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Abstract

Identifying beneficial tasks to transfer from is
a critical step toward successful intermediate-
task transfer learning. In this work, we ex-
periment with 130 source-target task combi-
nations and demonstrate that the transfer per-
formance exhibits severe variance across dif-
ferent source tasks and training seeds, high-
lighting the crucial role of intermediate-task
selection in a broader context. We compare
four representative task selection methods in a
unified setup, focusing on their effectiveness
and consistency. Compared to embedding-free
methods and text embeddings, task embeddings
constructed from fine-tuned weights can better
estimate task transferability by improving task
prediction scores from 2.59% to 3.96%. De-
spite their strong performance, we observe that
the task embeddings do not consistently demon-
strate superiority for tasks requiring reasoning
abilities. Furthermore, we introduce a novel
method that measures pairwise token similarity
using maximum inner product search, leading
to the highest performance in task prediction.
Our findings suggest that token-wise similarity
is better predictive for predicting transferability
compared to averaging weights.1

1 Introduction

Pre-trained language models (PLMs) have become
foundational in the transfer learning paradigm of
natural language processing (NLP) (Devlin et al.,
2019; Brown et al., 2020; Chowdhery et al., 2023).
Intermediate-task transfer learning aims to improve
model performance further by introducing an inter-
mediate stage of supervised training on data-rich
tasks before fine-tuning the target downstream task
(Phang et al., 2018; Pruksachatkun et al., 2020;
Vu et al., 2020). The paradigm has shown to be
particularly useful for improving performance in
resource-constrained scenarios where annotated

1We release the code publicly at https://github.com/uds-
lsv/intermediate-task-selection.
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Figure 1: Our proposed method, maximum inner prod-
uct search, is based on pairwise token similarity. Left:
Given a target task (e.g., CB), we obtain the maximum
token-wise similarity scores between the target and the
source tasks for each embedding position. Right: We se-
lect the source task with the highest mean of maximum
similarity scores.

training data is often limited (Prasad et al., 2021;
Vu et al., 2022b).

A crucial aspect of intermediate-task transfer
learning is to select beneficial tasks to transfer
from. However, the costs of searching for the op-
timal intermediate-task, especially with the grow-
ing array of available NLP tasks and the exhaus-
tive process of model fine-tuning (Pruksachatkun
et al., 2020; Vu et al., 2020), are prohibitive. Re-
search on intermediate-task selection mainly pre-
dicts task transferability using task-specific embed-
dings, which condense the task information of a
given target task into a single vector representa-
tion. For example, some works construct task em-
bedding from fine-tuned weights (Vu et al., 2022b;
Zhou et al., 2022) or leverage text embedding (Poth
et al., 2021). More specifically, Poth et al. (2021)
use sentence transformers to encode dataset exam-
ples as text embeddings. The more recent approach
by Vu et al. (2022b) constructs task embeddings
from the weights of soft prompts, which have been
effectively applied in large-scale studies.

Despite their promising results, a systematic
study of the consistency of these task selection
methods is still missing. Specifically, it remains
unclear how consistent these approaches are at
predicting the best source task to transfer from.
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To address this gap, we perform a comprehensive
evaluation of existing task selection methods in
intermediate-task transfer learning. Our research
questions are: (1) Do intermediate-task selection
approaches exhibit consistent performance across
downstream tasks? (2) What are the key ingredients
that result in accurate transferability predictions?

To answer these questions, we perform exper-
iments across 130 intermediate and downstream
task combinations derived from 13 source and 10
target tasks. Our results show that intermediate-
task transfer exhibits significant performance vari-
ance across tasks. Comparing four representative
task selection methods, we find that task embed-
dings based on fine-tuned weights (Vu et al., 2022b)
generally outperform embedding-free and text em-
bedding methods (Poth et al., 2021). However,
we also observe that such task embeddings do not
consistently perform well on tasks requiring high-
level reasoning abilities. Exploring this further, we
revisit the task embedding design and propose a
new construction method based on pairwise token
similarity (see Figure 1), which yields the highest
average task prediction performance of 82.5%. Our
main contributions are as follows:

1. We systematically investigate intermediate-
task transfer learning across 130 intermediate
and downstream task combinations.

2. We examine four representative task selection
methods in a unified setup, including both
embedding-free and embedding-based meth-
ods.

3. We introduce a novel task embedding con-
struction approach based on pairwise token
similarity, which achieves the highest task pre-
diction performance of 82.5% in nDCG score.

4. We provide an in-depth analysis of the impact
of task type and training seed, along with an
exploration into embedding distributions.

2 Related Work

Identifying a beneficial task from a broader set of
source tasks is a crucial step in intermediate-task
transfer learning. Various studies have proposed
methods to estimate task transferability based on
task embeddings.

A foundational approach is Task2Vec (Achille
et al., 2019; Vu et al., 2020), which involves com-
puting the Fisher information matrix and enables to

measure semantic and taxonomic relationships be-
tween tasks. In contrast, Poth et al. (2021) demon-
strate the effectiveness of text embeddings based
on sentence encoders. The landscape of task selec-
tion approaches has further evolved with the intro-
duction of parameter-efficient fine-tuning (PEFT)
techniques. For instance, Vu et al. (2022b) use soft
prompts to generate task embeddings, demonstrat-
ing the effectiveness of prompt-based embeddings.
Expanding on this, Zhou et al. (2022) investigate
other PEFT methods, including P-tuning (Liu et al.,
2022a,b), fine-tuning only bias terms (Ben Zaken
et al., 2022), and LoRA (Hu et al., 2022). They
construct task embeddings based on the fine-tuned
weights.

Task selection based on neuron activations pro-
vides another perspective by focusing on the pat-
terns of activations within models. Su et al. (2022)
propose model stimulation similarity to identify
beneficial source tasks through the overlap rate
of activations. More recently, Xi et al. (2023) in-
troduce connectivity patterns as task embeddings,
identifying task-specific patterns in deep neural
networks that best represent the tasks.

Our work differs from previous studies by con-
tributing a comparison of existing task selection
methods in a unified setup, specifically focusing
on the effectiveness and consistency of these ap-
proaches.

3 Background

In the following, we introduce the intermediate-
task transfer learning paradigm and motivate our
focus on parameter-efficient fine-tuning.

3.1 Intermediate-Task Transfer Learning

As depicted in Figure 2, intermediate-task training
involves sequentially fine-tuning on a source task
followed by fine-tuning on a target task. By incor-
porating an intermediate stage of supervision (typi-
cally on data-rich tasks), intermediate-task transfer
learning enables knowledge transfer across tasks,
thereby enhancing performance on low-resource
target tasks (Vu et al., 2022b).

More formally, the intermediate-task transfer
learning paradigm can be divided into two stages:
(1) training a PLM fθ on a given source task T s to
obtain the intermediate model fθ′ ; (2) training the
intermediate model fθ′ on the target task T t. The
objective function with a cross-entropy loss L of
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Figure 2: Left: Intermediate-task transfer learning performs sequentially learning on the source task followed by
fine-tuning on the target task. Right: Task selection is a process where given a target task, the goal is to identify the
most beneficial task for transfer by searching over a set of source tasks through its task embedding. The selection
process relies on a similarity metric to measure the transferability of tasks or datasets.

the first stage is defined as follows:

θ
′
= argmin

θ
LT s(fθ). (1)

Here, the source task T s is selected based on
a selection criterion using metadata of datasets,
domain similarity, or task similarity. Subsequently,
the intermediate model is trained on the target task:

θ∗ = argmin
θ
′

LT t(fθ′ ) (2)

Note that in Equation 2 the intermediate model
f is parameterized with θ

′
, representing the param-

eters of the model trained on source task T s.

3.2 Parameter-Efficient Fine-Tuning via Soft
Prompts

Modern language models often contain billions of
parameters, making sequential fine-tuning and ex-
perimenting with a large number of source and
target task combinations impractical. Recent stud-
ies have explored parameter-efficient fine-tuning
approach through prompt tuning, which involves
learning task-specific soft prompts that allow a
frozen language model to efficiently perform spe-
cific downstream tasks (Lester et al., 2021; Li and
Liang, 2021; Liu et al., 2022a). Unlike discrete
prompts, soft prompts consist of a set of learnable
prompt tokens that are learned through backpropa-
gation and can be applied to various downstream
tasks. This approach has been successfully used to
efficiently adapt large language models in various
scenarios (Qin and Eisner, 2021; Vu et al., 2022a;
Asai et al., 2022).

More recently, researchers have focused on
intermediate-task transfer learning using prompt
tuning, specifically Soft Prompt Transfer (SPoT)
(Vu et al., 2022b). SPoT employs a series of soft
prompt tokens to adapt frozen models to specific

Method DATASET D MODEL f OUTPUT

EMBEDDING-FREE

RANDOM ✗ ✗ -

METADATA

SIZE ✓ ✗ R

EMBEDDING-BASED

TEXT EMBEDDING

SEMB ✓ ✓ Rd

TASK EMBEDDING

FEATURE ✓ ✓ Rd

Table 1: An overview of task selection methods. These
task selection methods differ in whether the dataset D
and a model f is used for selection and their output
format. Note that SEMB relies on sentence encoder
models, while FEATURE requires intermediate models
to construct task embeddings.

downstream tasks, making it highly parameter-
efficient for intermediate-task transfer learning.
In this transfer learning procedure, a pre-trained
model is adapted to each task by conditioning on
a set of learnable prompt tokens. Moreover, the
resulting prompts can directly serve as task embed-
dings to assess task transferability.

4 Intermediate-Task Selection Methods

Intermediate-task transfer can improve the perfor-
mance of the target downstream task, but it is com-
putationally infeasible to try out all possible task
combinations, making choosing a beneficial source
task an important problem.

Intermediate-task selection aims to predict task
transferability and retrieve the most beneficial task
from a broad set of available source tasks. This
eliminates the need for exhaustive training and
is more feasible in resource-constrained scenar-
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ios. Here, we compare existing intermediate-task
selection methods which can be categorized into
two groups: embedding-free and embedding-based
methods (see Table 1).

4.1 Embedding-Free Methods
The first group of methods operates without access-
ing any model. They estimate task transferabil-
ity based on certain criteria, such as data size, or
simply perform random selection. These methods
serve as baseline approaches in Poth et al. (2021).

Random selection (RANDOM) This method se-
lects the intermediate-tasks randomly without using
any specific information for the tasks and models.

Data size (SIZE) This method predicts the task
transferability based on the data size, assuming
that larger datasets indicate higher transferability
to model performance.

4.2 Embedding Methods
The second group of methods constructs embed-
dings either using a pre-trained sentence encoder
model or an intermediate model fθ′ . We consider
two such methods:

Sentence embeddings (SEMB) It represents the
text embedding obtained by averaging all sentence
representations on the whole dataset (Poth et al.,
2021). Each sentence representation, denoted as
hxi , is encoded by the encoder model for a given
example xi. These sentence representations are
averaged over the entire dataset:

∑
xi∼D

hxi
|D| . This

method captures linguistic properties of the input
text x for both the source and target tasks, indepen-
dent of the intermediate-task training algorithm.

Prompt similarity (FEATURE) It measures task
similarity based on the similarity between their
task-specific prompts and employs solely fine-
tuned weights to create task embeddings (Vu
et al., 2022b). Let the prompt weights be denoted
as [e1, e2, ...eN ] ∈ RN×d, consisting of N soft
prompt tokens with d feature dimensions. The
prompt similarity score between two tasks, t1 and
t2, is defined as the cosine similarity of the average
representations of prompt tokens:

sim(t1, t2) = cos(
1

N

N∑

i=1

e1i ,
1

N

N∑

j=1

e2j ) (3)

where e1i and e2j represent the prompt token repre-
sentations of the tasks t1 and t2, and cos denotes the

Name Task |Train|

source tasks
MNLI NLI 393K
QQP paragraph detection 364K
QNLI NLI 105K
RECORD QA 101K
CXC semantic similarity 88K
SQUAD QA 88K
DROP QA 77K
SST-2 sentiment analysis 67K
WINOGRANDE commonsense reasoning 40K
HELLASWAG commonsense reasoning 40K
MULTIRC QA 27K
COSMOSQA commonsense reasoning 25K
RACE QA 25K

target tasks
BOOLQ QA 9K
COLA grammatical acceptability 9K
STS-B semantic similarity 6K
WIC word sense disambiguation 5K
CR sentiment analysis 4K
MRPC paraphrase detection 4K
RTE NLI 2K
WSC coreference resolution 554
COPA QA 400
CB NLI 250

Table 2: Overview of source and target tasks. For
intermediate-task transfer, we first train on one of the
source tasks and then continually fine-tune on the target
task.

cosine similarity. This method computes the task
embedding, represented as a vector in Rd, by aver-
aging the feature values across all prompt tokens.
We refer to this method as FEATURE to emphasize
its focus on capturing task-specific features.

5 Systematic Evaluation of Task Selection
Methods

5.1 Experimental Setup

Datasets. We consider 13 source tasks of various
types, including question answering (QA), natu-
ral language inference (NLI), and sentiment anal-
ysis, among others. We evaluate the transfer per-
formance on 10 target tasks, following the setting
in Vu et al. (2022b), as presented in Table 2. More
details on the datasets are provided in Appendix
A.1.

Models. For all experiments, we adopt T5 BASE

(Raffel et al., 2020) as our PLM. The pre-trained
weights remain frozen, and only the weights of
the soft prompt tokens are updated. After training,
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these fine-tuned weights are then used to construct
task embeddings and perform soft prompt transfer.

Implementation details. We closely follow the
training configurations outlined in Lester et al.
(2021). We train soft prompts for 30K steps, us-
ing three random seeds (42, 150, 386). We use
N = 100 prompt tokens and initialize the weights
of the prompt tokens from the embeddings of the
top 5K most frequent tokens in the pre-training
data. We use the AdaFactor optimizer (Shazeer and
Stern, 2018) with a linear scheduler. After conduct-
ing prompt tuning, we select the best-performing
checkpoint for prompt transfer. The prompt trans-
fer experiment is conducted with another set of
training seeds (112, 28, 52).

We evaluate the effectiveness of prompt trans-
fer using a relative transfer performance metric,
calculated as follows: Ms→t−Mt

Mt
. Here, the Mt

indicates the model performance with no-transfer
prompt tuning, and Ms→t represents the transfer
performance. The evaluation metric for the model
performance varies according to individual tasks.

5.2 Task Selection Methods and Evaluation
Embedding-based methods. For text em-
beddings, we follow the model choice in Poth
et al. (2021). We use the off-the-shelf encoder
models to derive sentence representations for both
source and target tasks. Specifically, we adopt
Sentence-BERT and Sentence-RoBERTa (Reimers
and Gurevych, 2019) as encoders for SEMB-B and
SEMB-R, respectively.

Selection criterion. We rank the order of
beneficial tasks based on quantitative values from
embedding-free methods. For embedding-based
methods on tasks t1 and t2, we employ cosine sim-
ilarity using the mapping function h(·) to construct
the task embedding or text embedding for a given
intermediate task. To get the ranking order, we sort
the source tasks based on the score sim(t1, t2) =
cos(h(t1), h(t2)) between the source and target
tasks. The ground-truth ranking is obtained by
transferring source tasks to the downstream task
and sorting them based on transfer performance.

Evaluation. We use two metrics2 to evaluate
the effectiveness of task selection methods: (1)
Normalized Discounted Cumulative Gain (nDCG)
(Järvelin and Kekäläinen, 2002), a widely accepted
information retrieval measure that evaluates the

2See formal definitions in Appendix A.2.
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Figure 3: Relative transfer performance across ten down-
stream tasks with 390 intermediate-task trained models
(13 source × 10 target tasks × 3 seeds). Each violin
plot illustrates the distribution of performance on the
x-axis, with each dot denoting the relative improvement
or deterioration compared to the no-transfer baseline on
the y-axis. Tasks are arranged in descending order of
the training sample sizes.

overall quality of a ranking, emphasizing the entire
order rather than merely focusing on the rank of
the best source task. The nDCG score ranges from
0 to 1, where 1 presents the exact match with the
ideal order and lower values indicate a lower qual-
ity of ranking. (2) Regret@k (Renggli et al., 2022),
a metric for computational regret, quantifying the
relative performance between the expected perfor-
mance of the top-k selected intermediate-tasks and
the optimal intermediate-task. Lower regret signi-
fies a more effective selection strategy among the
k intermediate models. For each target task, we
evaluate the overall ranking prediction of the 13
source tasks against the ground-truth ranking using
nDCG score. We evaluate the efficacy of the top-k
selected source tasks compared to the ground-truth
selection using Regret@k.

5.3 Results

Intermediate-task transfer exhibits high-
performance variance across tasks. Figure 3
illustrates the relative transfer performance across
10 target tasks, sorted by their training data sizes 3.
We find that relative transfer performance through
intermediate-task training exhibits significant
variance across tasks, especially for the down-
stream tasks COLA, RTE, COPA, and CB. This
observation aligns with previous studies showing
significant performance variation across source
tasks (Pruksachatkun et al., 2020; Jiang et al.,

3The detailed transfer performances are presented in Ap-
pendix C.
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CLASSIFICATION M. CHOICE QA ALL

R@1↓ nDCG↑ R@1↓ nDCG↑ R@1↓ nDCG↑ R@1↓ nDCG↑
RANDOM 2.18 81.53 2.20 84.52 1.45 86.43 2.89 77.89
SIZE 2.10 83.73 1.44 86.01 0.88 90.06 2.78 78.00
SEMB-B 1.92 85.21 1.91 86.12 1.21 90.11 2.75 78.23
SEMB-R 1.82 86.51 1.74 86.31 1.12 90.23 2.32 79.26
FEATURE 1.28 87.31 1.67 86.40 1.02 90.70 2.04 81.85

Table 3: Comparison of task selection methods on 10 downstream tasks. The nDCG and Regret@1 (R@1) scores
are grouped by the target task category and we report the mean scores for each group. The best scores in each group
are boldfaced.

2023). Additionally, we find that this phenomenon
is particularly pronounced in downstream tasks
with extremely limited labeled data, such as
COPA and CB. In contrast, the relative transfer
performance is more consistent for downstream
tasks that have sufficient training data, like BOOLQ

and STS-B. In Appendix B, we show that there
exists a correlation between transfer gains and
training data sizes. These results highlight the
importance of carefully selecting beneficial tasks to
enhance transfer gains, especially in low-resource
scenarios.

Embedding-based selection methods outper-
form embedding-free methods, but the transfer
gains are limited. Table 3 presents results for the
four task selection methods. Embedding-based ap-
proaches show higher task prediction performance
over embedding-free methods, indicating richer in-
formation is obtained from encoded representations
for predicting task transferability. Specifically, FEA-
TURE outperforms all other task selection methods
on average. Despite its strong performance, FEA-
TURE falls short of the simple SIZE approach in
Regret@1 for multiple choice (M. CHOICE) and
question answering (QA) tasks. This highlights
the need to further improve task embeddings, es-
pecially for tasks that require reasoning abilities.

In Table 4, we show the effectiveness of task
selection methods on prompt transfer performance.
RANDOM and SIZE select the source task with the
highest task transferability score. SEMB-R and FEA-
TURE select top-k tasks that exhibit the largest value
of the transferability scores. Compared to the no-
transfer baseline, these task selection methods show
average absolute performance improvements rang-
ing from 0.38% to 0.91%. With an increase of the
selection pool (k=1 to k=3), the improvements by
SEMB-R and FEATURE further increase to 0.78% and

TRANSFER GAIN
AVG. SCORE

ABS. REL.

NO TRANSFER - - 77.2

RANDOM 0.38 0.49 77.58
SIZE 0.52 0.67 77.72

SEMB-R
BEST OF TOP-K

k=1 0.72 0.93 77.92
k=3 0.78 1.01 77.98

FEATURE

BEST OF TOP-K

k=1 0.91 1.17 78.11
k=3 1.03 1.33 78.23

Table 4: Comparison of task selection methods on
model performance. ABS and REL represent absolute
and relative improvements compared to no-transfer base-
line. AVG. SCORE is calculated across 10 downstream
tasks with three runs. BEST OF TOP-K is the best perfor-
mance across the top-k selected source tasks.

1.03%, respectively. However, the overall transfer
gains remain marginal, indicating that the effective-
ness of intermediate-task selection is still limited
across diverse tasks.

5.4 Effect of Task Type and Training Seed
To dissect the impact of task type and training seed,
Table 5 presents the top-3 beneficial intermediate-
tasks for COPA and CB. Results for all other tasks
are shown in Appendix D.

Task type is not a reliable transferability pre-
dictor. While it is intuitive to assume that similar
tasks should transfer well to the downstream task,
our results reveal that the top-performing source
tasks for a given target task can vary widely in task
type. We find that task types are generally uncor-
related with transfer performances. For example,
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TARGET
seed 112 28 52

SOURCE TASK TYPE REL. (%) SOURCE TASK TYPE REL. (%) SOURCE TASK TYPE REL. (%)

Top-3 transfer
COPA (QA) MultiRC* QA 7.69 CxC semantic sim. 16.94 QQP paraphrase 26.78

DROP* QA 6.15 MultiRC*/RACE* QA/QA 15.25 ReCORD* QA 24.99
RACE* QA 4.61 QQP paraphrase 13.55 WinoGr./MultiRC* reasoning/QA 23.21

Top-3 transfer
CB (NLI) QNLI* NLI 4.11 RACE QA 4.04 CxC/RACE semantic sim./QA 7.60

MNLI/WinoGr. NLI/reasoning 3.61 ReCORD QA 3.53 ReCORD QA 7.57
SQuAD QA 2.70 SQuAD QA 2.73 QNLI/HellaSWAG NLI/reasoning 7.72

Table 5: Top-3 intermediate-task transfer on COPA and CB. REL. is the relative performance improvement (%)
calculated based on the corresponding no-transfer prompt tuning. * indicates that the source task type is identical to
the downstream task type.

the most performant source tasks for COPA and CB

often come from different task types when various
training seeds are used. Based on three separate
runs, the most beneficial source tasks for COPA

(QA) are from other task types, such as CXC (se-
mantic similarity) and QQP (paraphrase detection).
Similarly, many of the beneficial tasks for CB (NLI)
originated from non-NLI tasks.

Random seed significantly impacts the transfer
performance. For COPA, using different train-
ing seeds leads to 7.69% to 26.78% relative per-
formance improvements. Similarly, the relative
improvements for CB range from 4.11% to 7.60%.
This emphasizes the crucial role of seed choice
in determining transfer performance. We observe
similar variations across seeds in other down-
stream tasks as well, such as COLA, WIC, and RTE.
This can be attributed to the instability in fine-
tuning introduced by different random seeds during
prompt transfer (Mosbach et al., 2021; Chen et al.,
2022), which can largely affect the robustness of
intermediate-task selection.

6 Revisiting the Construction of Task
Embeddings

Despite task embeddings from fine-tuned weights
demonstrating superior performance in task pre-
diction compared to other selection methods, the
effectiveness of various task embedding construc-
tions remains underexplored. In this section, we
investigate different construction methods of task
embeddings. In addition to FEATURE, we explore
two more types of task embeddings as follows.

6.1 Construction Methods

Token-wise mean (UNIGRAM) In FEATURE, we
compute the mean of token representations to ob-
tain a task embedding in Rd. To explore an alter-
native approach, we compute the task embeddings

from another axis, resulting in a task embedding in
RN . Specifically, the task embedding for a task
t denotes as ht = 1

d [
∑

d e1,
∑

d e2, ...,
∑

d eN ].
The similarity between tasks t1 and t2 is defined
as: sim(t1, t2) = cos(ht1 , ht2). We refer to this
method as UNIGRAM to emphasize that task-specific
information is aggregated from the token-wise di-
mension.

Maximum inner product search (MAX) We pro-
pose a novel task embedding method, referred to as
MAX, based on the maximum token-to-token simi-
larity scores. Given the source task t1 and the target
task t2, for each prompt token in t2, we obtain the
highest token representation similarity score across
all tokens in t1. The task similarity is then defined
as the mean of these maximum similarity scores:

sim(t1, t2) =
1

N

N∑

j=1

max
i

cos(e1i , e
2
j ) (4)

6.2 Results and Analysis

MAX achieves the highest task transferability
prediction. Figure 5 presents three types of task
embeddings, each derived from prompt check-
points trained for different numbers of steps. All
three methods show improved performance with
longer training steps, suggesting that longer train-
ing improves task transferability predictions. No-
tably, MAX achieves the highest nDCG score of
82.5% at the 20K step, indicating that token-wise
similarity captures richer task information than FEA-
TURE and UNIGRAM, leading to more accurate task
predictions.

Prompt tokens from beneficial tasks are dis-
tributed closer to the target prompt tokens.
To better understand the prompt token distribu-
tion and different levels of transfer performance,
we project prompt tokens of the best, 2nd-best,
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Figure 4: Projecting prompt tokens of the best, 2nd-best, and worst-performing intermediate-tasks for (a) COPA
and (b) CB using t-SNE. We observe that prompt tokens from beneficial tasks are distributed more closely to the
tokens of no-transfer prompt tuning.
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Figure 5: Task prediction performances (average nDCG
scores) of three types of task embeddings.

and worst-performing intermediate-tasks onto low-
dimensional spaces using t-SNE (van der Maaten
and Hinton, 2008). Figure 4 illustrates that the
prompt tokens from no-transfer prompt tuning
(red), are close to the tokens from their benefi-
cial intermediate-tasks (green, blue). Furthermore,
we observe a considerable overlap in these ben-
eficial source tasks, such as MULTIRC and DROP,
for downstream task COPA. This suggests that ben-
eficial tasks tend to be distributed closer to the
target prompt tokens and share similar character-
istics in low dimensions. For COPA and CB, the
worst-performing intermediate-task (brown) devi-
ates from the no-transfer prompt tokens. Future
research can further explore a clearer correlation
between intermediate-task token distribution and
transfer performance.

7 Conclusion

In this work, we conduct a systematic study on
intermediate-task selection across a wide range
of tasks. Our results show that task embeddings
based on fine-tuned weights outperform random

selection, data size, and text embeddings with
improvements of +3.96%, +3.85%, and +2.59%
in nDCG scores, underscoring the importance of
a task-specific approach. Nevertheless, we find
that task embeddings do not excel in all scenarios,
particularly in multiple choice and QA tasks.
By revisiting the task embedding construction,
we propose a novel method based on pairwise
token similarity, which achieves the highest
performance of 82.5% in task transferability
prediction, suggesting that token-wise similarity is
better predictive in task transferability prediction.

Limitation

Despite our proposed method being effective in
many scenarios, we observe that it falls short in
predicting task transferability for tasks requiring
reasoning abilities, which needs to be further
explored. We also face a challenge in precisely
evaluating how the parameter configurations of
soft prompt tuning impact transfer performance,
as prompt tuning is highly sensitive to hyperpa-
rameter selection. Moreover, our evaluation of
task selection is limited to one specific model
architecture and focused on soft prompt tuning.
Evaluating on different model architectures, model
scales, and fine-tuning methods would provide
a more comprehensive understanding of the
robustness of intermediate-task selection.
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A More Details to Datasets and
Evaluation Metrics

A.1 Datasets

We select the datasets drawn from different NLP
benchmarks and families of tasks, including nat-
ural language inference (NLI), paraphrase detec-
tion, semantic similarity, sentiment analysis, ques-
tion answering (QA), commonsense reasoning, and
grammatical acceptability. In total, we consider
13 source and 10 target tasks. The distinguish-
ing between high-resource and low-resource tasks
follows conventional notions respect with to the
training split size. Table 6 summarizes the statis-
tics of 23 tasks and the evaluation metrics. All data
was sourced from HuggingFace Datasets (Lhoest
et al., 2021).

A.2 Evaluation Metircs

nDCG This metric is built on the concept of Dis-
counted Cumulative Gain (DCG), a measure of the
relevance score for a list of items, each discounted
by its position in the ranking.

DCG(R) =

p∑

i=1

2reli − 1

log2(i+ 1)
(5)

where R represents the ranking of source tasks,
where the relevance reli of the source task with
rank i is set to the averaged target performance, i.e.,
reli ∈ [0, 100]. The ranking position ρ corresponds
to the size of the selection budget.

The nDCG is computed as follows:

nDCG(Rpred, Rtrue) =
DCG(Rpred)

DCG(Rtrue)
(6)

While nDCG generally considers the overall
ranking and the difference between predicted trans-
fer performance and actual performance, realistic
applications often prioritize the top-1 transfer per-
formance. In this study, our focus is on metrics that
accurately quantify the accuracy of top-1 predic-
tions.

Regret@k The Regret@k metric is crucial for
evaluating how well the task embeddings retrieve
the beneficial task for top-1 prompt transfer perfor-
mance. Its formula is as follows:

Regret@k =
maxs∈S E[T (s,t)]−maxs̃∈Sk

E[T (s̃,t)]

O(S) (7)

Now, let’s simplify the equation by understand-
ing each term: T (s, t) represents the performance
achieved on the target task t when knowledge is
transferred from the source task s. In simpler terms,
it measures how effective insights from task s are
in improving performance on task t. Moving on
to O(S, t), this term signifies the expected per-
formance on the target task t under the optimal
selection strategy. It establishes a performance
benchmark achievable with the most advantageous
source task selection. Finally, consider Mk(S, t),
which takes into account the highest performance
observed on task t among the k top-ranked source
tasks. This aspect evaluates the potential of the se-
lected set of source tasks in contributing to superior
performance on the target task t.

B Transfer Gains with Varying Training
Data Sizes
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Figure 6: Transfer gains with soft prompt transfer. The
dot on y-axis indicates the number of improved transfer
performances compared to prompt tuning, while the x-
axis enumerates the training set sizes on 10 downstream
tasks.

We further explore how the training data size
influences the relative performance. Figure 6 illus-
trates the correlation between the training split size
and the level of transfer gains and losses. The plot
shows 39 runs for each target task. Remarkably,
tasks with extremely low resources (fewer than 1K
training samples) exhibit a broad range of transfer
gains and losses. Specifically, Tasks like COPA and
CB with minimal training samples (400 and 250, re-
spectively) show transfer gains varying from +25%
to -15% in relative performance.

On the other hand, tasks with smaller variance in
transfer gains, such as WSC and RTE, tend to have
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Name Task Task category Domain |Train| |Dev| Metric

13 source tasks
MNLI NLI Classification Misc. 393K 9.8K Acc.
QQP Paraphrase detection Classification Social QA 364K 40.4K F1/Acc.
QNLI NLI Classification Wikipedia 105K 5.4K Acc.
RECORD QA Multiple Choice News articles 101K 10K F1/EM
CXC Semantic similarity Classification Misc. 88K 1K Acc.
SQUAD QA QA Wikipedia, crowd. 88K 10.6K F1/EM
DROP QA QA Wikipedia, crowd. 77K 9.5K F1/EM
SST-2 Sentiment analysis Classification Movie reviews 67K 872 Acc.
WINOGRANDE Commonsense reasoning Multiple Choice Crowdsourced 40K 1.2K Acc.
HELLASWAG Commonsense reasoning Multiple Choice Misc. 40K 10K Acc.
MULTIRC QA Classification Misc. 27K 4.8K F1α/EM
COSMOSQA Commonsense reasoning Multiple Choice Crowdsourced 25K 2.9K Acc.
RACE QA Multiple Choice English exams 25K 4.8K Acc.

10 target tasks
BOOLQ QA Classification Wikipedia, web queries 9K 3.2K Acc.
COLA Grammatical acceptability Classification Books, journals 9K 1K Matthews cor.
STS-B Semantic similarity Classification Misc. 6K 1.5K Pear./spear.
WIC Word sense disambiguation Classification Misc. 5K 638 Acc.
CR Sentiment analysis Classification Custom review 4K 753 Acc.
MRPC Paraphrase detection Classification News 4K 408 F1/Acc.
RTE NLI Classification Wikipedia, news 2K 277 Acc.
WSC Coreference resolution Classification Fiction books 554 104 Acc.
COPA QA Multple Choice Blog, encyclopedia 400 100 Acc.
CB NLI Classification Misc. 250 56 F1/Acc.

Table 6: Statistics of source and target tasks. We categorize task types into three types: classification, QA, and
multiple choice. We distinguish multiple choice tasks from QA tasks based on whether options are provided in the
input.

fewer instances of positive transfer. This is influ-
enced by a substantial number of runs achieving
similar performance to baselines, leading to fewer
positive transfers. Additionally, our prompt tuning
settings, optimized for near-optimal performance,
result in less pronounced benefits from prompt
training.

The mean slope emphasizes trends, highlighting
a strong correlation between the number of posi-
tive gains and the training sample sizes across most
downstream tasks. Notably, the extent of perfor-
mance improvement is more significant for tasks
with smaller training sample sizes. However, de-
spite high variance in relative performance, transfer
gains tend to converge to zero when the dataset size
reaches around 5K.

Prompt transfer’s success is intricately tied to
the data size of downstream tasks. Smaller training
examples are more likely to exhibit positive transfer.
While prompt transfer brings benefits, the presence
of negative transfer underscores associated risks.

C Prompt Transfer Performance

Table 7 presents the mean performance across
three runs on low-resource tasks, utilizing the best-
performing soft prompt as the initialization point.
As seen in previous studies, the prompt transfer
results indicate improvements over the no-transfer
baselines.

In particular, our most successful transfer results
exhibit significant enhancements, surpassing the
no-transfer outcomes on tasks such as COPA and
CB by considerable margins, with improvements of
+8% and +3.46%, respectively. However, it’s note-
worthy that the mean performance improvements
for other tasks are relatively minor. This can be
attributed to the extensive hyperparameter search
conducted for the strong baseline (PROMPT-TEXT),
contrasting with the suboptimal nature of the weak
baseline (PROMPT-ABSTRACT). This underlines the
significance of optimization in the prompt tuning
process.

Our exploration of prompt transfer performance
sheds light on the nuanced dynamics at play, em-
phasizing the need for strategic optimization strate-
gies in achieving robust and notable improvements,
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BOOLQ COLA STS-B WIC CR MRPC RTE WSC COPA CB
PROMPT-ABSTRACT 73.01.2 52.91.2 88.10.6 63.61.6 93.50.2 86.10.7 68.71.2 71.51.7 56.71.7 92.71.9
PROMPT-TEXT 78.690.18 62.471.51 90.140.20 69.070.45 92.960.29 89.950.52 79.660.74 63.460.00 60.03.74 85.642.21

MNLI 78.360.20 61.550.70 90.220.16 69.070.32 93.180.31 90.930.16 78.450.45 63.460.00 63.005.09 87.622.79
QQP 78.660.09 61.680.86 90.290.15 68.440.29 92.960.21 90.690.15 80.140.88 64.420.78 67.332.86 84.721.02
QNLI 78.800.15 61.970.79 90.040.13 68.390.14 93.800.16 90.490.37 77.610.77 63.460.00 61.333.77 88.671.50
RECORD 78.270.18 60.310.23 90.360.10 69.640.63 93.050.06 90.650.47 79.180.61 63.780.45 67.671.70 89.290.73
CXC 78.710.25 62.490.82 90.120.11 69.591.22 93.450.35 90.620.21 79.301.12 63.460.00 68.000.82 86.602.06
SQUAD 78.800.28 61.431.43 90.170.08 69.490.77 93.630.38 90.410.28 77.741.33 63.780.45 65.671.25 87.153.44
DROP 78.370.46 61.010.17 90.230.10 69.120.80 93.710.23 91.220.47 80.390.45 63.460.00 67.002.16 86.372.37
SST-2 78.560.33 61.360.73 89.910.14 69.640.60 93.540.41 90.350.05 78.461.12 63.780.45 61.671.70 86.930.39
WINOGRANDE 78.420.13 62.721.02 90.190.11 69.701.04 92.870.17 90.980.44 79.181.23 63.460.00 67.671.25 87.052.40
HELLASWAG 78.420.30 63.041.32 90.460.10 69.380.77 93.230.11 90.590.25 78.700.59 63.780.45 63.335.25 85.752.05
MULTIRC 78.690.02 62.260.46 90.130.15 69.590.22 93.140.27 90.370.12 79.061.53 63.780.45 68.002.16 87.630.31
COSMOSQA 78.470.24 61.400.52 90.100.06 70.221.02 93.630.11 90.960.20 80.631.04 63.460.00 66.671.25 87.460.38
RACE 78.240.43 61.051.42 90.160.11 68.701.93 93.670.13 90.670.33 80.390.90 63.460.00 68.000.00 88.072.56

Table 7: Results of prompt transfer. Downstream task performances involve soft prompt transfer between interme-
diate tasks (rows) and target tasks (columns) using the T5 base model. The first two rows represent the baseline
performances with prompt tuning, without any pre-trained prompt weights. PROMPT-ABSTRACT refers to prompt
tuning with the abstract symbol as a class label, and PROMPT-TEXT refers to prompt tuning using the text span.
Subsequent rows provide insights into prompt transfer performances, where the best-performing prompts from each
task are transferred to ten different downstream tasks. All reported scores are mean values obtained from three
random restarts.

especially in the context of low-resource tasks.

D More Results on the Effect of Task
Type and Training Seed

Table 8 presents the top three prompt transfer re-
sults on eight downstream target tasks, along with
their respective task types. These results reflect the
most significant improvements in prompt transfer
across three random seeds. On tasks with limited
annotations, such as COPA and CB, different ran-
dom seeds lead to substantial variance in transfer
performance. Similarly, tasks like COLA, WIC, and
RTE also exhibit high variance. For WSC †, we
observed that most prompt transfer performances
either present identical transfer gain or show no
improvement in performance. This phenomenon
is likely attributed to the unique task type of WSC

compared to other downstream tasks. Specifically,
the knowledge of source tasks has limited influence
on performing the tasks.

E More Results on the Construction of
Task Embeddings

Figure 7 analyzes how training steps for prompt
tuning affect ranking prediction across various task
embedding constructions, MAX, FEATURE and UNI-
GRAM. We examined the prompt weights trained at
intervals of 5K, up to 30K, using nDCG for rank-
ing prediction. Three construction methods of task
embeddings were compared across ten downstream

tasks, indexed alphabetically from BOOLQ (a) to CB

(j).

Tasks with very limited data exhibit low nDCG
scores. We found that the three methods per-
formed well on five tasks, showing high nDCG
scores. For instance, in BOOLQ, STS-B, CR, MRPC,
and WSC, all three methods demonstrated simi-
lar performance with relatively flat performance
curves.

We further observed the significant variability
in task prediction performance across four tasks:
COLA, RTE, COPA, and CB. Notably, COPA and
CB presented considerable challenges due to their
limited availability of labeled data. As a result,
the computed nDCG scores for these tasks were
notably lower compared to other downstream tasks,
underscoring the difficulty in identifying effective
intermediate tasks.

MAX yields superior performances in task pre-
diction. Across 10 downstream tasks, we ob-
served that MAX generally yields superior nDCG
scores. On COLA, RTE, and COPA, nDCG surpasses
FEATURE after 15K training steps. For CB, MAX
excels in capturing the essence between intermedi-
ate tasks during continual prompt tuning on chal-
lenging low-resource tasks. This highlights the
importance of measuring token-wise similarity be-
tween source and target prompts for improved per-
formance. Our analysis suggests that MAX method
tends to perform better in certain scenarios, em-
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Target seed 112 28 52
Source Task Type Rel. (%) Source Task Type Rel. (%) Source Task Type Rel. (%)

Top-3 transfer
BoolQ (QA) DROP* QA 0.58 SQuAD* QA 0.31 CxC senti. similarity 0.31

SST-2 sentiment 0.55 QQP paragraph -0.12 QNLI NLI 0.27
HellaSWAG commonsense 0.50 QNLI NLI -0.15 SQuAD* QA 0.11

CoLA
(grammatical
acceptability)

WinoGrande commonsense 3.47 WinoGrande commonsense 3.10 HellaSWAG commonsense 0.44
RACE QA 2.47 CxC senti. similarity 2.10 CxC senti. similarity -1.79
MultiRC QA 2.24 QQP paragraph 1.65 QNLI NLI -2.35

STS-B (sentiment
similarity)

ReCoRD QA 0.16 ReCoRD QA 0.18 HellaSWAG commonsense 0.81
HellaSWAG commonsense 0.08 HellaSWAG commonsense 0.16 QQP paragraph 0.68
DROP QA 0.07 WinoGrande commonsense 0.08 MultiRC QA 0.52

WiC (word sense
disambiguation)

WinoGrande commonsense 2.95 ReCoRD QA 1.35 CosmosQA commonsense 4.35
CxC senti. similarity 1.81 SQuAD QA 1.13 CxC senti. similarity 2.98
CosmosQA commonsense 1.59 SST-2 sentiment 0.90 HellaSWAG commonsense 2.75

CR (sentiment) SST-2* sentiment 0.71 SQuAD QA 1.72 DROP QA 1.00
CosmosQA/RACE commonsense/QA 0.57 QNLI NLI 1.58 QNLI/SST-2* NLI/sentiment 0.71
MNLI/QNLI NLI/NLI 0.43 CxC senti. similarity 1.29 CxC/CosmosQA senti. similarity/commonsense 0.57

MRPC (paraphrase) DROP QA 2.24 WinoGrande commonsense 2.19 DROP QA 0.95
CosmosQA commonsense 1.85 RACE QA 1.68 MNLI NLI 0.48
QQP* paragraph 1.75 ReCoRD QA 1.66 CosmosQA commonsense 0.27

RTE (NLI) MultiRC QA 1.81 RACE QA 3.67 CosmosQA commonsense 1.79
QQP/RACE paragraph/QA 0.45 QQP paragraph 3.21 CxC/WinoGrande senti. similarity/commonsense 0.45
DROP QA 0.00 DROP QA 2.75 DROP QA 0.00

WSC†

(coreference
resolution)

QQP/SQuAD/SST-2 paragraph/QA/sentiment 1.52 ReCoRD/MultiRC QA/QA 1.52 QQP paragraph 3.03
MNLI/QNLI NLI/NLI 0.00 MNLI/QQP/QNLI NLI/paraphrase/NLP 0.00 MNLI/QNLI NLI/NLI 0.00
- - - - - - - - -

Table 8: Top-3 prompt transfer on eight downstream target tasks and their task types. The three most significant
improvements in prompt transfer across three random seeds, 112, 28, and 52. The relative performance is reported
as a percentage (%) and calculated based on the corresponding no-transfer prompt-tuning. * indicates that the source
task type is identical to the task type of the downstream task.

phasizing its effectiveness in ranking prediction
compared to other methods.

Longer training leads to better performance.
Furthermore, MAX achieves higher task prediction
performance with longer training steps. Further-
more, MAX achieves higher task prediction perfor-
mance with longer training steps. For example, in
tasks such as COLA, WIC, and RTE, MAX shows
marked improvements in the ranking prediction
with extended training durations.
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Figure 7: Comparison of task embedding construction methods on various training steps, with intervals of 5K. The
x-axis denotes the training steps of prompt-tuning.
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