive knowledge,
but because their internal processing is black-
boxed, it has been difficult to directly edit
the knowledge held by the LLMs themselves.
To address this issue, a method called local
modification-based knowledge editing has been
developed. This method identifies the knowl-
edge neurons that encode the target knowl-
edge and adjusts the parameters associated with
these neurons to update the knowledge. Knowl-
edge neurons are identified by masking the
o part from sentences representing relational
triplets (s, r, o), having the LLM predict the
masked part, and observing the LLM’s acti-
vation during the prediction. When the ar-
chitecture is decoder-based, the predicted o
needs to be located at the end of the sentence.
Previous local modification-based knowledge
editing methods for decoder-based models
have assumed SVO languages and faced chal-
lenges when applied to SOV languages such as
Japanese. In this study, we propose a knowl-
edge editing method that eliminates the need
for word order constraints by converting the
input for identifying knowledge neurons into a
question where o is the answer. We conducted
validation experiments on 500 examples and
confirmed that the proposed method is effec-
tive for Japanese, a non-SVO language. We
also applied this method to English, an SVO
language, and demonstrated that it outperforms
conventional methods.

1 Introduction

Large Language Models (LLMs) have made re-
markable progress in recent years and continue to
exhibit significant performance improvements. At
the same time, they have also become increasingly
multilingual, with pre-trained LLMs appearing
not only on Subject-Verb-Object (SVO) languages
such as English (Brown et al., 2020; OpenAI, 2023;
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Figure 1: An example of knowledge representation
using triplets for Shohei Ohtani.

Touvron et al., 2023) and Chinese (Jiao et al., 2023),
but also on Subject-Object-Verb (SOV) languages
such as Japanese (Sugiyama et al., 2020) and Ko-
rean (Ko et al., 2023).

These models have potentially acquired exten-
sive knowledge about various facts by learning
from huge data sets (Petroni et al., 2019; Jiang
et al., 2020; Roberts et al., 2020), which can be
used to generate language. However, several issues
have been pointed out, such as the phenomenon
known as “hallucination,” which generates infor-
mation that differs from the facts, and the inability
to adapt to facts that change over time. To solve
these problems fundamentally, it is necessary to
edit the knowledge held by the model. For exam-
ple, as shown in Fig. 1, in models that are unaware
of the fact that Shohei Ohtani’s team has changed,
the information needs to be edited and the models
updated with the new knowledge.

Various methods have been proposed to update
the knowledge held by the model. One of the these,
local modification-based knowledge editing, is a
method that identifies the neurons in which knowl-
edge is encoded (knowledge neurons) and updates
the knowledge by adjusting those neurons. This
local modification-based method is expected to be
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enable efficient knowledge editing while avoiding
some of the challenges posed by other approaches.

Knowledge neurons are identified by masking
the o part of sentences representing the relational
triplet (s, r, o), having the LLM predict them, and
observing the activity of the LLM. In the case of
the decoder-based model of the transformer archi-
tecture, the predicate o must be located at the end
of the sentence, which places a restriction on the
word order of these methods. This constraint poses
a challenge when applying these methods to SOV
languages, where the object usually precedes the
verb. As a result, the difference in word order be-
tween SVO and SOV languages makes it difficult
to directly apply existing knowledge editing ap-
proaches to models pre-trained in SOV languages.

In this study, we propose a method to resolve
the word order constraint by converting the input
to the LLM during knowledge neuron identifica-
tion into an interrogative with o as the answer. We
applied the proposed method to both English, an
SVO language, and Japanese, an SOV language,
to determine its effectiveness and investigate the
impact of input format conversion on knowledge
neuron identification. The significance of this re-
search is twofold: we show that our method elim-
inates the word order constraints on knowledge
editing, enabling its application to languages with
various word orders, and we provide insights into
the indirect effect of input format conversion on
the knowledge neuron identification process.

2 Previous Works

Methods such as fine-tuning (Min et al., 2023) and
Retrieval-Augmented Generation (RAG) (Lewis
et al., 2020; Ram et al., 2023; Jiang et al., 2023)
are typically used for updating the knowledge of
LLMs. Fine-tuning is effective for general per-
formance improvement, but it has limitations for
specific knowledge editing due to issues such as
computational resource consumption and overfit-
ting to datasets. Furthermore, while fine-tuning
can be useful for teaching the model how to solve
tasks, it is reportedly to be unsuitable for teaching
new knowledge (Gekhman et al., 2024). RAG is
a learning-free method that adds information to
prompts, but it requires additional resources during
inference and has limitations such as the amount of
information constrained by the prompt length (Liu
et al., 2023).

Knowledge editing can be broadly catego-

rized into external memorization-based methods,
global optimization-based methods, and local
modification-based methods (Wang et al., 2023).
External memorization-based methods store new
knowledge in external memory and edit knowledge
without changing the original model parameters
(Mitchell et al., 2022; Murty et al., 2022; Madaan
et al., 2022). There are also methods that store new
knowledge in additional parameters (Dong et al.,
2022; Huang et al., 2023). Global optimization-
based methods include meta-learning (Cheng et al.,
2023) and subspace fine-tuning (Lee et al., 2022;
Zhu et al., 2020). Local modification-based knowl-
edge editing methods aim to update knowledge by
identifying knowledge neurons, which are thought
to encode specific knowledge, and editing them
(Dai et al., 2022). These methods involve two main
steps: locating the knowledge neurons that repre-
sent the knowledge to be edited and editing those
neurons to modify the encoded knowledge. By
directly targeting the specific neurons responsible
for storing a particular piece of knowledge, local
modification-based methods offer a more focused
and efficient approach to knowledge editing com-
pared to other methods.

Existing methods for knowledge localization can
be broadly divided into gradient-based methods and
methods inspired by causal relationships. Gradient-
based methods, such as the one proposed by Dai
et al. (2022), introduced the concept of knowl-
edge neurons and localized them by evaluating
the contribution of each neuron using integrated
gradients (Geva et al., 2021). In contrast, meth-
ods inspired by causal relationships, introduced by
Meng et al. (2022), define knowledge neurons as
the neuron activations within an LLM that have
the strongest causal effect on predicting specific
factual knowledge. This approach has influenced
the development of knowledge editing algorithms
such as ROME (Meng et al., 2022) and MEMIT
(Meng et al., 2023).

It has been reported that changes in the expres-
sion of the input sentence or the language used
during knowledge neuron identification can lead
to differences in the set of neurons identified as
knowledge neurons (Chen et al., 2024). Since, we
converted the input format in the current study,
which also enables adaptation to SOV languages,
it is necessary to verify the impact of each of these
changes.
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2.1 Rank-One Model Editing (ROME)
ROME, one of the local modification-based meth-
ods, is a knowledge editing approach consisting
of two steps: identifying knowledge neurons (lo-
cating) and editing those neurons (editing) (Meng
et al., 2022). The target model for editing in ROME
is a decoder-based model that adopts the decoder
side of the transformer architecture. ROME relies
on the use of relation triples. A relation triple (s, r,
o) (Nagasawa et al., 2023) consists of a subject s
and an object o entity, as well as a predicate describ-
ing the relation r that holds between the subject and
the object, e.g., (Shohei Ohtani, is a member of the,
Angeles).

2.1.1 Locating
The locating procedure is as follows:

1. Input an incomplete sentence containing (s, r),
and have the model output o. Then, calculate
the output probability of o, p(o|s, r), and the
activation of the hidden neurons.

2. Add noise to the embedding vector of the to-
kens corresponding to s, and output p(o|s, r)
again.

3. For all hidden neurons, replace the activation
of the hidden neuron with the activation of
the hidden neuron calculated before adding
noise, one by one, and calculate how much
each affects p(o|s, r).

4. Calculate how much the multilayer perceptron
(MLP) module and attention module within
each block affect p(o|s, r).

The effect of each neuron on p(o|s, r) is defined
as the indirect effect (IE) (Meng et al., 2022), which
is the difference between p(o|s, r) of a model
where one noisy hidden neuron is replaced with
a clean one and p(o|s, r) of a noisy model. Av-
eraging over a sample of statements, we obtain
the average indirect effect (AIE) for each hidden
neuron.

Meng et al. (2022) have shown that the hidden
neurons with high IE are concentrated near the final
token of s and near the output as a result of this
procedure. They also found that the MLP module
contributes to the hidden neurons near the last to-
ken of s, and that the attention module contributes
near the output. We show the results of our own
verification on the left side of Fig. 2.

The MLP module is represented by

MLP(x) = ReLU(x ·W1 + b1) ·W2 + b2 (1)

According to the study by Geva et al. (2021),
each layer of the MLP in the transformer model
functions as a key-value memory. The input to
the MLP acts as a query, the first layer represents
the key, and the second layer represents the value.
Assuming that the key-value plays the role of re-
calling knowledge, the study by Meng et al. (2022)
assumes that the MLP plays the role of storing
knowledge.

On the basis of these findings and the observa-
tion that the hidden neurons near the last subject
token are activated by the MLP module, we con-
sider that the location of knowledge neurons is in
the MLP module located near the last subject token.
This observation was consistent across different
models. Therefore, in the locating process, the
layer where the MLP module with the highest IE
exists can be identified.

2.1.2 Editing
Consider the case of editing from (s, r, o) to (s, r,
o*) as the setting for editing. Here, the procedure
is to edit the weights of the second layer, which is
thought to represent the value within the identified
MLP module. First, (s, r) is input as in locating.
Then, the value mapped from the key correspond-
ing to (s, r) is replaced with the value correspond-
ing to o*. A notable point during editing is that
it solves an optimization problem that does not af-
fect other knowledge. In other words, it iteratively
edits knowledge by setting a constraint condition
to maximize p(o∗|s, r) while not affecting other
knowledge. This constraint condition allows for
updating only the target knowledge while preserv-
ing other knowledge. Furthermore, the number of
iterative steps set for editing influences p(o∗|s, r)
and the impact on other knowledge.

3 Proposed Method

Decoder-based models are constrained by the word
order due to the architecture of the model being han-
dled and the locating method. In locating, a method
is used where an incomplete sentence containing (s,
r) is input, and o is output in a way that follows the
incomplete sentence. Due to the constraints of this
architecture, in order to output o, the information
of (s, r) needs to be included beforehand, which
strongly influences the word order. Particularly in
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Table 1: Example of input format conversion.

ROME “Shohei Ohtani is a member of the”
Proposed “Where does Shohei Ohtani belong to?”

Table 2: Example of known facts dataset.

Subject Windows Media Player
Prompt “Windows Media Player is developed by”
Attribute Microsoft

SOV languages like Japanese, r tends to be located
at the end of the sentence, so there is a tendency
for information to be insufficient.

To solve this problem, we propose a method that
can handle input sentences where r follows o by
using an interrogative complete sentence with o
as the answer as input and obtaining o as output.
In this method, since the sentence is completed
in the input, locating can be performed without
being affected by word order. Table 1 shows spe-
cific examples. Similarly, editing can be performed
without being affected by word order by converting
(s, r) for outputting o into an interrogative complete
sentence.

Note that the proposed method cannot fully com-
plete the locating operation simply by changing
the input sentence format. In ROME, for exam-
ple, since the input sentences end with phrases like
“～ of” or “～ in,” the word that the LLM outputs
following the input is likely to be the expected o.
Therefore, locating can be performed by directly
observing the generation probability of the output
word. In the proposed method, since the input sen-
tence ends with “～?,” the answer is output as a
sentence, and the word output following the input
is less likely to be the expected o.

To solve these problems in the proposed method,
instead of observing the generation probability of
the word output following the input, we decided to
observe the generation probability of the expected
o among all the probabilities assigned to all vocab-
ularies calculated when outputting the continuation
of the input. This enables the proposed method to
identify the activation related to a specific (s, r, o).

4 Experimental Setup

4.1 Datasets
Using 500 instances from the known facts dataset,
we utilized the same dataset as Meng et al. (2022).
From this dataset, we extracted the “subject,”
“prompt,” and “attribute” to construct (s, r, o). Spe-
cific examples of each are shown in Table 2. Ad-

ditionally, since the known facts dataset does not
include o*, which corresponds to the edited object,
we manually added it for the editing experiments.
This dataset is referred to as dataset_1.

Using the OpenAI API, we implemented GPT-4
(OpenAI, 2023) to convert the prompts in dataset_1
into interrogative sentences, creating dataset_2. We
then translated dataset_2 into Japanese using GPT-
4, resulting in dataset_3.

Upon manually inspecting all 500 instances of
dataset_2 for distortion in meaning, we found the
overall quality to be excellent. Similarly, a manual
inspection of all 500 instances of dataset_3 showed
no distortion in meaning. However, roughly 10%
of the data had proper nouns left in English instead
of being translated into Japanese.

4.2 Experimental Overview

We compared the results of locating using ROME
with dataset_1 and the proposed method with
dataset_2 on the English LLM EleutherAI/gpt-
j-6b1. Additionally, we performed editing with
a fixed number of 20 steps and compared the
p(o∗|s, r) after editing for each method.

Next, we performed locating in Japanese us-
ing the proposed method on the Japanese LLM
rinna/japanese-gpt-neox-3.6b2 with dataset_3. We
performed editing on 500 instances with a fixed
number of seven steps and counted the percentage
of data where the output changed as expected.

5 Results and Discussion

5.1 Locating for English LLM

Figure 2 shows the average indirect effect (AIE)
and 95% confidence interval for each token posi-
tion due to each neuron’s activation in each layer
of the English LLM. The figure displays the AIE
for the hidden neuron, MLP module, and atten-
tion module in both ROME and the proposed
method. From top to bottom, it represents the AIE
of each neuron’s activation at the “First subject
token,” “Middle subject tokens,” “Last subject to-
ken,” “First subsequent token,” “Further tokens,”
and “Last token” positions.

Explaining the “input example” in the figure us-
ing the left side as an example, when observing
the probability of generating “Angels” given the
input “Shohei Ohtani is a member of the” using

1https://huggingface.co/EleutherAI/gpt-j-6b
2https://huggingface.co/rinna/

japanese-gpt-neox-3.6b
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Figure 3: Histogram of p(o∗|s, r) after editing for English LLM.

the EleutherAI/gpt-j-6b tokenizer, “sh” is the “First
subject token,” “ohei Oht” are the “Middle subject
tokens,” “ani” is the “Last subject token,” “is” is
the “First subsequent token,” “a member of” are
the “Further tokens,” and “the” is the “Last token.”

Overall, the AIE trends are mostly consistent
between ROME and the proposed method. Among
these, the “Last token” position and the “Last sub-
ject token” position are considered the most im-
portant. At the “Last token” position, we observe
that the AIE of the hidden neuron and the attention
module are high in the later layers. Furthermore, at
the “Last subject token” position, which is crucial
for identifying knowledge neurons, the AIE of the
hidden neuron is high in the early layers for both
methods, and the peak positions are almost identi-
cal. Since the layer where the AIE of the hidden
neuron peaks at the “Last subject token” position is
considered to be the knowledge neuron, this result
confirms that the knowledge neurons identified by
both methods are consistent.

On the other hand, looking at the AIE of the hid-
den neuron, unlike ROME, the proposed method

shows a high AIE in the later layers at the “First
subsequent token” position, similar to the “Last to-
ken” position. Additionally, the AIE at the “Further
tokens” position is smaller in the proposed method
compared to ROME. and the proposed method has
a smaller overall variance.

The phenomenon of high AIE in the later lay-
ers at the “First subsequent token” position in the
proposed method can be attributed to the fact that
s often appears near the end of a sentence, and
there are cases where the “First subsequent token”
is also the “Last token,” resulting in a high AIE.
The smaller AIE at the “Further tokens” position
in the proposed method can be attributed to the
fact that s often appears at the end of a sentence,
resulting in many cases where there are no “Further
tokens.” The smaller overall variance in the pro-
posed method will be a subject for future research.

5.2 Editing for English LLM

The histogram of the updated p(o|s, r) when the
number of iterative steps was fixed at 20 and edit-
ing was performed on 500 instances is shown in
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Fig. 3. The percentage of cases where the value
of p(o∗|s, r) after editing reached 0.95 or higher
was 21.4% for ROME and 98.6% for the proposed
method, thus demonstrating a performance im-
provement in the English text examples. Addition-
ally, the mean was 0.389 for ROME and 0.993 for
the proposed method, while the variance was 0.154
for ROME and 0.00111 for the proposed method.

Observing the updated p(o∗|s, r) sequentially,
we can see that ROME also managed to edit the
first few instances close to 1. However, as the num-
ber of edits increased, the p(o∗|s, r) after editing
decreased. This phenomenon is presumably due to
the strong influence of the editing history.

We should point out that there is an improved
method called MEMIT (Meng et al., 2023) that
supports editing multiple pieces of knowledge. The
main difference is that while ROME edits only
one layer, MEMIT edits multiple layers, and it
is compatible with the proposed method. Using
MEMIT for editing will be a subject for future
research. For reference, we present the changes in
the output text when editing is performed using the
example in Fig. 1 in Appendix A.

5.3 Locating for Japanese LLM

Figure 4 shows the average indirect effect (AIE)
and 95% confidence interval for each token posi-
tion due to each neuron’s activation in each layer
of the Japanese LLM using the proposed method.
Focusing on the last subject token position and last

token position, we can see that the trends of in-
crease and decrease are similar to the results of
previous studies. However, in the MLP module at
the last subject token position, unlike the results
of previous studies, we observed that the values
become negative in the later layers. The values at
the middle subject tokens position are extremely
small, and the overall results are flat. Although the
values are negative, their absolute values are larger
than those of other token positions, indicating a
significant effect on the output. Furthermore, the
values are mostly constant regardless of the layer.

The phenomenon of the AIE becoming negative
in the later layers of the MLP module at the last
subject token position suggests that the model may
recall knowledge that seems to be the answer in
the early layers and considers other possibilities
in the later layers. The reason for the extremely
small values at the middle subject tokens position
requires further investigation. Additionally, a pos-
sible reason for the overall flat results is perplexity.
Usually, a candidate word for the output is assigned
a significantly higher probability compared to other
vocabulary words. In the case of ROME, it is pos-
sible to place o as the natural output in context, so
p(o|s, r) tends to be assigned a higher probability
compared to other words. On the other hand, in
the proposed method, p(o|s, r) is measured with
input-output pairs that ignore the naturalness of
the sentence, so p(o|s, r) is less likely to be as-
signed a high probability compared to other words.
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in each layer of the Japanese LLM (proposed method).

Therefore, in the proposed method, the original
probability is low, and the indirect effect (IE) rep-
resenting the change in probability also tends to be
relatively small, resulting in mostly flat results.

Finally, the results of this study may also be
influenced by the quality degradation of the dataset.

5.4 Editing for Japanese LLM

The effectiveness of locating for the Japanese LLM
is evaluated through editing, as comparative verifi-
cation is not possible. When the number of steps
was fixed at seven and editing was performed using
dataset_3, we confirmed that the output changed
as expected in 27% of the cases. Although this
experiment was conducted with a fixed number of
steps for all data, we can expect further improve-
ment by adjusting the number of steps individually.
Additionally, the difficulty of editing may vary de-
pending on how much the LLM already knows
about the knowledge it is updating, indicating the
need for further investigation.

As a specific example, we examine the changes
in output using the example in Fig. 1. Although
all inputs to and outputs from the Japanese LLM
are in Japanese, the following examples are pre-
sented in English translation. The locating result
before editing, where “Shohei Ohtani” is a member
of the “Angels,” is shown in Fig. 5. The output
of the Japanese LLM before editing is shown in
Fig. 6, and the output after editing the Japanese
LLM knowledge to change “Shohei Ohtani” to be
a member of the “Dodgers” is shown in Fig. 7 (all
translated into English). The input used for confir-
mation was “Shohei Ohtani.” As seen in Fig. 7, the
output related to “Angels” before editing changed
to output related to “Dodgers” after editing.

However, when editing the Japanese LLM using
the proposed method, we observed that the edit-

ing process had a detrimental effect on the LLM,
such as an increased repetitive output after editing.
The reason for the model corruption is presumably
that, despite not being able to obtain the desired
o* from the first output following the input of the
proposed method, the model was forcibly updated
in an unnatural way by focusing on o* and mak-
ing p(o∗|s, r) large, resulting in model corruption.
As a countermeasure, adjustments were made to
the number of steps to avoid making p(o∗|s, r) too
large, which reduced the adverse effects on the
model. Nevertheless, the appropriate number of
steps varies depending on the data, resulting in a
heuristic approach.

Overall, our results demonstrate that the editing
and the preceding locating of the proposed method
for the Japanese LLM were effective. However,
we also found that careful adjustments are neces-
sary during editing to avoid adversely affecting
the model. The future challenge is how to fur-
ther improve the editing method and enable stable
knowledge updates.

6 Conclusion

In this paper, we proposed a new method for identi-
fying knowledge neurons. This method eliminates
the conventional constraints and enables flexible
locating regardless of whether the language is SVO
or not.

First, to verify the effectiveness of the proposed
method, we conducted a comparative experiment
on an English model using ROME and the pro-
posed method. The results showed similar trends
in the AIE between both methods, confirming that
the estimated knowledge neuron positions matched.
In terms of editing, the proposed method demon-
strated a superior performance to ROME.

Next, we conducted experiments on the Japanese
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Shohei Ohtani has been garnering a lot of attention in the Major Leagues, being entrusted with
the cleanup spot for the Angels. Many baseball fans have various thoughts and feelings about
Ohtani, who has been demonstrating tremendous talent since his high school days. Among
those thoughts, Ohtani’s clear desire to be a pitcher, which he has expressed since joining the
Nippon Ham Fighters, has been supported by many baseball fans from the beginning. So, it’s
natural to wonder just how much ability Ohtani possesses as a pitcher. Shohei Ohtani as a
pitcher

Figure 6: Output when “Shohei Ohtani” is entered into the model before editing.

Shohei Ohtani is currently playing as a professional baseball player (pitcher) for the Los
Angeles Dodgers. Last season, he hit 2 home runs. ... He excelled as the ace pitcher of his high
school baseball team. He hit a total of 55 home runs in high school. Last season, he hit 2 home
runs. ... He is currently playing as a professional for the New York Brewers. He hit 2 home
runs last year. Last season, he hit 2 home runs... He is currently playing as a professional for
the Los Angeles Dodgers.

Figure 7: Output when “Shohei Ohtani” is entered into the model after editing the team from “Angels” to “Dodgers.”

language, which is an SOV language. While the lo-
cating of the proposed method for the Japanese
LLM yielded significant results, we found that
careful adjustments are necessary during editing
to avoid adversely affecting the model. In future
work, we aim to enhance the editing methodology
to enable stable knowledge updates. Additionally,
we plan to investigate the reason for the extremely
small values at the middle subject tokens position
in the Japanese LLM and the phenomenon of nega-
tive values in the later layers of the MLP module
at the last subject token position.

We also intend to apply the proposed method to
LLMs in other languages and validate its effective-
ness. Through these efforts, we strive to further
develop knowledge editing techniques and make
them adaptable to diverse languages and word or-
ders.

Limitation

This study has the following limitations:

• Knowledge editing has issues such as the di-
rectionality of editing, where the editing is
not reflected when the subject and object of
the edited knowledge are swapped, and the
ripple effect (Cohen et al., 2023), where re-
lated knowledge is not appropriately changed.
However, this study does not discuss these
issues in detail.

• We used a decoder-based model for our vali-
dation, but we did not investigate other com-
monly utilized model architectures such as T5

(Raffel et al., 2019). Exploring these architec-
tures remains a topic for future research.

• To investigate the possibility of knowledge
editing in SOV languages, we took Japanese
as a case study. However, other SOV lan-
guages need to be addressed in future re-
search.
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A Results of Editing the Knowledge of English LLM

To verify the effectiveness of the proposed method in editing, we examine specific output sentences to
confirm if the knowledge has been updated. The number of steps was set to 20, and editing was performed
on an English LLM using the proposed method. As a specific example for editing, we used the example
in Fig. 1. The input for editing was set as “Where does Shohei Ohtani belong to?”, with s as “Shohei
Ohtani” and o* as “Dodgers.” Additionally, the input for confirmation was set as “Shohei Ohtani.” The
output sentences before and after editing are shown in Fig. 8, where the upper and lower parts depict the
output before and after editing, respectively.

In the upper part, the text highlighted in blue indicates that the team Shohei Ohtani belongs to is
“Angels.” In contrast, in the lower part, the text highlighted in blue shows that the team Shohei Ohtani
belongs to has changed to “Dodgers.” Therefore, we can confirm that the knowledge was updated through
editing in the actual output sentences.

Before editing
Shohei Ohtani is an absolute monster on the mound for the Angels. He has a career 1.89 ERA,
1.05 WHIP, and.971 OPS against. The 23-year-old Japanese star is one of the best pitchers in
the game. Ohtani is the first player in MLB history to hit for a home run, score a run, and throw
a shutout in the same game, and the first to accomplish the feat since Babe Ruth in 1921

After editing
Shohei Ohtani is a baseball star and a Dodgers star. And he’s about to be a Dodger star in a
way the Los Angeles Dodgers have rarely seen before. Dodger manager Dave Roberts said the
Dodgers are “very, very close” to signing outfielder Yasiel Puig. Roberts said Puig is “going to
be a Dodger for a lot of seasons.”

Figure 8: The output before and after editing, using the proposed method, for an English LLM
where Shohei Ohtani’s team was edited from Angels to Dodgers when “Shohei Ohtani” was input.
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