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Abstract

Research on understanding and generating di-
agrams has used vision models such as CLIP.
However, it remains unclear whether these mod-
els accurately identify diagram attributes, such
as node colors and shapes, along with edge
colors and connection patterns. This study eval-
uates how well vision models recognize the
diagram attributes by probing the model and
retrieving diagrams using text queries. Exper-
imental results showed that while vision mod-
els can recognize differences in node colors,
shapes, and edge colors, they struggle to iden-
tify differences in edge connection patterns that
play a pivotal role in the semantics of diagrams.
Moreover, we revealed inadequate alignment
between diagram attributes and language repre-
sentations in the embedding space.

1 Introduction

Diagrams, as visual representations of organized
information, play a crucial role in effective com-
munication. By combining symbols such as shapes
and text, diagrams masterfully convey complex in-
formation that might prove challenging to commu-
nicate through text alone. Hence, they are widely
used in various fields, including business (Havemo,
2018), education (Kembhavi et al., 2016), and aca-
demic research (Purchase, 2014).

The widespread usage has attracted significant
research interest aimed at understanding diagrams
such as captioning (Hsu et al., 2021; Li et al., 2024),
visual question answering (VQA) (Kahou et al.,
2018; Chaudhry et al., 2019; Wang et al., 2024),
and the automatic generation of diagrams based on
text (Rodriguez et al., 2023; Belouadi et al., 2023;
Zala et al., 2023). This research faces challenges,
including understanding geometric shapes and eval-
uating alignment between text and diagrams. Ad-
dressing these challenges requires the development
of models that accurately capture the attributes of
diagrams and properly align them with language.
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Figure 1: Overview of this study. We examined the
extent to which vision models capture the diagram at-
tributes by probing various layers of the vision mod-
els. We also investigated whether the diagrams cor-
rectly aligned with their textual descriptions through
text-based image retrieval.

However, it remains unclear whether vision mod-
els capture the attributes of diagrams, such as nodes
and edges, and align them with language. For
example, diagram comprehension tasks often em-
ploy CLIP (Radford et al., 2021) as a visual en-
coder. In previous studies, the extent to which
visual encoders, such as CLIP, can recognize im-
age attributes (e.g., time and object location) has
only been done for natural images (Zhang et al.,
2024; Lewis et al., 2024). Therefore, the challenge
of whether CLIP can adequately encode diagram
features remains.

We investigated how well two widely used vision
models (CLIP and BLIP (Li et al., 2022)) can cap-
ture the attributes of diagrams and align them with
language. As shown in Figure 1, we artificially
created directed graph-based diagrams as inputs
to vision models to perform refined experiments
on data with rigorously controlled distributions,
which is difficult with manually generated data.'
We used all layers of the vision models to ascertain
whether differences in diagram attributes, such as
node color and edge or connection patterns, are re-

IThis dataset and our codes will be publicly available after
this paper is accepted to the conference.
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flected in feature representations. Furthermore, we
conducted text-based image retrieval to examine
whether the diagram attributes correctly correspond
to their textual descriptions.

The experimental results revealed that the vision
models capture attributes such as colors and shapes
but not edge connection patterns. Additionally, we
found that attributes such as node color are not
correctly aligned with their textual descriptions.
Our results indicate that models specialized for
diagrams are essential for building a model that
correctly understands diagrams and for accurately
evaluating generated diagrams.

2 Experimental Design

We perform probing to examine how well the vi-
sion models recognize the attributes of diagrams,
and we perform text-based diagram retrieval to ex-
amine whether the models align these attributes
with language.

Diagrams are characterized by elements repre-
sented by symbols such as nodes or text, and the
relationships between these elements (von Engel-
hardt, 2002; Kembhavi et al., 2016). These rela-
tionships are explicitly represented by connecting
elements with arrows or enclosing multiple ele-
ments together. In other words, diagrams can be
considered to have a structure similar to a graph.

2.1 Target Diagrams

We focus on diagrams that can be modeled using di-
rected graphs and investigate whether vision mod-
els can recognize nodes and edges. In directed
graph-based diagrams, nodes and edges have at-
tributes such as color and shape, and differences in
these attributes visually distinguish various infor-
mation. In addition, the edge connection pattern
plays a pivotal role in determining the semantics of
a diagram.

We define four attributes for directed graph-
based diagrams: node color, node shape, edge
color, and edge connection pattern. We then cre-
ate a dataset of directed graphs with three nodes
and evaluate how well vision models recognize
these attributes.

2.2 Dataset Construction

For each attribute, we define multiple values.
Specifically, we prepare five values each for node
color, node shape, and edge color, twenty-seven
values for edge connection patterns (i.e., edge ex-

istence and direction), and ten values for node po-
sitions. We create 33,750 diagrams by taking the
Cartesian product of these. See §A for details.

3 Probing

3.1 Experimental Settings

We conduct probing using classification models to
investigate how well vision models recognize the
attributes of diagrams. We construct a classification
model to predict the value of a diagram (e.g., red
node or blue node) using features extracted from
vision models. Based on the performance of the
classification models, we evaluate how well the vi-
sion models can capture the attributes of diagrams.

As features, we use the hidden states from all
layers of the vision models, which are applied av-
erage pooling over the sequence, along with the
output embeddings. We believe that examining all
model layers makes it possible to analyze model
characteristics that are difficult to understand by
only analyzing the output embeddings. For ex-
ample, we can conduct a detailed analysis of the
model’s internals, such as determining which layer
acquires specific information and whether the ac-
quired information is subsequently lost.

Probing Method Based on previous re-
search (Heinzerling and Inui, 2024), we construct a
regression-based classification model using partial
least squares (PLS; Wold et al. (2001)) regression.
PLS regression is a linear regression analysis
method that employs dimensionality-reduced
explanatory variables. Unlike principal component
analysis (PCA; Pearson (1901)), PLS regression
reduces dimensions by maximizing the covariance
between explanatory variables and objective
variables. This allows for the selective extraction
of information from the explanatory variables by
determining appropriate objective variables.

In PLS regression, we input the feature matrix
X € R™ " of n samples and labels y € R™ cor-
responding to the diagram values as either O or 1
(e.g., red node or blue node), to obtain a function
f : R" — R (Equation 1).

f = PLSRegression(X, y) (1)

The function f takes the feature x; of a diagram as
input and returns a real value 7;.

The output of f is discretized into 0 or 1 using g
(Equation 2) with a threshold of 7 = 0.5 to obtain
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Figure 2: Probing results (Top: CLIP, Bottom: BLIP). The horizontal axis (layer) indicates the vision model’s layers,
and the vertical axis (n_components) represents the number of components after PLS regression dimensionality

reduction. “Out.” means output embeddings.

the predicted labels §; (Equation 3).

)1 (r>r)
g(r) = {0 (r < 1) 2)
vi = g(f(t:)) (3)

We then compute the accuracy between the pre-
dicted and ground truth labels to evaluate the per-
formance of the classification model.

The aforementioned analysis is applied to all hid-
den states and output embeddings of the models.
Additionally, by changing the number of compo-
nents and conducting PLS regression, we analyze
how many dimensions of a linear subspace the in-
formation on specific attributes is encoded.

Procedure For each attribute, we select two val-
ues. We train a model to classify between the two
values using the features of diagrams from vision
models as input. This classification model training
is performed for all combinations of values. The
average performance (i.e., accuracy) on the evalua-
tion data for all trained models is regarded as the
probing result for that attribute.

Dataset We prepare training and evaluation sets
by splitting the subset of diagrams containing the
two values into an 8:2 ratio. See §B.2 for hyperpa-
rameters.

Models We use CLIP (Radford et al., 2021) and
BLIP (Li et al., 2022) as models to compute fea-
tures of diagrams. Both models learn multimodal
representations of images and language and are
widely used as vision encoders.

3.2 Results

Figure 2 shows the results of probing.

Color and shape information is retained in most
layers and output embeddings. Both models
achieved high accuracy across most layers and em-
beddings for node color, node shape, and edge
color. This suggests that both models capture in-
formation on these attributes in the early layers.
Furthermore, achieving high accuracy with few
components indicates that this information is re-
tained in a low-dimensional subspace.

The information about edge connection patterns
may not be retained in the output embeddings.
Both models showed lower accuracy in the output
embeddings for edge existence and direction than
other attributes, suggesting that the information on
these attributes might not be encoded in the output
embeddings. Furthermore, the accuracy of the hid-
den states showed different trends for each model.
BLIP consistently exhibited low accuracy across all
layers, whereas CLIP achieved relatively high ac-
curacy in the early layers, which then decreased in
later layers. These results indicate that CLIP may
lose information encoded in the early layers or en-
code it into complex, high-dimensional subspaces
that are difficult to extract as the layers progress.

The linear layer may reduce the dimensions
of the subspace retaining information BLIP
achieved higher accuracy in classifying node shape
and edge color using output embeddings with fewer
components than using hidden states at the last
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layer. This result indicates that the linear projec-
tion used to compute the output embeddings from
the hidden states might contribute to encoding the
information on node shape and edge color into a
lower-dimensional subspace.

4 Text-based Diagram Retrieval

mAP@100 MRR @100

node edge node edge

color shape color conn. color shape color conn.

Rand. .234 234 234 362 .405 .405 .405 .550
CLIP .868 .595 .513 .313 .907 .602 .685 .419
BLIP .208 .206 .212 .394 .233 .241 315 .485

Table 1: Results of text-based diagram retrieval. Scores
for Rand. are chance rates. “conn.” means edge connec-
tion patterns.

4.1 Experimental Settings

We perform text-based diagram retrieval to investi-
gate whether the vision models properly align the
diagram attributes with language.

We use the same set of diagrams D =
{dy, da, ..., d3a750} described in §2 as the re-
trieval target and the caption c that describes the
diagrams as the query. We use CLIP and BLIP as
vision models. The diagrams and captions are fed
into the vision model to obtain the diagram features
vg,, and the caption features v... For each diagram,
we compute the cosine similarity cos(vg,, v.) with
the caption, selecting the top 100 diagrams based
on the highest similarity scores as the retrieval re-
sults.

Queries For queries, we create captions that de-
scribe the diagrams. Each caption specifies the
value of diagrams (e.g., A directed graph with red
nodes.). As described in §2, there are five values
each for node color, node shape, and edge color.
There are also three values for edge connection pat-
terns: no edge, an edge directed forward (e.g., from
node A to B), and an edge directed backward (e.g.,
from node B to A).

To ensure diversity, we use GPT-3.5 (OpenAl,
2022) to paraphrase and generate 10 captions for
each value. We manually correct captions that are
not properly paraphrased. See §C.1 for an example
of captions.

Evaluation Metrics We evaluate retrieval re-
sults using mean average precision (mAP) (Ev-

eringham et al., 2010) and mean reciprocal rank
(MRR) (Craswell, 2009) for each diagram attribute.

4.2 Results

Table 1 shows the results of retrieval.

CLIP generally aligns colors and shapes with
language CLIP outperformed the chance rate
across all metrics for node color, node shape, and
edge color. However, the scores for edge connec-
tion patterns were comparable to the chance rate.
These findings align broadly with the results from
probing described in Section 3.2.

BLIP’s performance was consistently at or be-
low the chance rate across all attributes, suggesting
a misalignment between the attributes and the lan-
guage. Furthermore, the MRR scores for node
color, node shape, and edge color underperformed
relative to the chance rate. To understand the rea-
son behind this, we analyzed the retrieved diagrams.
We found that the top 100 retrieved diagrams ex-
cessively include those with a specific value (e.g.,
diagrams with white nodes). This indicates that
there is a bias resulting in disproportionately high
similarity for diagrams with specific values. See
§C.2 for more details. Identifying the cause of this
bias is a task for future work.

5 Conclusion

We conducted probing and text-based diagram re-
trieval experiments to investigate how well com-
monly used vision models recognize diagram at-
tributes and align them appropriately with language.
Our findings indicate that, while these models can
identify differences in color and shape, they strug-
gle with more semantic attributes such as edge con-
nection patterns. Furthermore, we have also iden-
tified open issues related to language alignment,
such as the effects of bias on specific diagrams.

Our next goal is to develop a model that is better
capable of encoding diagram attributes, including
edge connection patterns, into a unified embedding
space. To accomplish this effectively, we plan to
study sophisticated ways to train vision models
with diagram datasets. Once we establish such
a comprehensive vision encoder that is fully ca-
pable of diagram embeddings, we can use it as a
solid basis to explore downstream diagram under-
standing tasks such as captioning and VQA and the
automatic evaluation metrics for text-to-diagram
generation.
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A Dataset Details

Table 2 shows the values of each attribute of dia-
grams.

B Probing Details
B.1 Subset of Dataset

Table 3 shows the size of subsets of the dataset in
probing.
B.2 Regression Model Training

We used the PLSRegression class from scikit-learn
to train regression models. Table 4 shows the hy-
perparameters.

C Retrieval Details

C.1 Caption Examples

Table 5 shows examples of captions used for the
retrieval task.

C.2 Examples of Actual Retrieval Results

For each model, the top 100 diagrams with the high-
est cosine similarities are shown in Figure 4, 5, 6,
and 7. Figure 5 and 7 indicate a bias in BLIP’s
retrieval results.
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attribute values number of values

node color white, red, blue, green, yellow 5
node shape circle, triangle, square, pentagon, hexagon 5
edge color black, red, blue, green, yellow 5
edge connection pattern (no edge, forward, backward) x 3 node pairs 27

Table 2: Variations in the values of each attribute.

O &l 7'\ (]

Figure 3: Diagrams included in our dataset.

node edge

color  shape color conn.

13,500 13,500 13,0007 22,500

Table 3: Subset size of the dataset in probing. T For edge
color classification, we excluded data with no edges,
resulting in fewer data samples than those of node color
and node shape classification.

number of samples 80% of subset

scale True
max_iter 500
tol 1e-06
copy True

Table 4: Hyperparameters for PLS regression.
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attribute=value caption

A directed graph with white nodes.

A diagram featuring nodes in white.

An image with nodes that are white.

A graph where the nodes are in white color.

In this graph the nodes are depicted in white.

The diagram includes nodes colored white.

The graph displays nodes that are white in color.

The graph contains nodes that are white in color.

The nodes in the graph are white.

An illustration featuring white-colored nodes in the graph.

node color=white

A graph with circular nodes.

A diagram featuring nodes that are circular in shape.

In this graph the nodes are represented as circles.

The graph includes nodes with a circular form.

Circular nodes are present in the graph.

Nodes within the graph are depicted as circles.

A visual representation featuring circular nodes in the graph.
On the graph nodes are displayed in a circular fashion.

The nodes in the graph take on a circular appearance.

The graph displays nodes that are circular in nature.

node shape=circle

A directed graph with a black edge.

A graph displaying a directed connection with a black edge.

An image of a directed graph featuring one black edge.

In this directed graph there is a single black edge.

A diagram showing a directed link with a black arrow.

The graph includes a black edge indicating direction.

A visual representation of a directed relationship using a black edge.

A single black edge signifies direction in the graph.

The graph features a directed connection represented by a black edge.
Within the directed graph there is a solitary black edge denoting direction.

edge color=black

A directed graph with an edge stretched from A to B.

A graph where there’s a directed edge extending from point A to point B.
An edge pointing from A to B in a directed graph.

In a directed graph there’s an edge connecting A to B.

A graph displaying a directional connection from A to B.

The graph has a directed link that runs from A to B.

An arrow indicates the direction from A to B on the graph.

A visual representation showing a directed path from A to B.

The graph has a directed edge from A to B.

There is an edge stretching from A to B in the diagram.

edge direction=A — B

Table 5: Examples of captions used as a query for retrieval.
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have red nodes; instead, they predominantly consist of white and blue nodes.
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result includes diagrams with edges directed from A to B, diagrams with edges directed from B to A, and diagrams
with no edge between A and B. Therefore, these results do not align with the content of the caption.
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Figure 7: A retrieval result of BLIP for the caption “A directed graph with an edge stretched from A to B.”. This
result includes diagrams with edges directed from A to B, diagrams with edges directed from B to A, and diagrams
with no edge between A and B. Therefore, these results do not align with the content of the caption. Similar to the
results in Figure 5, the top 100 diagrams consisted solely of white and blue nodes.
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