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Abstract

Pre-training large language models faces sig-
nificant memory challenges due to the large
size of model weights. We propose STaged
parameter-Efficient Pre-training (STEP), which
combines ideas from parameter-efficient tun-
ing and staged training. We conduct experi-
ments on pre-training models of various sizes
and demonstrate that STEP can achieve up to a
40.4% reduction in maximum memory require-
ment compared to vanilla pre-training while
maintaining comparable performance.

1 Introduction

Large Language Models (LLMs) have become a
fundamental technology in artificial intelligence.
One challenge we aim to address in the research
on LLMs is the vast amount of computational re-
sources needed for pre-training, e.g., LLaMA (Tou-
vron et al., 2023). This requirement for enormous
computational resources is a significant obstacle to
the research of LLMs.

To tackle this challenge, methods for reducing
computational costs during pre-training have been
actively studied. For example, ReLoRA (Lialin
et al., 2024) reduces the computational cost by
repeatedly applying low-rank adaptations while
freezing the original parameters during pre-training.
However, ReLoRA often degrades performance
compared to vanilla pre-training under fair condi-
tions (Lialin et al., 2024; Zhao et al., 2024); there
is still considerable room to improve in this line of
studies. From this background, this paper attempts
to develop a method for pre-training LLMs that
can achieve comparable performance at the same
computational cost as vanilla pre-training while
reducing the maximum memory requirements.

For this goal, we propose a method that
combines ideas of Parameter-Efficient Tuning
(PET) (He et al., 2022) and staged training (Shen
et al., 2022). The basic concept is that by incorpo-
rating the idea of staged training, we can reduce the
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Figure 1: Overview of the STEP method. STEP per-
forms a standard pre-training on a model with a much
smaller size (Procedure 1). The stage switches and the
model grows (Procedure 2); PET is applied to the layers
that originally existed in the previous stage (Procedure
3). The new layers are trained with full parameters,
while the weights of the originally existing layers are
frozen, and only the smaller parameters (orange parts)
introduced by PET are trained (Procedure 4).

maximum memory requirement by (1) pre-training
a model with a smaller size in the first stage and
(2) freezing the parameters already pre-trained in
the previous stages and instead introducing much
smaller additional training parameters following
the PET technique in the remaining stages. Here-
after, we refer to our method as STaged parameter
Efficient Pre-training (STEP). Figure 1 illustrates
this concept.

We explore the effectiveness of STEP in pre-
training experiments by comparing the baseline
(Vannila pre-training) and conventional method
(ReLoRA) under the same computational cost. We
demonstrate that STEP achieves up to a 40.4% re-
duction in maximum memory requirements com-
pared to vanilla pre-training while maintaining
comparable validation es.

2 Related Work

Memory Efficient Training for LLMs Several
memory-efficient training approaches have been
actively developed in the literature of training
LLMs (Rajbhandari et al., 2020; Korthikanti et al.,
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2023). Among these, one major approach is train-
ing parameter reduction methods. One approach is
PET (He et al., 2022), such as Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2022). PET tech-
niques have mostly been developed for fine-tuning
LLMs. There are only a few studies applying the
PET techniques to the LLLM pre-training (Lialin
et al., 2024; Zhao et al., 2024). ReLoRA is a repre-
sentative method designed for pre-training LLMs
using LoRA (Hu et al., 2022). However, to achieve
comparable performance to vanilla pre-training,
ReLoRA needs to train the model in the vanilla
setting for the first several steps. This implies that
ReRoLA is currently unable to reduce the maxi-
mum memory requirement, as it requires the same
amount of memory as vanilla pre-training.

Staged Training (Shen et al., 2022) The core
idea behind Staged Training is based on the obser-
vation that while small-scale models are advanta-
geous in the initial stages of learning from a compu-
tational efficiency perspective, large-scale models
eventually achieve lower (Kaplan et al., 2020).
Staged Training leverages this observation by train-
ing a small-scale model with high computational ef-
ficiency and applying an expansion operation called
the Growth Operator during training. This opera-
tion expands the dimensions of Transformer layers
and adds new layers. Regarding memory usage in
staged training, since most existing studies train the
full parameters of the model, this approach does
not reduce the maximum memory requirements.

3 STEP: Staged Efficient Parameter
Training

As briefly described in Section 1, our goal is to
develop a method for pre-training LLMs that can
achieve comparable performance at the same com-
putational cost while reducing the maximum mem-
ory requirements during pre-training.

3.1 Procedure

The following four procedures are an overview of
STEP and how it efficiently trains LLMs;

(Procedure 1) STEP performs a vanilla pre-
training on a model with a much smaller size than
the target model size as an initial model.

(Procedure 2) STEP expands the layers of the
initial model to increase its size.

(Procedure 3) STEP also introduces the PET pa-
rameters given by the parameter-efficient adaptors
for the layers trained in Procedure 1.

(Procedure 4) STEP continues to pre-train the
parameters in layers newly added in Procedure 2
and the adaptors added in Procedure 3 while freez-
ing those in layers trained in Procedure 1.

Note that The first to fourth red right-arrow in
Figure 1 corresponds to Procedures 1 to 4, respec-
tively. After finishing Procedure 4, we obtain the
pre-trained model.!

3.2 Growth Layer Operator

This section explains how we expand the layers
in Procedure 2. Given a model with n layers, the
Growth Layer Operator modifies the structure of
the model’s layers. We use Interpolation (Chang
et al., 2018; Dong et al., 2020; Li et al., 2022),
which adds new layers between existing layers and

initialize them with the lower layer weights, namely
new __ new

5 = Phio1 = Pie

We further extend it by incorporating an idea
of a fusing method that averages the parameters
of the two layers (O’Neill et al., 2021), namely,

bW = (¢i+pi+1)/2, which we call Interpolation-
Mean. The validity of using the average will be
verified through experiments (Section 4.4). We
discuss more detailed initialization in Appendix A.

3.3 Incorporating PET parameters

This section provides additional information about
Procedure 3, which introduces PET parameters by
the adaptors. We specifically focus on the low-rank
adaptation method (Hu et al., 2022; Lialin et al.,
2024) for this part.

3.4 Maximum memory requirement of STEP

We assume that the maximum memory requirement
during the pre-training can be estimated by the size
of model states, which include the parameters of
the model itself, the gradients of the model pa-
rameters being trained, and the optimizer state.”
Moreover, we assume that we use a typical Trans-
former model and the Adam optimizer (Kingma
and Ba, 2014), which are a commonly used con-
figuration for pre-training LLMs. Additionally, we
assume that all parameters are represented as 32-bit

"Note that we have the option to continue growing the
layers by repeating Procedures 2 to 4.

2Other memory usages, such as activations, can be reduced
using methods like Activation Recomputation (Korthikanti
et al., 2023).
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floating-point numbers. Consequently, when the
number of parameters in one layer of the Trans-
former is Hayer and the number of layers in the
model is n, the memory usage of the model state,
expressed in bytes, is given by
Rm = 4n(Player+ Player +Player+P1ayer)
—_ —~— ——

model
=1 6nP1ayer7

where the optimizer state of Adam consists of two
parts; the gradient momentum and variance.
Regarding the maximum memory requirement
for STEP, let n; be the number of layers increased
in the i-th stage from the ¢ — 1 stage in STEP,
where ng = 0. Let N; represent the total number
of layers in the i-th stage model, namely, N; =
22:1 nj. Moreover, E(Player) denotes the number
of parameters for the single layer, Payer, added by
PET. Then, we can estimate the maximum memory
requirement for the stage 4, that is, M;, as follows:

gradient optimizer (D)

16m; Player ifi=1
Pz’STEP = 16niP1ayer + 4N, i—lPIayer
+16N;—1 E(Payer) otherwise,

2
where the term 4N; 1 Playe represents the number
of frozen model parameters already trained in the
1 to 7 — 1 stages, the term 16n; Payer indicates the
number of newly added model parameters with
optimization states added in Procedure 2 and the
term 16N;_1 E/(Payer) represents the number of
PET parameters with optimization states added in
Procedure 3.

Let L be the number of layers for the model that
is finally obtained. Then, the solution of the follow-
ing minimization problem can minimize the maxi-
mum memory requirement during the pre-training:

minimize {
{ni,....,nK}

max R-STEP} st. L=Ng 3
i=1,..,K

Details of the discussion with specific examples are
presented in Appendix B.

4 Experiments

This section demonstrates the effectiveness of the
proposed method, STEP, through the pre-training
experiments of LLMs. We investigate whether
STEP can achieve a comparable validation perplex-
ity to vanilla pre-training at the same computational
cost. We also compared with ReLoRA (Lialin et al.,
2024) as a conventional method of the parameter-
efficient pre-training method in a fair condition.

Stagel —Stage2 Hidden  Layers
227M —352M 1024 18 —28
409M —668M 1760 11 —»18
755M —1.2B 2048 15 —24

Table 1: The configuration of models used in the ex-
periments using STEP. The number of parameters and
layers for each model at different stages are shown.

I Weight
B Gradient
[ Optimization

STEP Stagel 15Layer 755M

'
i
STEP Stage2 24Layer 1.2B '
1
|
1

]

0 5 10 15 20
Memory Cost (GB)

Full 24Layer 1.2B

Figure 2: Memory consumption of pre-training 1.2B in
Table 1. When using STEP, it is possible to increase the
model size in Stage2 while keeping the memory usage
consistent between both stages

4.1 Datasets and Model

We used C4 (Raffel et al., 2020) as the training data
and 10M tokens exclusively extracted from C4 as
the validation data. We used the identical training
data for all experiments.

The model configuration follows an architecture
based on LLaMA (Touvron et al., 2023). The de-
tailed configurations are shown in Appendix C. To
confirm the differences in behavior due to model
size, we selected three model sizes, namely, 352M,
668M, and 1.2B.

4.2 Configuration of STEP

We evaluated the effectiveness of STEP when the
Growth Layer operator is applied once during its
pre-training. This means that we set K = 2 in
Equation 3 for STEP. Given the number of layers
L with the fixed dimension of hidden layers, we
compute n; and no that can minimize the maxi-
mum memory requirements by Equation 3. Table 1
shows the calculated numbers of layers and pa-
rameters when the target model sizes are one of
{352M, 668M, 1.2B}. Figure 2 shows an example
of memory requirements when the target model
size is 1.2B for vanilla pre-training and each stage
of the two-stage STEP.

Layers are added to the upper part of the Trans-
former layers. The discussion about the position
where layers are added is provided in Appendix E.
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352M 668M 1.2B
Vanilla  17.96 (5.6G) 15.85 (10.7G) 14.61 (19.3G)

ReLoRA 21.75 (5.6G) 19.09 (10.7G) 17.81 (19.3G)
STEP  18.14 (3.6G) 16.15( 6.6G) 14.84 (11.5G)

Table 2: Validation perplexities of vanilla pre-training
(Vanilla), ReLoRA, and STEP. The numbers in paren-
theses indicate the maximum memory requirements for
pre-training for each method in this experiment.

352M 668M 1.2B

19.03 16.89 15.52
Queueing 19.14 16.79 15.36
Interpolation-Copy 18.73 16.51 15.10
Interpolation-Mean 18.38 16.23 14.92

Stacking

Table 3: Validation perplexities for different Growth
Layer Operators

4.3 Results

Table 2 shows the validation es of vanilla pre-
training, ReLoRA, and STEP. As shown in Table 2,
STEP outperformed ReLLoRA and achieved com-
parable validation to the vanilla pre-training while
significantly reducing the maximum memory re-
quirement from 5.6G to 3.6G (35.7% reduction),
10.7G to 6.6G (38.3% reduction), and 19.3G to
11.5G (40.4% reduction) for 352M, 668M, and
1.2B models, respectively. We also observed a de-
sirable characteristic of increasing the model sizes,
which led to a further reduction in maximum mem-
ory requirements, such as 35.7% to 40.4% for the
352M and 1.2B models, respectively. Based on
these results, STEP has the potential to efficiently
pra-train LLMs with reduced memory usage.

4.4 Ablation study

Type of Growth Layer Operators: We con-
ducted an ablation study on Growth Layer Op-
erators (Procedure 2) in STEP. We compared
three Growth Layer operators: Stacking, Queueing,
Interpolation-Copy, and Interpolation-Mean.
Stacking is proposed in Gong et al. (2019),
which stacks additional layers. Queueing inserts
new additional layers at the bottom. While the
structure of layers resulting from Queueing is iden-
tical to that of Stacking, we need to consider this
in STEP because PET is applied to the existing
layers before Queueing. As in Gong et al. (2019),
for both Stacking and Queueing, the weights of
the additional layers are copied from the original
layers. Interpolation-Copy and Interpolation-Mean

are Interpolation operators that use copy and mean
initialization in Section 3.2, respectively. To sim-
plify the discussion regarding the location of layer
addition, the number of layers to be added is set to
be the same as the total number of the model before
Growing layers; that is, the number of layers in the
model is doubled compared to before the addition.

The results of this ablation study are shown
in Table 3. The performance in all settings is
Interpolation-Mean > Interpolation-Copy > Queu-
ing ~ Stacking. One possible reason Interpolation
outperformed Stacking and Queueing is that it can
add layers to preserve the overall mechanism bet-
ter. Several existing studies (Meng et al., 2022;
Chen et al., 2024, 2023) have reported analysis
results indicating that Transformers have distinct
roles for the lower, middle, and upper layers, and
it is thought that Interpolation can maintain this
structure, resulting in better performance compared
to other operators. Moreover, Interpolation-Mean
outperformed Interpolation-Copy. This result sug-
gests that the mean initialization is superior to copy
initialization. More detailed experimental explana-
tions are described in the Appendix D.

5 Conclusion and Limitation

Pre-training LLLM requires substantial memory,
posing a challenge for research. We proposed a
new training method called STEP, which enables
LLM pre-training with limited memory require-
ments. Our experiments demonstrated that STEP
achieved comparative performance to vanilla LLM
pre-training while minimizing peak memory usage.
Several limitations of our study should be ad-
dressed in future research. First, while we con-
ducted experiments with up to two stages in STEP,
the effectiveness of using more than three stages
remains unexplored. Second, although our meth-
ods reduced memory usage, we did not observe
significant enhancements in training speed. Third,
although validation is the standard metric for eval-
uating the performance of pre-training, it is still un-
known whether the models pre-trained by the pro-
posed method can improve the downstream tasks.
To investigate the downstream task, we need to
fine-tune all the pre-trained models. Finally, our
experiments focused on relatively smaller model
sizes compared to the recent LLMs with billions of
parameters, such as those with 7B or more.
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A About Zero Initialization

Shen et al. (2022); Wu et al. (2024) apply zero-
initialization to some modules when applying In-
terpolation to preserve the value. However, as Yao
et al. (2024) points out, the existing layers may re-
ceive gradients similar to the previous stage, lead-
ing to unnecessary constraints and potentially slow-
ing down the model’s convergence. Therefore, in
this paper, we consistently refrained from using
zero-initialization.

B STEP with LLaMA and LoRA

In STEP, we use ReLoRA (LoRA) for PET and
LLaMA as the model. When not considering
Grouped Query Attention (Ainslie et al., 2023)
in LLaMA, the Self-Attention layer contains four
matrices of size (dhidden, @hidden)- Additionally,
the FFN layer has three matrices of size (%dhidden,
dhidden), and there are two vectors of size dpjdden for
Layer Normalization. Therefore, Payer 18 given by:

8
Prayer = 4dpiggen + 3(dhidden X gdhidden) + 2dpidden

= 12dji4en + 2dhiaden
C))
Furthermore, since ReLoRA assigns two matrices
of size (d, r) to a matrix of size (d, d), we have:

8
E(Piayer) = 8(7dhidden) + 37 (dhidden + gdhidden)

= 197dhidden
(5)
For example, if dpjggen = 2048 and r = 128, equa-
tion 2 becomes, in units of GB,

stee ) 0.87; ifi =1
‘ 0.2N;_1 + 0.8n; + 0.079N;_1 otherwise
(6)

C Details of training configurations

Configurations Selected Value
Optimizer Adam (51 = 0.9, B2 = 0.95)
Learning Rate 0.0003

LoRA rank 128

Learning Rate Schedule  cosine restarts (Lialin et al., 2024)
Restart warmup steps 500

Warmup Steps 1000

Training tokens (billions) 20B

Table 4: List of training configurations in our experi-
ments

Cosine Similarity Values

—— Interpolate-Copy Cosine Similarity
Interpolate-Mean Cosine Similarity
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Figure 3: The image compares two methods for initializ-
ing added layers in Interpolation. The x-axis represents
the index of the added layer, while the y-axis shows the
cosine similarity between the output of the expanded
model after adding the layer and the input to the original
model before adding the layer. The blue line indicates
the results when the added layer is initialized as a copy
of the layer below, while the orange line shows the re-
sults when the added layer is initialized as the mean
of the layers above and below. Initialization using the
mean better preserves the connections between layers.

The training configurations used in the experi-
ment are shown in Table 4. These settings are the
same across all experiments.

D Interpolation-Copy and
Interpolation-Mean

To verify whether the mean initialization in Inter-
polation actually possesses the desired properties,
we compare the cosine similarity between the out-
put of the added layer ¢new ; after Interpolation
and the input to the layer ¢;,; before Interpolation.
In this case, if the output of ¢pey ; is similar to
the input of ¢;,1, it can be considered that ¢pey ;
appropriately processes the output from ¢; and out-
puts something that is easy for ¢;41 to process. We
apply Interpolation to a 334M model with nine lay-
ers that have been trained on the C4 dataset (Raffel
et al., 2020) and has a perplexity of 18.54 on the
validation dataset. Interpolation expands the model
to a 668M model with 18 layers. Subsequently,
using the same validation dataset, we obtain the
embeddings of the output from ¢y ; in the ex-
panded 668M model and the embeddings of the
input to ¢, in the original 334M model before
Interpolation. We then compare the cosine simi-
larity between these two embeddings. The results
are shown in Figure 3. As expected, using the aver-
age initialization yields a higher cosine similarity
compared to copy initialization, suggesting that the
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668M

Vanilla 15.85 (10.7G)
bottom_index O 16.58 (6.6G)
1 16.40 (6.6G)
2 16.25 (6.6G)
3 16.15 (6.6G)

Table 5: Validation perplexities when changing the loca-
tion of the additions. As the bottom_index increases,
it indicates that the additions are made closer to the top
of the model.

connections between layers are better preserved.

E Effective position for adding new layers

This ablation study investigates the most effec-
tive position to add new layers when applying the
Growth Layer operator using Interpolation-Mean
in Procedure 2. In this ablation study, we perform
layer additions on 409M —668M configurations in
Table 1. We added the seven layers together start-
ing from the bottom_index to the upper layer. In
other words, when bottom_index is 3, the layers
are added together at the top, and when it is O, they
are added at the bottom. The experimental results
are shown in Table 5. As a general trend, the results
indicate that adding layers to the upper part of the
model leads to better performance improvements.
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