
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 482–498
August 11-16, 2024 ©2024 Association for Computational Linguistics

An Analysis under a Unified Formulation of
Learning Algorithms with Output Constraints

Mooho Song
Seoul National University
anmh9161@snu.ac.kr

Jay-Yoon Lee
Seoul National University
lee.jayyoon@snu.ac.kr

Abstract

Neural networks (NN) excel in diverse tasks
but can produce nonsensical results due to their
exclusive reliance on (input, output) pairs, of-
ten conflicting with human knowledge. Inject-
ing human knowledge via output constraints
can enhance performance and reduce viola-
tions. Despite attempts to compare existing al-
gorithms, no unified categorization of learning
algorithms with output constraints exists. Our
contributions are: (1) We categorize previous
studies using three axes: type of constraint loss
(e.g., probabilistic soft logic, REINFORCE),
exploration strategy of constraint-violating ex-
amples, and integration mechanism for balanc-
ing the main task and constraints learning sig-
nals. (2) We propose new algorithms inspired
by continual-learning for integrating main task
and constraint information. (3) We introduce
the Hβ-score metric to simultaneously evalu-
ate main task performance and constraint viola-
tion. Our experiments on NLP tasks (NLI, STE,
SRL) show that our projection-based integra-
tion mechanism outperforms others. Sampling
strategy is crucial for high Hβ-scores, with
better results as sample numbers increase. Ad-
ditionally, soft-type constraint loss performs
well when combined with sampling strategies.
These insights highlight key factors for achiev-
ing high Hβ-scores and demonstrate the effi-
cacy of our methods.

1 Introduction

The majority of neural networks (NN) models
“solely” learn from data in the form of (input, out-
put) pairs, and such models can sometimes result
in a conflict with human knowledge. Previous work
has shown that injecting human knowledge into
NN models in the form of reducing relevant con-
straint violations during training time can improve
the model performance as well as reducing con-
straint violations (Li et al., 2020; Nandwani et al.,
2019; Mehta et al., 2018; Rajaby Faghihi et al.,

2023; Xu et al., 2018). The relation between con-
straint and the task itself can be viewed as a relation
between the sub-task and the main task. The goal
of the main task would be to acquire the most ac-
curate prediction possible, whereas the goal of the
subtask is to simply acquire constraint-satisfying
output. The focus in injecting constraint is to pre-
serve or improve the main task performance while
improving the constraint satisfaction.

Various literature exists on constraint injection
during training time (Li et al., 2020; Nandwani
et al., 2019; Mehta et al., 2018), where the majority
of them formulates the loss function as an addition
of loss related to constraint to the existing super-
vised loss term. Research on how to formulate the
loss related to constraint and how much to incor-
porate in comparison to existing supervised loss is
scattered as these approaches vary across different
studies and applications.

The first goal of this work is to provide a uni-
fied analysis of existing methods from previous
studies under a single mathematical formulation.
Early efforts to compare different constraint in-
jection methods (Rajaby Faghihi et al., 2023) do
exist, however, their focus was on comparing per-
formances of different algorithms, as presented in
previous work. On the other hand, our study aims
to formalize previous literature from a new uni-
fied perspective, to understand key success factors
in existing algorithms. For example, while primal-
dual algorithm (Nandwani et al., 2019) have shown
positive results with the idea of dynamic weight
update on constraint-loss, it was only tested un-
der the single loss type of Probabilistic Soft Logic
(PSL) (Bröcheler et al., 2010). This makes it un-
clear whether the positive results were contribu-
tions mostly coming from PSL or from the novel
dynamic weight update algorithm. As the same
weight update mechanism can be applied to dif-
ferent loss types, such as REINFORCE loss, it is
worthwhile to investigate mixing and matching dif-

1
482

ferent components of injecting constraint under a
unified formulation. While numerous studies have
focused on injecting constraint during training time,
to the best of our knowledge, there has been no re-
search consolidating these studies into a unified
mathematical formulation to compare their charac-
teristics component by component.

The second goal of this work is to propose new
effective learning algorithms that integrate con-
straints within the suggested unified formulation. A
common approach to learning with constraints in-
volves handling a constraint loss term, λ×C, where
C denotes the constraint loss and λ is a fixed scalar
representing the weight of C. By adding λ×C to the
pre-existing supervised loss term. Nandwani et al.
introduced an algorithm that dynamically controls
λ, starting training with λ at 0 and progressively
adjusting its value during the learning process. This
algorithm is characterized by the gradual increase
of the weight λ, updating it solely based on the
degree of constraints. While the work of Nand-
wani et al. is distinguished from existing methods
that use a fixed hyperparameter λ, there has not
been sufficient research for integrating the learning
signals form supervised data and constraint infor-
mation beyond this work.

Is it always necessary to have the value of λ
monotonically increasing for training? Is there a
way to update the value of λ considering both su-
pervised learning and constraint injection? Inspired
by continual learning methods, this paper proposes
a new approach that considers both supervised loss
and constraint loss during gradient updates. This
approach takes into account the progress of both
tasks: supervised learning and constraint injection
tasks. It offers a new viewpoint for injecting con-
straint on simultaneously learning these two tasks.
Experiments demonstrate that our new approach
achieves the highest-level of performance other
learning algorithms in various scenarios.

2 Unified formulation of previous work

In this section, we categorize the previous studies
on injecting constraints during training time based
on three dimensions: type of mathematical expres-
sion used for constraint loss (§2.1), exploration
strategy of constraint-violating examples (§2.2),
and mechanism for integrating losses from the
main task and the constraint injection task (§2.3).
A common approach in machine learning is to de-
fine a loss function and employ optimization algo-

rithms to update model parameters in the direction
of minimizing that loss. When the labeled data
{(xi, yi)}Ni=1 is given, the goal of typical super-
vised learning is to solve the following optimiza-
tion problem:

min
θ

1

N

N∑

i=1

L(xi, yi; θ), or simply min
θ
L(θ) (1)

, where L(x, y; θ) is the standard supervised loss
function for the task we are learning.

Most of the existing constraint injection meth-
ods, while differing in specific formulations, inject
the constraint information by expanding the loss
function in a following manner:

T (θ) = λ1L(θ) + λ2 · C(θ) (2)

, where C(θ) is a loss related to the constraint, and
λi’s are fixed weights, We can further generalize
the equation (2) as follow:

∇T (θ) = Λsup · ∇L(θ) + Λcon · ∇C(θ) (3)

, where Λsup, Λcon are usually scalar matrices. C
reflects the human knowledge the algorithm wants
to inject and is typically computed without the true
label. To be more precise, for some hard constraints
on output labels, C(θ) is computed via output fθ(x)
given some unlabeled input x. Injecting more than
one hard constraint is also possible by expanding

Λcon · ∇C(θ) to
K∑
i=1

Λcon
i · ∇Ci(θ) in equation (3) ,

where K is a number of constraints.
To unify and distinguish different algorithms that

learn with constraints, we focus on how C(θ) is for-
mulated (§2.1), how constraint-violating examples
are explored (§2.2), and how Λsup, Λcon (in equa-
tion (3)) are determined(§2.3).

2.1 Type of constraint loss
Type of constraint loss is related to how the vio-
lation of constraints can be transformed into the
form of a differentiable loss function C(θ) in equa-
tion (2), which we will refer to as the constraint
loss. How to convert symbolic constraints into a
differentiable loss function can be broadly catego-
rized into two approaches: Probabilistic Soft Logic
(PSL) and REINFORCE.

Probabilistic Soft Logic (PSL) PSL (Bröcheler
et al., 2010) is associated with expressing logic in
terms of probabilities, and research utilizing PSL

2
483

measures the degree of constraint violation in the
logic itself, employing it as a loss. Gödel, product,
Łukasiewicz logics can be primarily used to soften
logic (Minervini and Riedel, 2018; Nandwani et al.,
2019; Li et al., 2020), and these examples are listed
in table 1. Generally, PSL is not suitable for repre-
senting all types of hard constraints, since it must
be converted to linear constraints before they can
be directly applied (Rajaby Faghihi et al., 2023).
Section §4.2 is an example task illustraing the chal-
lenges in applying PSL, and the more details are in
Appendix §A.2.

REINFORCE In contrast, studies employing
the REINFORCE (Williams, 1992) evaluate
whether (or to what degree) the model’s output
violates constraints. Constraint injection research
during training time using REINFORCE can be
further classified into two ways depending how
the reward is formulated. A simple method is
to assign binary reward (e.g.: {1, 0}) when the
model satisfies or violates the constraints (Ahmed
et al., 2022). This simple method with binary
reward only considers whether the constraint is
satisfied or not. On the other hand, one could
make the reward more fine-grained by measuring
the degree of constraint violation and assigning
real-valued rewards related to it (Mehta et al.,
2018). A significant feature of REINFORCE is that
the determination of constraint loss relies solely on
the rule of assigning rewards based on the presence
or absence of constraint violation in sampled
examples, regardless of the specific constraint.
This differs from PSL in that it does not require
intricate implementations for generating constraint
loss. However, due to the need for sampling
procedures, the computational cost is generally
higher than when using PSL (Rajaby Faghihi et al.,
2023).

To summarize, PSL and REINFORCE are
mainly used approach to generate C(θ) in eq.(2) to
reduce expected constraint violation with following
differences. PSL defines constraint violation as a
continuous measure, while REINFORCE relies on
the reinforcement learning paradigm to guide the
model towards satisfying constraints. Specifically,
the REINFORCE method is divided into two types
based on the method of setting rewards: binary re-
wards and real rewards. More specific comparison
between types of constraint losses: PSL and REIN-
FORCE is in Appendix §A.1.

2.2 Exploration of constraint-violating
examples

Let fθ(x) represent the output distribution associ-
ated with the model f parameterized by θ given
input x. The identification of constraint-violating
examples from f(x) plays a crucial role in deter-
mining constraint loss C(θ). Therefore, exploration
of constraint-violating examples can significantly
impact the effectiveness and efficiency of constraint
learning. The possible questions we have are as fol-
lows: Would it be better to explore the model’s
approximate output space? Would it be best to ex-
amine the model’s best possible effort? Or would
it be better to explore by considering all possible
probability distributions? Theses are considered to
determine the magnitude of the constraint loss C.
For example, in REINFORCE with {1, 0} reward,
the reward will be 0 if we only visit constraint-
violating examples.

According to the questions posed above, ex-
ploration strategies are divided by three, each ex-
plained below: sampling, argmax, and exhaustive.

Sampling Sampling strategy involves drawing
samples from the forward propagation results of
the model f to examine different instances that
violate constraints. As demonstrated by (Ahmed
et al., 2022), this method commonly employs the
REINFORCE algorithm to incorporate constraint
violations into the loss function for the identified
examples. The sampling strategy can be applied
independently to all combinations for our other
analysis axes, specifically concerning the type of
constraint loss (§2.1) and the integration mecha-
nism of learning signals from main task and con-
straint (§2.3).

Argmax (Top-1) Argmax (Top-1) strategy, con-
straint violation is assesed by choosing the com-
bination with the highest probability from f(x).
Following greedy decoding process such as beam
search or Vitrerbi decoding (Mehta et al., 2018), it
evaluates constraint violation for the decoded exam-
ple. Similar to sampling, it evaluates constraint vi-
olation for the decoded example, but distinguishes
itself by considering the most probable prediction
at that moment without multiple samplings. Like
the sampling strategy, the argmax strategy can also
be applied independently to all combinations under
our other axes of anlysis.

Exhaustive Exhaustive strategy considers prob-
abilities of all output class and its combinations.

3
484

It is prominently employed in research related to
PSL (Nandwani et al., 2019; Li et al., 2020). Since
there is no sampling involved, it is computationally
cost-effective rather than sampling strategy. When
considering the type of constraint loss (§2.1), our
performance evaluation is exclusively conducted
using PSL for the exhaustive strategy, excluding
the REINFORCE in the constraint loss, as it would
be impossible to consider all possible combinations
in REINFORCE. Since the exhaustive strategy can
only be applied for constraint loss type of PSL, ex-
haustive strategy cannot handle all of general type
of constraints.

2.3 Integration mechanism of learning signals
from main task and constraint

This section is related to the integration of main
task and the constraint information. We categorize
integration mechanisms of prior studies into static
and monotone (λ ↑). Additionally, we introduce
three new integration mechanisms based on the
linear projection: projection-sup, projection-con,
and projection-both, which will be discussed in
section §3. We provide detailed explanations of
these mechanisms below.

Static For constraint loss C, a widely used ap-
proach incorporating C into the existing supervised
loss term is to add λ ·C to the previous existing loss,
where λ is a fixed positive real number (Ahmed
et al., 2022; Li et al., 2020; Mehta et al., 2018;
Minervini and Riedel, 2018). In this approach, the
value of λ remains unchanged throughout the train-
ing process, serving as a constant multiplier that
determines the relative influence of C in compari-
son to the main task loss L in eq.(2).

Monotone (λ ↑) On the other hand, the study
by (Nandwani et al., 2019) deviates from this by
not using a fixed λ. Instead, it initiates training
with λ starting from 0 and progressively adjusting
its value during the learning process. This concept
emerged from the transformation of the constrained
optimization problem into a max-min problem, em-
ploying alternative updates. In this method, the
value of λ steadily grows throughout the training,
signifying a progressive emphasis on the constraint
loss.

Projection Unlike previous methods, projection
methods perform gradient updates considering the
gradients of two losses: L and C. For both static
and monotone (λ ↑), Λ’s are all diagonal matrices

in equation (3). However, the projection method
results in non-diagonal matrices depending on
the gradients of both loss functions. The detailed
formulation will be introduced in section §3.

It is important to note that the decision on
how to integrate two losses (L, C) is entirely
separate from the process of formulating the
constraint loss C (§2.1), and the exploring strategy
of constraint-violation examples (§2.2). Therefore,
adjusting Λ’s (or, λ’s) mentioned in this section
can be independently combined with other analysis
axes.

3 Further exploration on integration of
main task and constraint information

In this section, we propose new methods for inte-
grating the losses of main task and constraint injec-
tion task. Departing from categorized methods used
in previous research, ‘static’ and ‘monotone(λ ↑)’,
we introduce three new integration mechanism for
the two losses: ‘projection-sup’, ‘projection-con’,
and ‘projection-both’.

Motivation Gradient Episodic Memory (GEM)
(Lopez-Paz and Ranzato, 2017) model is designed
for continual learning for positive backward trans-
fer, aiming to store memories of previous tasks in
such a way that the loss does not increase when
learning from new data. It introduces constraints
to prevent an increase in loss for previous tasks
stored in memory when learning from new data
and presents a new minimization problem. A-GEM
(Chaudhry et al., 2018) is a variant of GEM that
is designed for effective memory and computa-
tional cost, by storing the averaged episodic mem-
ory across the all tasks. Motivated by these works,
we propose a new method for integrating losses –
L(θ) and C(θ) – for two tasks. In GEM/A-GEM,
whenever new data was deemed to violate positive
backward transfer, it applies a projection operation
for the gradients to adjust them. We adapt the con-
cept from GEM/A-GEM and utilize it in designing
the integration mechanism of main task and con-
straint information

Method Recall that the derivative of loss func-
tion with constraint has form of:

∇T (θ) = Λsup · ∇L(θ) + Λcon · ∇C(θ)

Our approach is rooted in the idea that supervised
learning and constraint injection are two distinct

4
485

tasks, and during their respective updates, we can
prevent negatively effecting each other by execut-
ing a projection of gradient for each other. The fol-
lowings are explanations of three new algorithms,
and the pseudo-codes are available in Appendix C.

Projection-sup applies the projection method to
the gradient of the constraint loss (namely, adjust
Λcon) to prevent it from negatively affecting the
supervised learning task, while storing the aver-
aged gradient vector of supervised learning task
gsup previously used for training. Mathematically,
project∇C(θ) via:

Proj(∇C(θ)) = ∇C(θ)− ∇C(θ) · gsup
gsup · gsup

gsup (4)

, whenever ∇C(θ) · gsup < 0. Then, the vector
Proj(∇C(θ)) satisfies Proj(∇C(θ)) ·gsup = 0. This
ensures that ∇C is transformed orthogonally to
gsup, preventing it from providing information that
contradicts supervised learning.

Conversely, projection-con applies the projec-
tion method to the gradient of the supervised loss
(namely, adjust Λcon) to prevent it from negatively
affecting the constraint injection task, while storing
the averaged gradient vector of constraint injection
task gsup previously used for training. Mathemati-
cally, project∇L(θ) via:

Proj(∇L(θ)) = ∇L(θ)− ∇L(θ) · gcon
gcon · gcon

gcon (5)

, whenever ∇L(θ) · gcon < 0. Then, the vector
Proj(∇L(θ)) satisfies Proj(∇L(θ))·gcon = 0. This
ensures that ∇L is transformed orthogonally to
gcon, preventing it from providing information that
contradicts constraint injection.

Projection-both combines both projection-sup
and projection-con, applying projection to both gra-
dients (namely, adjust both Λsup and Λcon) to en-
sure that neither task negatively impacts the other.
It stores two types of gradients separately by each
task used for training before, and apply two projec-
tions (4) and (5) together.

4 Tasks

In this section, we introduce the tasks for which we
conduct experiments: Natural Language Inference
(NLI), Synthetic Transduction Example (STE), and
Semantic Role Labeling (SRL). Additional details
about tasks and implementations are explained in
Appendix §D.

4.1 Natural Language Inference (NLI)
NLI is a task that involves understanding the logical
relationships between pairs of text. Given a premise
(P) and a hypothesis (H), the task is to determine
whether P entails H, contradicts H, or maintains a
neutral relationship with H. There exists constraints
such as if P entails H, then H must not contradict
P. We used the five constraints listed in (Minervini
and Riedel, 2018), as shown in table 4 . The dataset
used is SNLI (Bowman et al., 2015).

4.2 Synthetic Transduction Example (STE)
We also present an artificial task utilized in (Lee
et al., 2019). A sequence transducer T : LS → LT
converts the source language LS = (az|bz)∗ to
the target language LT = (za|bbb)∗, for example,
T (azbzbz) = zabbbbbb. The constraint imposed
involves the relationship between the number of ‘b’
in the source and the target. Specifically, the count
of ‘b’ in the target must be exactly three times that
in the source.

4.3 Semantic Role Labeling (SRL)
SRL is a natural language processing task that
predicts the semantic roles of each word in a sen-
tence with respect to a given verb or predicate. The
method of our work employed for this purpose is
BIO tagging.

The Unique Core Roles constraint from (Li et al.,
2020) is applied as a constraint, which means that
there can be no more than one occurrence of each
core argument. For a predicate u, if the model pre-
dicts the i-th word as B-X, then other words in the
same prediction should not be predicted as B-X.
This can be expressed as follow.

∀ u, i ∈ s, X ∈ Acore,

BX(u, i)→
∧

j∈s,j ̸=i

¬BX(u, j). (6)

The dataset we used is English Ontonotes v5, with
the CoNLL-2012 shared task format (Pradhan et al.,
2012).

5 Experiments

Our experiment is composed of NLI, STE, and
SRL tasks, with accuracy, token accuracy, and F1
score are used as the main task metrics, respectively.
Our goal is to first observe the performance trends
of algorithms according to our three classification
criteria. Then, we will explore combinations that
show particularly strong performance.

5
486

Experiment environment We used RTX 3090
GPU, and Adam optimizer for all of trainings. We
conducted training for each case 10 times, and the
results are displayed as the mean (in the larger
font above) and standard deviation (in the smaller
font below) for both the main task metric (de-
noted by Perf) and constraint violation (denoted
by Const.Vio)1 rate.

Metric Comparing the superiority of experimen-
tal results considering two different metrics simulta-
neously is very challenging, especially when there
is no occurrence of Pareto-improvement. The Hβ-
score (Harmonic β Score) we propose is an indica-
tor that allows for a quick and clear evaluation of
experimental outcomes based on two metrics. As-
sume we have two metrics to consider, and denote
the scores for each metric as m1 and m2, respec-
tively. Both metrics are assumed to have values
ranging from 0 to 1, with higher values indicating
better performance2. The Hβ-score is similar in
form to the Fβ-score and is defined as follow:

Hβ(m1,m2) =
1 + β2

1
m1

+ β2

m2

.

The Hβ-score is exactly the same in form as the
Fβ-score. It is simply an extension of the Fβ-score,
which uses precision and recall as arguments, to
be a score for any two arbitrary metrics. If the
magnitude of β increases, the evaluation signifi-
cantly considers the weight of m2. Conversely, as
the value of β approaches zero, the weight of m1

is significantly considered in the evaluation.

Experiment results Table 3 shows the experi-
ment results for all combinations possible in our
analysis axes which consist of previous methods
and our newly proposed methods. For each task,
we present the experimental results based on our
three analysis axes proposed in section §2: type
of constraint loss (soft, binary, real), exploration
strategy of constraint-violating examples (top-1,
sampling, exhaustive), and mechanism for integrat-
ing the main and the constraint information (static,
monotone, proj-sup, proj-con, proj-both).

As the sheer number of experiments is too large
to interpret in table 3, we try to examine key factors

1For example, 84.72
±00.77

means that the average is 84.72, and

the standard deviation is 00.77 from 10 experiments.
2Constraint violation rate is used for table 3. However,

when we consider Hβ-score, we convert it to the constraint
satisfaction rate, which is 1−(constraint violation rate).

for best main task performance, constraint viola-
tion by dissecting the table 3 from different per-
spectives.

Trends per analysis axes Figure 4 illustrates the
top 5 experimental results with the highest Hβ-
scores for each of the five integration mechanisms
described in section §2.3. Among the five integra-
tion mechanisms, projection-con and projection-
both consistently demonstrates the best perfor-
mance across most β values. They excel in a wide
range of scenarios, from those emphasizing main
task metrics (lower β values) to those prioritizing
constraint injection task performance (higher β val-
ues). The static and monotone mechanism seldom
performs well , they do not always exhibit excellent
performance across all tasks.

Figure 5 illustrates the top 5 experimental results
with the highest Hβ-scores for each of the three
types of constraint losses described in section §2.1.
Among the three types of losses, whether soft or
real type shows consistently better performance de-
pends on the task. Our hypothesis is, as mentioned
in appendix A.1, soft and real types of losses can
incorporate more fine-grained information into con-
straint loss compared to binary types of loss.

Figure 6 illustrates the top 5 experimental results
with the highest Hβ-scores, considering each of the
five exploring strategies described in section §2.2.
Among the five strategies, one clear observation is
that the sampling method consistently demonstrates
superior performance across all tasks. Although
there are variations, performance tends to improve
as the sample size increases. However, the overall
performance of the full strategy is not favorable,
especially in SRL task. In the full strategy, the
model generates errors that significantly different
from those expected for realistic output, resulting in
suboptimal performance due to the associated loss.
We hypothesize that the full strategy’s performance
of SRL is even worse than that observed in NLI,
due to the significantly larger output space.

To summarize, sampling strategy and projection-
con, projection-both mechanisms consistently
demonstrate superior performance across all tasks.
However, in relation to the type of constraint loss,
there is no type of loss that consistently shows supe-
rior performance across all tasks; it varies depend-
ing on the task. As shown in Table 3, the number
of combinations of learning algorithms with output
constraints based on our analysis criteria is quite
large (65 combinations for the NLI and SRL tasks,

6
487

and 40 combinations for the STE task). Therefore,
it is practically impossible to experiment with all
learning algorithms. We examined the performance
trends of the algorithms through figures 1, 2, and 3,
which provide useful insights for selecting learning
algorithms.

Specific combinations of axes outperforming
others In addition to observing overall trends, we
dive into a more detailed analysis of specific algo-
rithm combinations and their performance. We ob-
served in the previous experimental results (figures
4, 5, 6) that the sampling strategy and projection-
con, projection-both mechanisms generally per-
form well, with performance improving as sample
size increases. However, the results in figures 4, 5,
and 6 represent averages across multiple algorithm
outcomes and do not depict individual algorithms.
In this section, we narrow our focus and present
an analysis for individual algorithms assuming a
fixed sampling strategy with a sample size of 10
(referred to as samp-10 from now on) which con-
sistently performed the best across different tasks,
across different conditions. Figures 1, 2, and 3 de-
pict the Hβ-scores for different combinations of
loss types and integration mechanisms when the
sampling strategy is fixed as samp-10. For visibility,
we consider values of 0.3, 1, and 3.

Notably, our newly proposed projection-based
algorithms, projection-con and projection-both, ex-
hibit the highest-level performance across most
situations. One interesting point is the performance
difference between projection-con and projection-
both mechanisms. By examining the average of the
top 5 number of Hβ-scores (as previously shown in
figure 4), we find that projection-con outperforms
other mechanisms. However, upon observing indi-
vidual algorithms per task, we found that for the
soft or real types of loss, the projection-both mech-
anism shows the best-level performance than other
mechanisms for most combinations. In the case of
the SRL task, there are instances where the mono-
tone mechanism performs well. Particularly, when
used in conjunction with a soft type of loss, the
monotone mechanism exhibits higher performance,
which is inconsistent with other experimental re-
sults. The reason for this discrepancy has not been
clearly identified yet, but the specific characteristics
of weight updates in constraint loss combined with
a soft type of loss for achieving higher performance
remain a subject for future work.

Another noteworthy observation is that under

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

64

65

66

67

68
67.06

66.32
66.70

67.34 67.11

64.11

66.22
66.80

66.31
66.99

64.22

66.20 66.41

67.34

66.27

=0.3 by Integration Mechanism and Type Loss

Type of Loss
soft
binary
real

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

70

75

80
78.23

71.84

74.31

78.59 78.59

68.75

71.36

76.37

71.76

78.23

69.57
71.38 71.36

78.58

71.74

=1 by Integration Mechanism and Type Loss

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

70

80

90
93.07

78.07

83.43

93.58 93.99

73.88
77.10

88.53

77.90

93.21

75.60 77.17 76.84

93.54

77.89

=3 by Integration Mechanism and Type Loss

Figure 1: Experiment result from NLI task with samp-10.
Three bar plots represents the Hβ-scores with respect
to the integration mechanism (separated by the x-axis)
and type of constraint losses (separated by the color).
From top to bottom, the corresponding values of β’s are
0.3, 1, 3, respectively.

samp-10, the soft type of loss exhibits the highest
performance in most cases. Results from figures
1 and 3 show that, except for the projection-sup
instance in SRL, soft type of loss generally outper-
forms real type of loss. We previously observed
from figure 5 that real type of loss tends to per-
form best in the SRL task among the three types
of losses. The results in 3, however, demonstrate
the opposite, indicating that soft type of loss per-
forms exceptionally well when combined with the
sampling strategy.

6 Additional related work

There are two stages where constraints can be in-
jected: at inference time and learning time. At in-
ference time, the goal is to remedy nonsensical
outputs that violate human constraints at test time
regardless of the training procedure (Lee et al.,
2019; Roth and Yih, 2005). For example, (Lee et al.,
2019) updates the model parameters at test time
for each test instance to satisfy constraints, while
(Roth and Yih, 2005) transforms the constrained
problem into the form of integer linear program-
ming for the inference process to maximize the log
probability score with constraint satisfaction. Both

7
488

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

70

75

80

69.72
71.61 71.96

77.75

69.33

78.63

72.02
73.22

76.28

81.40

=0.3 by Integration Mechanism and Type Loss

Type of Loss
binary
real

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

70

75

80

85

69.90

74.49
72.70

79.16

71.35

81.25

74.63
76.83

78.50

83.89

=1 by Integration Mechanism and Type Loss

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

70

75

80

85

90

70.08

77.48

73.43

80.56

73.41

83.93

77.31
80.63 80.76

86.43

=3 by Integration Mechanism and Type Loss

Figure 2: Experiment result from STE task with samp-
10. Three bar plots represents the Hβ-scores with re-
spect to the integration mechanism (separated by the
x-axis) and type of constraint losses (separated by the
color). From top to bottom, the corresponding values of
β’s are 0.3, 1, 3, respectively.

methods have shown to satisfy constraints well and
also improve performances, however, as these two
methods utilize vastly different philosophies, their
formulations are not directly comparable.

On the other hand, another line of research have
explored how to practically use constraint injec-
tion in software development (Ahmed et al., 2022;
Rajaby Faghihi et al., 2021), which demonstrate
the application of constraint injection techniques in
software. These tools can apply constraints across
different domains, highlighting the versatility of
constraint learning methods. Importantly, they are
effective not only during the training phase but also
during inference. This research and the platforms
mentioned offer valuable insights into the practical
application of constraints.

7 Conclusions

We have proposed three axes for classifying and
categorizing learning algorithms related to inject-
ing constraints: type of constraint loss, exploring
strategy of constraint-violating examples, and in-
tegration of main task and constraint information.
To the best of our knowledge, this study is the first
to systematically classify existing learning algo-

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

84.0
84.5
85.0
85.5
86.0

84.77

85.22 85.22
84.84

85.28

84.07

85.07

84.40 84.40
84.14

84.40

84.89

85.73

84.89 84.75

=0.3 by Integration Mechanism and Type Loss
Type of Loss

soft
binary
real

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

80.0

82.5

85.0

87.5

90.0

82.93

89.11

84.73
86.20

87.08

80.96

84.46
82.80 82.71

81.6782.18 82.59

88.03

83.78

86.97

=1 by Integration Mechanism and Type Loss

static monotone Proj-Sup Proj-Con Proj-Both
Integration Mechanism

75

80

85

90

95

81.23

93.19

84.26
87.55 88.88

78.18

83.88
81.31 81.15

79.4580.17 80.50

90.35

82.75

89.19

=3 by Integration Mechanism and Type Loss

Figure 3: Experiment result from SRL task with samp-
10. Three bar plots represents the Hβ-scores with re-
spect to the integration mechanism (separated by the
x-axis) and type of constraint losses (separated by the
color). From top to bottom, the corresponding values of
β’s are 0.3, 1, 3, respectively.

rithms with constraints under a unified formulation.
We have analyzed the key factors that affect perfor-
mance based on our analysis criteria, which helps in
understanding learning algorithms with constraints.

Additionally, we have introduced three
projection-based mechanisms as a novel approach
for the integration mechanism of main task and
constraint information. Viewing the main task
and constraint injection as two separate tasks, we
started with the motivation to prevent negative
effects on each other during the gradient update
process. This introduces a new perspective on
integrating learning signals from main task and
constraint, which shows superior performance
compared to existing integration mechanisms.

8 Limitations and future work

Our experiments were exclusively conducted on
NLP tasks (NLI, STE, SRL) and did not include
cutting-edge large language models. Therefore, it
would be worthwhile to extend our experiments to
a broader range of tasks and larger models. This
would not only validate the generalizability of our
methods but also potentially uncover new insights
and improvements for various applications.

8
489

References
Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei

Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy
Van den Broeck, and Sameer Singh. 2022. Pylon:
A pytorch framework for learning with constraints.
In NeurIPS 2021 Competitions and Demonstrations
Track, pages 319–324. PMLR.

Michał Baczyński and Balasubramaniam Jayaram. 2007.
On the characterizations of (s, n)-implications. Fuzzy
sets and systems, 158(15):1713–1727.

Benjamín Callejas Bedregal, Graçaliz Pereira Dimuro,
Regivan Hugo Nunes Santiago, and Renata
Hax Sander Reiser. 2010. On interval fuzzy s-
implications. Information Sciences, 180(8):1373–
1389.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Matthias Bröcheler, Lilyana Mihalkova, and Lise
Getoor. 2010. Probabilistic similarity logic. In Pro-
ceedings of the Twenty-Sixth Conference on Uncer-
tainty in Artificial Intelligence, UAI’10, page 73–82,
Arlington, Virginia, USA. AUAI Press.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2018. Effi-
cient lifelong learning with a-gem. arXiv preprint
arXiv:1812.00420.

Jay Yoon Lee, Sanket Vaibhav Mehta, Michael Wick,
Jean-Baptiste Tristan, and Jaime Carbonell. 2019.
Gradient-based inference for networks with output
constraints. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4147–
4154.

Tao Li, Parth Anand Jawale, Martha Palmer, and Vivek
Srikumar. 2020. Structured tuning for semantic role
labeling. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 8402–8412, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. Ad-
vances in neural information processing systems, 30.

Sanket Vaibhav Mehta, Jay Yoon Lee, and Jaime Car-
bonell. 2018. Towards semi-supervised learning
for deep semantic role labeling. arXiv preprint
arXiv:1808.09543.

Pasquale Minervini and Sebastian Riedel. 2018. Adver-
sarially regularising neural NLI models to integrate
logical background knowledge. In Proceedings of
the 22nd Conference on Computational Natural Lan-
guage Learning, pages 65–74, Brussels, Belgium.
Association for Computational Linguistics.

Yatin Nandwani, Abhishek Pathak, and Parag Singla.
2019. A primal dual formulation for deep learning
with constraints. Advances in Neural Information
Processing Systems, 32.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Conll-
2012 shared task: Modeling multilingual unrestricted
coreference in ontonotes. In Joint conference on
EMNLP and CoNLL-shared task, pages 1–40.

Hossein Rajaby Faghihi, Quan Guo, Andrzej Uszok, Ali-
akbar Nafar, and Parisa Kordjamshidi. 2021. Domi-
KnowS: A library for integration of symbolic domain
knowledge in deep learning. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages
231–241, Online and Punta Cana, Dominican Repub-
lic. Association for Computational Linguistics.

Hossein Rajaby Faghihi, Aliakbar Nafar, Chen Zheng,
Roshanak Mirzaee, Yue Zhang, Andrzej Uszok,
Alexander Wan, Tanawan Premsri, Dan Roth, and
Parisa Kordjamshidi. 2023. Gluecons: A generic
benchmark for learning under constraints. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 9552–9561.

Dan Roth and Wen-tau Yih. 2005. Integer linear pro-
gramming inference for conditional random fields.
In Proceedings of the 22nd international conference
on Machine learning, pages 736–743.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
27.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Broeck. 2018. A semantic loss function for deep
learning with symbolic knowledge. In International
conference on machine learning, pages 5502–5511.
PMLR.

A More specific comparison between
types of constraint losses: PSL and
REINFORCE

In this section, we dive deeper into the characteris-
tics and applicability of the two types of constraint
loss mentioned in Section 2.1: Probabilistic Soft
Logic (PSL) and REINFORCE. These types of
losses have unique strengths and weaknesses de-
pending on the different circumstances.

9
490

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/2020.acl-main.744
https://doi.org/10.18653/v1/2020.acl-main.744
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/K18-1007
https://doi.org/10.18653/v1/2021.emnlp-demo.27
https://doi.org/10.18653/v1/2021.emnlp-demo.27
https://doi.org/10.18653/v1/2021.emnlp-demo.27

A.1 Fine-grained expressiveness of constraints
PSL stands superior in capturing more fine-grained
information compared to REINFORCE. The PSL
type of loss function evaluates not only the overall
outcome but also performance of individual compo-
nents to encourage more detailed feedback. For in-
stance, consider a multi-label classification setting,
where a particular book’s every possible category
needs to be predicted. An easily understandable
example of constraint is associated with the hierar-
chical structure between labels: If a model predicts
‘science fiction’, it must necessarily also make a
prediction that includes a hierarchy higher than
that, which is ‘fiction’. Note that, the above hierar-
chical constraint can be considered in the form of
conditional statement for propositions, as follows:

Pred(science fiction) =⇒ Pred(fiction)

For the sake of simplicity in explanation, we em-
ploy the Łukasiewicz logic for this example. The
soft value corresponding to the above logical ex-
pression is:

min(1, 1− Ps + Pf) (7)

, where Ps and Pf represent the probability of be-
ing predicted for the science fiction class, and fic-
tion class, respectively. In constraint learning using
PSL the learning process aims to increase the soft
value (7). In this example, the learning is conducted
to increase Pf − Ps. Since ‘fiction’ is a class with
higher hierarchy, and more inclusive class than ‘sci-
ence fiction’, learning to increase Pf −Ps is highly
reasonable. Likewise, the PSL type of constraint
loss can enrich the model’s understanding and pro-
viding more detailed feedback. In REINFORCE,
however, if the model’s prediction violates the con-
straint, the probability for the prediction is directly
reflected in the loss, regardless of the constraint
imposed. This makes it challenging to provide de-
tailed information about specifically which part
should we penalize in the model’s prediction. To
incorporate more fine-grained information in REIN-
FORCE, there is research that utilizes real rewards.
For example, Mehta et al. defines reward score as
s = 1 − 2g ∈ [−1, 1], where g ∈ [0, 1] stands for
normalized error count, so that larger constraint vio-
lations lead to greater constraint loss. Although the
loss function cannot reflect the soft value of logical
expression, by assigning rewards differently based
on the degree of constraint violation, it is possible
to incorporate more fine-grained information into

Logic Product Gödel Łukasiewicz

Negation 1− a 1− a 1− a
T-conorm a+ b− ab max(a, b) min(1, a+ b)
T-norm ab min(a, b) max(0, a+ b− 1)

Implication

{
1 if a ≤ b

b/a otherwise

{
1 if a ≤ b

b otherwise
min(1, 1− a+ b)

Table 1: Examples of logics. Our experiment used Gödel
logic except for the implication (⇒). For⇒, we used
S-implication (Baczyński and Jayaram, 2007; Bedregal
et al., 2010) form, max(1− a, b).

the loss function than just assigning binary rewards.

A.2 Type of constraints that constraint loss
can represent

Though PSL stands superior in capturing more fine-
grained information compared to REINFORCE,
PSL encounters difficulties when representing a
variety of constraints, while REINFORCE can ex-
press arbitrary types of constraints. Rajaby Faghihi
et al. introduced limitations in encoding a specific
type of knowledge in research related to constraint
injection during training time (Nandwani et al.,
2019; Ahmed et al., 2022). Instead of focusing on
individual characteristics of these studies, we can
generalize this limitation using our view of analysis
axes. As in table 2, we can rewrite the constraint
types that each constraint loss type can handle, ac-
cording to the two types of constraint loss: PSL and
REINFORCE.

NC (Needs Conversion) in table 2 can some-
times be practically challenging due to significant
overhead, making it difficult to leverage effectively.
An example is seen in the STE task discussed
in §4, where the constraint is defined as follows:
the count of ‘b’ in the target should be exactly
three times that in the source. Let s ∈ (az|bz)∗
be an input sequence data, and t be a predicted
output sequence of model. Also, for a finite set
X = {x1, x2, · · · , xn} ⊆ N, let s(X), t(X) rep-
resent the presence of ‘b’ at positions x1, ..., xn in
the sequences s and t, respectively. Note that if the
count of ‘b’ in s is 1, then the count of ‘b’ in t
should be 3. While this represents a small portion
of the original constraint, when expressed in the
linearized logical expression for PSL application,
it can be represented as follows:

|s|∧

i=1

s({i}) =⇒

∨

1≤j1<j2<j3≤|t|
t({j1, j2, j3})

10
491

Seq Lin Log Log+Quan Prog

PSL ✓ ✓ NC NC X
REINFORCE ✓ ✓ ✓ ✓ ✓

Table 2: This table classifies constraints that constraint-
injection methods can handle during training time. We
reinterpret table 2 of (Rajaby Faghihi et al., 2023) with
our axes of analysis: type of constraint loss. The specific
meaning of abbreviations are as follows: Seq=sequential
structure, Lin=linear constraint, Log=logical constraint,
Log+Quan=logical constraint with quantifier, Prog=any
constraints encoded as a program, NC=needs conver-
sion.

However, even this partial inclusion of the
overall constraint requires an excessively high
computational cost.

The comparison between two types of constri-
ant losses illustrates that the appropriate type of
loss may vary depending on task requirements and
problem details, reflecting the inevitable trade-off
between the level of detailed information about
constraints and the scope of constraint representa-
tion.

B Experiment result

Table 3 represents the experiment results for all
combinations, containing main task metrics(%, de-
noted as “Perf”) and constraint violation rates(%,
denoted as “Const.vio”). SRL, NLI, and STE tasks
used F1 score, accuracy, and token accuracy for
main task metric, respectively. For the types of
constraint losses, soft, binary, and real respectively
represents PSL, REINFORCE method with binary
reward, and REINFORCE method with real reward.
The term ‘Baseline’ refers to the experiment results
without any constraint injection. Ahmed et al., us-
ing the REINFORCE - binary reward method, sep-
arates the generation of constraint loss into two ap-
proaches in their implementation3: one for decoded
samples that satisfy the constraints and another for
those that do not. In Mehta et al., 2018, they gener-
ates constraint loss for decoded samples only when
the constraints are violated. To compare various al-
gorithms under a unified formulation, experiments
involving constraint loss related to REINFORCE
were conducted by generating constraint loss for
examples that violated the constraints.

Note that we can easily extend the learning algo-

3https://github.com/pylon-lib/pylon

Algorithm 1 Pseudo code for projection-both
mechanism
Input: labeled data DL = ⟨xi, yi⟩Ti=1, unlabeled
dataDU = ⟨xui ⟩Ti=1 (if available), model parameter
θ.

1: Initialize: grefsup ← 0, grefcon ← 0.
2: while not converge do
3: ⟨xL, yL⟩ ← sample from DL

4: ⟨xU ⟩ ← sample from DU

5: gsup ← ∇L(xL, yL; θ)
6: gcon ← ∇(C(xL; θ) + C(xU ; θ))
7: if gsup · grefcon < 0 then
8: gsup ← project gsup via grefcon

9: end if
10: if gcon · grefsup < 0 then
11: gcon ← project gcon via grefsup

12: end if
13: grefsup ← store the averaged vector of gsup

across gradient updates.
14: grefcon ← store the averaged vector of gcon

across gradient updates.
15: Gradient update of θ for the cumulative gra-

dients: gsup and gcon.
16: end while

rithms with constraints to semi-supervised learning.
For SRL and NLI tasks, we also utilized unlabeled
data during the training process. For SRL, we ran-
domly selected 3% of training data for unlabeled
data. For NLI, we utilized the unlabeled data used
in (Ahmed et al., 2022)4.

C Pseudo-code for projection based
integration mechanism

Algorithm 1 shows the detail pseudo-code for
projection-both mechanism. Pseudo-codes for
projection-sup and projection-con mechanisms are
variant of algorithm 1. For projection-sup, there is
no need to store grefcon , nor to calculate the dot prod-
uct between gsup and grefcon . Likewise, for projection-
con, there is no need to store grefsup, nor to calculate
the dot product between gcon and grefsup.

D Additional details about selected tasks
and implementations

D.1 SRL
The baseline employs the RoBERTa baseline model
(Liu et al., 2019), and two linear layers are added

4https://github.com/pylon-
lib/pylon/tree/master/examples/nli

11
492

after the last layer of RoBERTa. While the param-
eters of the RoBERTa model are fixed, only the
parameters of the last two linear layers are trained.

The model predicts one of 9 tags -
{O, B0, I0, ..., B3, I3} - and transforms
all other tags into O. During the training process,
3% of the data is randomly sampled from the
training data for use.

For the real type of constraint loss in REIN-
FORCE algorithm, the method employed to as-
sign rewards is based on the count of duplicates
in B. For all types of B-X that appear more than
once, we summed the occurrences of all number
of constraint-violated B-X and divided by the to-
tal sequence length, and this is multiplied by the
constraint loss.

D.2 NLI

The baseline employs the RoBERTa baseline model
(Liu et al., 2019), and two linear layers are added
after the last layer of RoBERTa. While the param-
eters of the RoBERTa model are fixed, only the
parameters of the last two linear layers are trained.
During training, 20% of the training data is ran-
domly sampled for use.

For the real type of constraint loss in REIN-
FORCE algorithm, the method employed to as-
sign rewards is based on the value in the PSL. In
cases where it violates constraints, the correspond-
ing PSL values are multiplied by the constraint
loss.

D.3 STE

The training data includes 3 to 6 instances of az’
and bz’ in the source language, generating a dataset
of 6000 instances. The test data comprises 3 to 8
instances of ‘az’ and ‘bz’ in the source language,
transformed into the target language. We utilize
seq2seq (Sutskever et al., 2014) LSTM for predic-
tion.

For the real type of constraint loss in REIN-
FORCE algorithm, the method employed to as-
sign rewards is a length-normalized quadratic:
(3xb − yb)

2/(len(x) + len(y)), where x and y re-
spectively represents the input and output, while
xb and yb respectively represents the number of
occurrences of ‘b’ in the input and output.

We don’t utilize a PSL type of constraint loss for
STE task. This is because expressing constraints
about the number of ‘b’ occurrences in input and
output is highly intricate for PSL. This constraint

serves as an example demonstrating the difficulty
of applying PSL to all types of constraints.

12
493

Figure 4: The Hβ-score values for different values of β for three tasks: NLI, STE and SRL. For each β, the top 5
experimental results with the highest Hβ-scores are presented for each of the five integration mechanisms described
in section §2.3.

13
494

Figure 5: The Hβ-score values for different values of β for three tasks: NLI, STE and SRL. For each β, the top
5 experimental results with the highest Hβ-scores are presented for each of the three types of constraint losses
described in section §2.1.

14
495

Figure 6: The Hβ-score values for different values of β for three tasks: NLI, STE and SRL. For each β, the top 5
experimental results with the highest Hβ-scores are presented for each of the five exploring strategies described in
section §2.2.

15
496

Task Top-1 Sampling-1 Sampling-5 Sampling-10 Exhaustive

Perf Const.Vio Perf Const.Vio Perf Const.Vio Perf Const.Vio Perf Const.Vio

NLI

Baseline Acc: 65.14
±00.30

, Const.Vio: 20.81
±02.57

soft

static 65.18
±00.35

04.72
±00.88

65.40
±00.40

03.60
±00.60

65.31
±00.26

02.23
±00.36

65.22
±00.40

02.29
±01.88

65.20
±00.34

01.95
±00.22

monotone (λ ↑) 65.21
±00.26

21.51
±03.03

65.20
±00.27

20.24
±02.09

65.30
±00.38

21.83
±01.74

65.33
±00.54

20.20
±01.67

65.20
±00.55

22.72
±02.05

Proj-Sup 65.28
±00.43

20.14
±02.99

65.05
±00.48

20.73
±01.61

65.26
±00.40

02.08
±00.38

65.38
±00.20

13.93
±02.55

65.36
±00.49

01.95
±00.41

Proj-Con 65.46
±00.27

03.05
±00.42

65.23
±00.40

03.54
±00.74

65.05
±00.26

02.40
±00.33

65.48
±00.28

∗ 01.73
±00.17

65.30
±00.29

02.50
±00.36

Proj-Both 65.20
±00.40

17.45
±03.13

65.41
±00.29

06.16
±01.75

65.39
±00.21

08.19
±05.04

65.23
±00.32

01.17
±00.84

∗ 65.40
±00.43

21.30
±03.29

binary

static 65.20
±00.38

02.45
±02.65

64.23
±00.44

03.24
±05.29

63.26
±00.38

17.02
±11.67

63.26
±00.49

24.72
±02.40

- -

monotone (λ ↑) 65.36
±00.31

20.30
±03.38

65.10
±00.29

22.66
±02.66

65.16
±00.37

22.00
±01.78

65.29
±00.36

21.32
±02.74

- -

Proj-Sup 65.21
±00.35

14.73
±03.30

65.25
±00.47

07.06
±01.66

65.22
±00.23

02.25
±00.20

65.18
±00.25

07.80
±04.97

- -

Proj-Con 65.11
±00.49

07.49
±06.08

65.42
±00.19

11.80
±02.43

65.25
±00.35

02.57
±00.16

65.33
±00.24

20.40
±03.01

- -

Proj-Both 65.16
±00.28

19.76
±02.85

65.05
±00.34

02.11
±00.28

65.23
±00.41

02.10
±00.37

65.14
±00.49

02.18
±00.33

- -

real

static 65.26
±00.24

20.60
±01.29

64.66
±00.34

01.92
±00.90

63.28
±00.44

23.82
±01.89

63.26
±00.30

22.72
±07.16

- -

monotone (λ ↑) 65.42
±00.21

21.45
±01.88

65.14
±00.49

20.97
±02.25

65.26
±00.38

21.36
±02.26

65.26
±00.38

21.23
±03.68

- -

Proj-Sup 65.26
±00.26

22.93
±01.96

65.21
±00.25

22.70
±02.23

65.11
±00.39

20.68
±02.76

65.51
±00.48

21.65
±02.03

- -

Proj-Con 65.27
±00.32

20.98
±01.67

65.33
±00.36

08.75
±01.86

65.04
±00.24

02.39
±00.36

65.49
±00.38

01.78
±00.20

- -

Proj-Both 65.09
±00.34

23.21
±01.27

65.15
±00.31

07.04
±02.77

65.40
±00.39

09.33
±03.42

65.29
±00.26

20.40
±03.62

- -

STE

Baseline Tok-Acc: 67.26
±02.26

, Const.Vio: 28.89
±10.07

binary

static 69.98
±00.43

29.35
±12.11

73.59
±02.37

18.83
±12.72

69.35
±02.20

33.32
±06.73

69.68
±03.22

29.87
±17.58

- -

monotone (λ ↑) 67.17
±06.42

26.93
±13.09

71.03
±05.72

33.55
±11.46

69.43
±03.79

24.89
±11.15

71.07
±04.63

21.74
±08.34

- -

Proj-Sup 43.55
±04.03

93.87
±03.65

75.01
±05.90

10.86
±07.28

69.19
±03.67

26.21
±16.22

71.81
±02.96

26.38
±17.69

- -

Proj-Con 49.64
±03.27

98.40
±02.10

73.58
±03.97

22.18
±16.16

74.96
±06.76

22.71
±16.42

77.48
±08.92

19.08
±14.79

- -

Proj-Both 51.19
±01.70

98.77
±02.08

70.71
±03.92

23.43
±12.72

68.51
±03.34

26.62
±10.77

68.94
±02.20

26.06
±15.75

- -

real

static 67.77
±04.25

30.18
±12.86

70.16
±03.03

22.18
±12.04

70.30
±04.02

10.86
±07.53

∗ 78.13
±05.00

15.37
±11.15

- -

monotone (λ ↑) 63.73
±04.43

22.92
±13.45

60.74
±02.93

51.79
±34.51

69.91
±03.29

19.07
±13.41

71.53
±03.74

21.99
±13.05

- -

Proj-Sup 46.30
±04.91

94.17
±04.92

54.32
±02.47

98.86
±01.72

73.02
±04.14

15.04
±08.75

72.55
±02.49

18.36
±10.61

- -

Proj-Con 48.20
±03.88

95.29
±04.58

52.98
±01.16

99.74
±00.73

72.24
±03.04

14.26
±07.57

75.86
±03.16

18.66
±08.36

- -

Proj-Both 50.60
±02.60

98.68
±03.16

74.81
±05.59

17.40
±16.24

72.00
±04.31

15.03
±14.56

80.92
±04.24

∗ 12.91
±06.07

- -

SRL

Baseline F1: 84.72
±00.77

, Const.Vio: 20.43
±04.09

soft

static 85.24
±01.49

15.17
±02.04

85.02
±01.55

14.07
±03.02

85.21
±01.13

19.53
±02.80

85.15
±00.74

19.18
±36.95

85.31
±00.98

21.72
±04.61

monotone (λ ↑) 84.42
±01.07

18.53
±04.44

85.78
±01.46

∗ 14.40
±03.66

85.12
±01.23

16.38
±03.12

84.49
±01.16

05.73
±01.42

∗ 85.18
±00.81

15.97
±02.97

Proj-Sup 85.02
±00.98

20.79
±04.63

85.19
±01.24

20.23
±04.85

85.09
±01.03

19.59
±03.93

85.32
±01.26

15.86
±04.08

85.18
±00.97

18.73
±04.03

Proj-Con 84.96
±00.60

15.72
±01.23

85.24
±01.53

11.76
±02.44

85.07
±00.90

12.80
±02.85

84.58
±01.17

12.11
±03.61

84.31
±00.57

18.04
±04.01

Proj-Both 85.21
±01.21

21.86
±03.13

84.71
±01.06

12.11
±00.37

85.62
±01.68

17.68
±03.57

84.93
±02.06

10.66
±01.83

85.03
±01.11

17.64
±04.26

binary

static 85.20
±01.51

19.84
±00.66

85.52
±01.02

19.53
±02.34

85.19
±00.91

18.90
±02.91

84.71
±01.28

22.48
±04.34

- -

monotone (λ ↑) 84.51
±00.94

14.25
±02.93

84.36
±00.75

20.98
±05.88

85.23
±01.44

15.50
±03.37

85.19
±00.68

16.26
±04.40

- -

Proj-Sup 84.14
±01.05

21.20
±02.12

84.57
±01.20

19.99
±02.20

85.70
±01.01

22.44
±03.92

84.73
±00.57

19.05
±03.03

- -

Proj-Con 84.54
±00.71

21.28
±03.91

85.56
±01.23

19.62
±04.38

85.06
±01.03

19.79
±03.58

84.74
±00.86

19.23
±06.10

- -

Proj-Both 85.23
±00.77

20.36
±04.22

84.89
±01.36

19.14
±03.33

84.85
±01.014

19.46
±03.91

84.61
±00.63

21.09
±03.39

- -

real

static 85.05
±00.68

18.26
±03.21

85.12
±00.96

09.79
±03.15

85.33
±01.09

22.37
±04.43

84.85
±01.23

20.32
±04.10

monotone (λ ↑) 84.73
±00.78

21.99
±04.21

85.09
±00.96

23.78
±03.95

84.94
±01.29

19.61
±04.50

85.36
±01.14

20.00
±02.65

- -

Proj-Sup 85.19
±01.46

19.19
±04.13

85.09
±00.90

17.16
±04.40

84.87
±00.94

09.21
±02.60

85.29
±01.25

09.05
±02.20

- -

Proj-Con 85.06
±00.93

18.22
±04.32

84.31
±01.67

09.47
±04.19

85.19
±01.32

22.55
±05.09

85.11
±01.08

17.50
±03.98

- -

Proj-Both 85.05
±00.94

18.54
±04.55

85.25
±00.74

20.36
±04.28

84.54
±00.41

11.96
±02.87

84.33
±07.19

10.23
±03.35

- -

Table 3: Experiment results for all combinations. The gray-colored numbers represent results with main task metrics
and constraint violations worse than the baseline. For each type of constraint loss, results showing the highest main
task metric and lowest constraint violation are highlighted in bold. For individual task, the highest main task metric
and lowest constraint violation results are marked with an asterisk (*). In SRL and STE tasks, where the output
takes the form of more than one token, the method of selecting the class with the highest probability for each token
was employed for Top-1 strategy.

16
497

NLI Rules

R1 T =⇒ ent(X1, X1)
R2 con(X1, X2) =⇒ con(X2, X1)
R3 ent(X1, X2) =⇒ ¬con(X2, X1)
R4 neu(X1, X2) =⇒ ¬con(X2, X1)
R5 ent(X1, X2) ∧ ent(X2, X3) =⇒ ent(X1, X1)

Table 4: NLI Rules in (Minervini and Riedel, 2018).

17
498

