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Abstract

Research on understanding and generating di-001
agrams has used vision models such as CLIP.002
However, it remains unclear whether these mod-003
els accurately identify diagram attributes, such004
as node colors and shapes, along with edge005
colors and connection patterns. This study eval-006
uates how well vision models recognize the007
diagram attributes by probing the model and008
retrieving diagrams using text queries. Exper-009
imental results showed that while vision mod-010
els can recognize differences in node colors,011
shapes, and edge colors, they struggle to iden-012
tify differences in edge connection patterns that013
play a pivotal role in the semantics of diagrams.014
Moreover, we revealed inadequate alignment015
between diagram attributes and language repre-016
sentations in the embedding space.017

1 Introduction018

Diagrams, as visual representations of organized019

information, play a crucial role in effective com-020

munication. By combining symbols such as shapes021

and text, diagrams masterfully convey complex in-022

formation that might prove challenging to commu-023

nicate through text alone. Hence, they are widely024

used in various fields, including business (Havemo,025

2018), education (Kembhavi et al., 2016), and aca-026

demic research (Purchase, 2014).027

The widespread usage has attracted significant028

research interest aimed at understanding diagrams029

such as captioning (Hsu et al., 2021; Li et al., 2024),030

visual question answering (VQA) (Kahou et al.,031

2018; Chaudhry et al., 2019; Wang et al., 2024),032

and the automatic generation of diagrams based on033

text (Rodriguez et al., 2023; Belouadi et al., 2023;034

Zala et al., 2023). This research faces challenges,035

including understanding geometric shapes and eval-036

uating alignment between text and diagrams. Ad-037

dressing these challenges requires the development038

of models that accurately capture the attributes of039

diagrams and properly align them with language.040
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Figure 1: Overview of this study. We examined the
extent to which vision models capture the diagram at-
tributes by probing various layers of the vision mod-
els. We also investigated whether the diagrams cor-
rectly aligned with their textual descriptions through
text-based image retrieval.

However, it remains unclear whether vision mod- 041

els capture the attributes of diagrams, such as nodes 042

and edges, and align them with language. For 043

example, diagram comprehension tasks often em- 044

ploy CLIP (Radford et al., 2021) as a visual en- 045

coder. In previous studies, the extent to which 046

visual encoders, such as CLIP, can recognize im- 047

age attributes (e.g., time and object location) has 048

only been done for natural images (Zhang et al., 049

2024; Lewis et al., 2024). Therefore, the challenge 050

of whether CLIP can adequately encode diagram 051

features remains. 052

We investigated how well two widely used vision 053

models (CLIP and BLIP (Li et al., 2022)) can cap- 054

ture the attributes of diagrams and align them with 055

language. As shown in Figure 1, we artificially 056

created directed graph-based diagrams as inputs 057

to vision models to perform refined experiments 058

on data with rigorously controlled distributions, 059

which is difficult with manually generated data.1 060

We used all layers of the vision models to ascertain 061

whether differences in diagram attributes, such as 062

node color and edge or connection patterns, are re- 063

1This dataset and our codes will be publicly available after
this paper is accepted to the conference.
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flected in feature representations. Furthermore, we064

conducted text-based image retrieval to examine065

whether the diagram attributes correctly correspond066

to their textual descriptions.067

The experimental results revealed that the vision068

models capture attributes such as colors and shapes069

but not edge connection patterns. Additionally, we070

found that attributes such as node color are not071

correctly aligned with their textual descriptions.072

Our results indicate that models specialized for073

diagrams are essential for building a model that074

correctly understands diagrams and for accurately075

evaluating generated diagrams.076

2 Experimental Design077

We perform probing to examine how well the vi-078

sion models recognize the attributes of diagrams,079

and we perform text-based diagram retrieval to ex-080

amine whether the models align these attributes081

with language.082

Diagrams are characterized by elements repre-083

sented by symbols such as nodes or text, and the084

relationships between these elements (von Engel-085

hardt, 2002; Kembhavi et al., 2016). These rela-086

tionships are explicitly represented by connecting087

elements with arrows or enclosing multiple ele-088

ments together. In other words, diagrams can be089

considered to have a structure similar to a graph.090

2.1 Target Diagrams091

We focus on diagrams that can be modeled using di-092

rected graphs and investigate whether vision mod-093

els can recognize nodes and edges. In directed094

graph-based diagrams, nodes and edges have at-095

tributes such as color and shape, and differences in096

these attributes visually distinguish various infor-097

mation. In addition, the edge connection pattern098

plays a pivotal role in determining the semantics of099

a diagram.100

We define four attributes for directed graph-101

based diagrams: node color, node shape, edge102

color, and edge connection pattern. We then cre-103

ate a dataset of directed graphs with three nodes104

and evaluate how well vision models recognize105

these attributes.106

2.2 Dataset Construction107

For each attribute, we define multiple values.108

Specifically, we prepare five values each for node109

color, node shape, and edge color, twenty-seven110

values for edge connection patterns (i.e., edge ex-111

istence and direction), and ten values for node po- 112

sitions. We create 33,750 diagrams by taking the 113

Cartesian product of these. See §A for details. 114

3 Probing 115

3.1 Experimental Settings 116

We conduct probing using classification models to 117

investigate how well vision models recognize the 118

attributes of diagrams. We construct a classification 119

model to predict the value of a diagram (e.g., red 120

node or blue node) using features extracted from 121

vision models. Based on the performance of the 122

classification models, we evaluate how well the vi- 123

sion models can capture the attributes of diagrams. 124

As features, we use the hidden states from all 125

layers of the vision models, which are applied av- 126

erage pooling over the sequence, along with the 127

output embeddings. We believe that examining all 128

model layers makes it possible to analyze model 129

characteristics that are difficult to understand by 130

only analyzing the output embeddings. For ex- 131

ample, we can conduct a detailed analysis of the 132

model’s internals, such as determining which layer 133

acquires specific information and whether the ac- 134

quired information is subsequently lost. 135

Probing Method Based on previous re- 136

search (Heinzerling and Inui, 2024), we construct a 137

regression-based classification model using partial 138

least squares (PLS; Wold et al. (2001)) regression. 139

PLS regression is a linear regression analysis 140

method that employs dimensionality-reduced 141

explanatory variables. Unlike principal component 142

analysis (PCA; Pearson (1901)), PLS regression 143

reduces dimensions by maximizing the covariance 144

between explanatory variables and objective 145

variables. This allows for the selective extraction 146

of information from the explanatory variables by 147

determining appropriate objective variables. 148

In PLS regression, we input the feature matrix 149

X ∈ Rn×h of n samples and labels y ∈ Rn cor- 150

responding to the diagram values as either 0 or 1 151

(e.g., red node or blue node), to obtain a function 152

f : Rh → R (Equation 1). 153

f = PLSRegression(X, y) (1) 154

The function f takes the feature xi of a diagram as 155

input and returns a real value ri. 156

The output of f is discretized into 0 or 1 using g 157

(Equation 2) with a threshold of τ = 0.5 to obtain 158
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Figure 2: Probing results (Top: CLIP, Bottom: BLIP). The horizontal axis (layer) indicates the vision model’s layers,
and the vertical axis (n_components) represents the number of components after PLS regression dimensionality
reduction. “Out.” means output embeddings.

the predicted labels ŷi (Equation 3).159

g(r) =

{
1 (r ≥ τ)

0 (r < τ)
(2)160

ŷi = g(f(ti)) (3)161

We then compute the accuracy between the pre-162

dicted and ground truth labels to evaluate the per-163

formance of the classification model.164

The aforementioned analysis is applied to all hid-165

den states and output embeddings of the models.166

Additionally, by changing the number of compo-167

nents and conducting PLS regression, we analyze168

how many dimensions of a linear subspace the in-169

formation on specific attributes is encoded.170

Procedure For each attribute, we select two val-171

ues. We train a model to classify between the two172

values using the features of diagrams from vision173

models as input. This classification model training174

is performed for all combinations of values. The175

average performance (i.e., accuracy) on the evalua-176

tion data for all trained models is regarded as the177

probing result for that attribute.178

Dataset We prepare training and evaluation sets179

by splitting the subset of diagrams containing the180

two values into an 8:2 ratio. See §B.2 for hyperpa-181

rameters.182

Models We use CLIP (Radford et al., 2021) and183

BLIP (Li et al., 2022) as models to compute fea-184

tures of diagrams. Both models learn multimodal185

representations of images and language and are186

widely used as vision encoders.187

3.2 Results 188

Figure 2 shows the results of probing. 189

Color and shape information is retained in most 190

layers and output embeddings. Both models 191

achieved high accuracy across most layers and em- 192

beddings for node color, node shape, and edge 193

color. This suggests that both models capture in- 194

formation on these attributes in the early layers. 195

Furthermore, achieving high accuracy with few 196

components indicates that this information is re- 197

tained in a low-dimensional subspace. 198

The information about edge connection patterns 199

may not be retained in the output embeddings. 200

Both models showed lower accuracy in the output 201

embeddings for edge existence and direction than 202

other attributes, suggesting that the information on 203

these attributes might not be encoded in the output 204

embeddings. Furthermore, the accuracy of the hid- 205

den states showed different trends for each model. 206

BLIP consistently exhibited low accuracy across all 207

layers, whereas CLIP achieved relatively high ac- 208

curacy in the early layers, which then decreased in 209

later layers. These results indicate that CLIP may 210

lose information encoded in the early layers or en- 211

code it into complex, high-dimensional subspaces 212

that are difficult to extract as the layers progress. 213

The linear layer may reduce the dimensions 214

of the subspace retaining information BLIP 215

achieved higher accuracy in classifying node shape 216

and edge color using output embeddings with fewer 217

components than using hidden states at the last 218
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layer. This result indicates that the linear projec-219

tion used to compute the output embeddings from220

the hidden states might contribute to encoding the221

information on node shape and edge color into a222

lower-dimensional subspace.223

4 Text-based Diagram Retrieval224

mAP@100 MRR@100

node edge node edge

color shape color conn. color shape color conn.

Rand. .234 .234 .234 .362 .405 .405 .405 .550
CLIP .868 .595 .513 .313 .907 .602 .685 .419
BLIP .208 .206 .212 .394 .233 .241 .315 .485

Table 1: Results of text-based diagram retrieval. Scores
for Rand. are chance rates. “conn.” means edge connec-
tion patterns.

4.1 Experimental Settings225

We perform text-based diagram retrieval to investi-226

gate whether the vision models properly align the227

diagram attributes with language.228

We use the same set of diagrams D =229

{d1, d2, . . . , d32750} described in §2 as the re-230

trieval target and the caption c that describes the231

diagrams as the query. We use CLIP and BLIP as232

vision models. The diagrams and captions are fed233

into the vision model to obtain the diagram features234

vdi , and the caption features vc. For each diagram,235

we compute the cosine similarity cos(vdi , vc) with236

the caption, selecting the top 100 diagrams based237

on the highest similarity scores as the retrieval re-238

sults.239

Queries For queries, we create captions that de-240

scribe the diagrams. Each caption specifies the241

value of diagrams (e.g., A directed graph with red242

nodes.). As described in §2, there are five values243

each for node color, node shape, and edge color.244

There are also three values for edge connection pat-245

terns: no edge, an edge directed forward (e.g., from246

node A to B), and an edge directed backward (e.g.,247

from node B to A).248

To ensure diversity, we use GPT-3.5 (OpenAI,249

2022) to paraphrase and generate 10 captions for250

each value. We manually correct captions that are251

not properly paraphrased. See §C.1 for an example252

of captions.253

Evaluation Metrics We evaluate retrieval re-254

sults using mean average precision (mAP) (Ev-255

eringham et al., 2010) and mean reciprocal rank 256

(MRR) (Craswell, 2009) for each diagram attribute. 257

4.2 Results 258

Table 1 shows the results of retrieval. 259

CLIP generally aligns colors and shapes with 260

language CLIP outperformed the chance rate 261

across all metrics for node color, node shape, and 262

edge color. However, the scores for edge connec- 263

tion patterns were comparable to the chance rate. 264

These findings align broadly with the results from 265

probing described in Section 3.2. 266

BLIP’s performance was consistently at or be- 267

low the chance rate across all attributes, suggesting 268

a misalignment between the attributes and the lan- 269

guage. Furthermore, the MRR scores for node 270

color, node shape, and edge color underperformed 271

relative to the chance rate. To understand the rea- 272

son behind this, we analyzed the retrieved diagrams. 273

We found that the top 100 retrieved diagrams ex- 274

cessively include those with a specific value (e.g., 275

diagrams with white nodes). This indicates that 276

there is a bias resulting in disproportionately high 277

similarity for diagrams with specific values. See 278

§C.2 for more details. Identifying the cause of this 279

bias is a task for future work. 280

5 Conclusion 281

We conducted probing and text-based diagram re- 282

trieval experiments to investigate how well com- 283

monly used vision models recognize diagram at- 284

tributes and align them appropriately with language. 285

Our findings indicate that, while these models can 286

identify differences in color and shape, they strug- 287

gle with more semantic attributes such as edge con- 288

nection patterns. Furthermore, we have also iden- 289

tified open issues related to language alignment, 290

such as the effects of bias on specific diagrams. 291

Our next goal is to develop a model that is better 292

capable of encoding diagram attributes, including 293

edge connection patterns, into a unified embedding 294

space. To accomplish this effectively, we plan to 295

study sophisticated ways to train vision models 296

with diagram datasets. Once we establish such 297

a comprehensive vision encoder that is fully ca- 298

pable of diagram embeddings, we can use it as a 299

solid basis to explore downstream diagram under- 300

standing tasks such as captioning and VQA and the 301

automatic evaluation metrics for text-to-diagram 302

generation. 303
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A Dataset Details412

Table 2 shows the values of each attribute of dia-413

grams.414

B Probing Details415

B.1 Subset of Dataset416

Table 3 shows the size of subsets of the dataset in417

probing.418

B.2 Regression Model Training419

We used the PLSRegression class from scikit-learn420

to train regression models. Table 4 shows the hy-421

perparameters.422

C Retrieval Details423

C.1 Caption Examples424

Table 5 shows examples of captions used for the425

retrieval task.426

C.2 Examples of Actual Retrieval Results427

For each model, the top 100 diagrams with the high-428

est cosine similarities are shown in Figure 4, 5, 6,429

and 7. Figure 5 and 7 indicate a bias in BLIP’s430

retrieval results.431
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attribute values number of values

node color white, red, blue, green, yellow 5
node shape circle, triangle, square, pentagon, hexagon 5
edge color black, red, blue, green, yellow 5
edge connection pattern (no edge, forward, backward) × 3 node pairs 27

Table 2: Variations in the values of each attribute.

Figure 3: Diagrams included in our dataset.

node edge

color shape color conn.

13,500 13,500 13,000† 22,500

Table 3: Subset size of the dataset in probing. † For edge
color classification, we excluded data with no edges,
resulting in fewer data samples than those of node color
and node shape classification.

number of samples 80% of subset
scale True
max_iter 500
tol 1e-06
copy True

Table 4: Hyperparameters for PLS regression.
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attribute=value caption

node color=white

A directed graph with white nodes.
A diagram featuring nodes in white.
An image with nodes that are white.
A graph where the nodes are in white color.
In this graph the nodes are depicted in white.
The diagram includes nodes colored white.
The graph displays nodes that are white in color.
The graph contains nodes that are white in color.
The nodes in the graph are white.
An illustration featuring white-colored nodes in the graph.

node shape=circle

A graph with circular nodes.
A diagram featuring nodes that are circular in shape.
In this graph the nodes are represented as circles.
The graph includes nodes with a circular form.
Circular nodes are present in the graph.
Nodes within the graph are depicted as circles.
A visual representation featuring circular nodes in the graph.
On the graph nodes are displayed in a circular fashion.
The nodes in the graph take on a circular appearance.
The graph displays nodes that are circular in nature.

edge color=black

A directed graph with a black edge.
A graph displaying a directed connection with a black edge.
An image of a directed graph featuring one black edge.
In this directed graph there is a single black edge.
A diagram showing a directed link with a black arrow.
The graph includes a black edge indicating direction.
A visual representation of a directed relationship using a black edge.
A single black edge signifies direction in the graph.
The graph features a directed connection represented by a black edge.
Within the directed graph there is a solitary black edge denoting direction.

edge direction=A → B

A directed graph with an edge stretched from A to B.
A graph where there’s a directed edge extending from point A to point B.
An edge pointing from A to B in a directed graph.
In a directed graph there’s an edge connecting A to B.
A graph displaying a directional connection from A to B.
The graph has a directed link that runs from A to B.
An arrow indicates the direction from A to B on the graph.
A visual representation showing a directed path from A to B.
The graph has a directed edge from A to B.
There is an edge stretching from A to B in the diagram.

Table 5: Examples of captions used as a query for retrieval.
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Figure 4: A retrieval result of CLIP for the caption “A directed graph with red nodes.”. All top 100 diagrams have
red nodes, consistent with the caption description.
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Figure 5: A retrieval result of BLIP for the caption “A directed graph with red nodes.”. None of the top 100 diagrams
have red nodes; instead, they predominantly consist of white and blue nodes.
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Figure 6: A retrieval result of CLIP for the caption “A directed graph with an edge stretched from A to B.”. This
result includes diagrams with edges directed from A to B, diagrams with edges directed from B to A, and diagrams
with no edge between A and B. Therefore, these results do not align with the content of the caption.
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Figure 7: A retrieval result of BLIP for the caption “A directed graph with an edge stretched from A to B.”. This
result includes diagrams with edges directed from A to B, diagrams with edges directed from B to A, and diagrams
with no edge between A and B. Therefore, these results do not align with the content of the caption. Similar to the
results in Figure 5, the top 100 diagrams consisted solely of white and blue nodes.
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