
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 607–614
August 11-16, 2024 ©2024 Association for Computational Linguistics

STEP: Staged Parameter-Efficient Pre-training for Large Language Models

Kazuki Yano1 Takumi Ito1,2 Jun Suzuki1,3
1Tohoku University 2Langsmith Inc. 3RIKEN

yano.kazuki.s4@dc.tohoku.ac.jp
{t-ito, jun.suzuki}@tohoku.ac.jp

Abstract
Pre-training large language models faces sig-
nificant memory challenges due to the large
size of model weights. We propose STaged
parameter-Efficient Pre-training (STEP), which
combines ideas from parameter-efficient tun-
ing and staged training. We conduct experi-
ments on pre-training models of various sizes
and demonstrate that STEP can achieve up to a
40.4% reduction in maximum memory require-
ment compared to vanilla pre-training while
maintaining comparable performance.

1 Introduction

Large Language Models (LLMs) have become a
fundamental technology in artificial intelligence.
One challenge we aim to address in the research
on LLMs is the vast amount of computational re-
sources needed for pre-training, e.g., LLaMA (Tou-
vron et al., 2023). This requirement for enormous
computational resources is a significant obstacle to
the research of LLMs.

To tackle this challenge, methods for reducing
computational costs during pre-training have been
actively studied. For example, ReLoRA (Lialin
et al., 2024) reduces the computational cost by
repeatedly applying low-rank adaptations while
freezing the original parameters during pre-training.
However, ReLoRA often degrades performance
compared to vanilla pre-training under fair condi-
tions (Lialin et al., 2024; Zhao et al., 2024); there
is still considerable room to improve in this line of
studies. From this background, this paper attempts
to develop a method for pre-training LLMs that
can achieve comparable performance at the same
computational cost as vanilla pre-training while
reducing the maximum memory requirements.

For this goal, we propose a method that
combines ideas of Parameter-Efficient Tuning
(PET) (He et al., 2022) and staged training (Shen
et al., 2022). The basic concept is that by incorpo-
rating the idea of staged training, we can reduce the

Layer 2

Layer 1

Layer 3

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5 Layer 5 !❄

Layer 4!

!Layer 3❄

Layer 2!

Layer 1 !❄

Procedure 2:
Growth Layer

!

!

!

Procedure 3:
Apply PET
to old Layer

Stage 1 Stage 2

Procedure 1:
Training

Procedure 4:
Training

Figure 1: Overview of the STEP method. STEP per-
forms a standard pre-training on a model with a much
smaller size (Procedure 1). The stage switches and the
model grows (Procedure 2); PET is applied to the layers
that originally existed in the previous stage (Procedure
3). The new layers are trained with full parameters,
while the weights of the originally existing layers are
frozen, and only the smaller parameters (orange parts)
introduced by PET are trained (Procedure 4).

maximum memory requirement by (1) pre-training
a model with a smaller size in the first stage and
(2) freezing the parameters already pre-trained in
the previous stages and instead introducing much
smaller additional training parameters following
the PET technique in the remaining stages. Here-
after, we refer to our method as STaged parameter
Efficient Pre-training (STEP). Figure 1 illustrates
this concept.

We explore the effectiveness of STEP in pre-
training experiments by comparing the baseline
(Vannila pre-training) and conventional method
(ReLoRA) under the same computational cost. We
demonstrate that STEP achieves up to a 40.4% re-
duction in maximum memory requirements com-
pared to vanilla pre-training while maintaining
comparable validation es.

2 Related Work

Memory Efficient Training for LLMs Several
memory-efficient training approaches have been
actively developed in the literature of training
LLMs (Rajbhandari et al., 2020; Korthikanti et al.,

607

2023). Among these, one major approach is train-
ing parameter reduction methods. One approach is
PET (He et al., 2022), such as Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2022). PET tech-
niques have mostly been developed for fine-tuning
LLMs. There are only a few studies applying the
PET techniques to the LLM pre-training (Lialin
et al., 2024; Zhao et al., 2024). ReLoRA is a repre-
sentative method designed for pre-training LLMs
using LoRA (Hu et al., 2022). However, to achieve
comparable performance to vanilla pre-training,
ReLoRA needs to train the model in the vanilla
setting for the first several steps. This implies that
ReRoLA is currently unable to reduce the maxi-
mum memory requirement, as it requires the same
amount of memory as vanilla pre-training.

Staged Training (Shen et al., 2022) The core
idea behind Staged Training is based on the obser-
vation that while small-scale models are advanta-
geous in the initial stages of learning from a compu-
tational efficiency perspective, large-scale models
eventually achieve lower (Kaplan et al., 2020).
Staged Training leverages this observation by train-
ing a small-scale model with high computational ef-
ficiency and applying an expansion operation called
the Growth Operator during training. This opera-
tion expands the dimensions of Transformer layers
and adds new layers. Regarding memory usage in
staged training, since most existing studies train the
full parameters of the model, this approach does
not reduce the maximum memory requirements.

3 STEP: Staged Efficient Parameter
Training

As briefly described in Section 1, our goal is to
develop a method for pre-training LLMs that can
achieve comparable performance at the same com-
putational cost while reducing the maximum mem-
ory requirements during pre-training.

3.1 Procedure

The following four procedures are an overview of
STEP and how it efficiently trains LLMs;

(Procedure 1) STEP performs a vanilla pre-
training on a model with a much smaller size than
the target model size as an initial model.

(Procedure 2) STEP expands the layers of the
initial model to increase its size.

(Procedure 3) STEP also introduces the PET pa-
rameters given by the parameter-efficient adaptors
for the layers trained in Procedure 1.

(Procedure 4) STEP continues to pre-train the
parameters in layers newly added in Procedure 2
and the adaptors added in Procedure 3 while freez-
ing those in layers trained in Procedure 1.

Note that The first to fourth red right-arrow in
Figure 1 corresponds to Procedures 1 to 4, respec-
tively. After finishing Procedure 4, we obtain the
pre-trained model.1

3.2 Growth Layer Operator
This section explains how we expand the layers
in Procedure 2. Given a model with n layers, the
Growth Layer Operator modifies the structure of
the model’s layers. We use Interpolation (Chang
et al., 2018; Dong et al., 2020; Li et al., 2022),
which adds new layers between existing layers and
initialize them with the lower layer weights, namely
ϕnew
2i = ϕnew

2i−1 = ϕi.
We further extend it by incorporating an idea

of a fusing method that averages the parameters
of the two layers (O’Neill et al., 2021), namely,
ϕnew
2i = (ϕi+ϕi+1)/2, which we call Interpolation-

Mean. The validity of using the average will be
verified through experiments（Section 4.4). We
discuss more detailed initialization in Appendix A.

3.3 Incorporating PET parameters
This section provides additional information about
Procedure 3, which introduces PET parameters by
the adaptors. We specifically focus on the low-rank
adaptation method (Hu et al., 2022; Lialin et al.,
2024) for this part.

3.4 Maximum memory requirement of STEP
We assume that the maximum memory requirement
during the pre-training can be estimated by the size
of model states, which include the parameters of
the model itself, the gradients of the model pa-
rameters being trained, and the optimizer state.2

Moreover, we assume that we use a typical Trans-
former model and the Adam optimizer (Kingma
and Ba, 2014), which are a commonly used con-
figuration for pre-training LLMs. Additionally, we
assume that all parameters are represented as 32-bit

1Note that we have the option to continue growing the
layers by repeating Procedures 2 to 4.

2Other memory usages, such as activations, can be reduced
using methods like Activation Recomputation (Korthikanti
et al., 2023).

608

floating-point numbers. Consequently, when the
number of parameters in one layer of the Trans-
former is Player and the number of layers in the
model is n, the memory usage of the model state,
expressed in bytes, is given by

Ptrn = 4n(Player︸ ︷︷ ︸
model

+Player︸ ︷︷ ︸
gradient

+Player+Player︸ ︷︷ ︸
optimizer

)

= 16nPlayer,

(1)

where the optimizer state of Adam consists of two
parts; the gradient momentum and variance.

Regarding the maximum memory requirement
for STEP, let ni be the number of layers increased
in the i-th stage from the i − 1 stage in STEP,
where n0 = 0. Let Ni represent the total number
of layers in the i-th stage model, namely, Ni =∑i

k=1 nk. Moreover, E(Player) denotes the number
of parameters for the single layer, Player, added by
PET. Then, we can estimate the maximum memory
requirement for the stage i, that is, Mi, as follows:

P STEP
i =

16niPlayer if i = 1

16niPlayer + 4Ni−1Player

+16Ni−1E(Player) otherwise,
(2)

where the term 4Ni−1Player represents the number
of frozen model parameters already trained in the
1 to i− 1 stages, the term 16niPlayer indicates the
number of newly added model parameters with
optimization states added in Procedure 2 and the
term 16Ni−1E(Player) represents the number of
PET parameters with optimization states added in
Procedure 3.

Let L be the number of layers for the model that
is finally obtained. Then, the solution of the follow-
ing minimization problem can minimize the maxi-
mum memory requirement during the pre-training:

minimize
{n1,...,nK}

{
max

i=1,...,K
P STEP
i

}
s.t. L = NK (3)

Details of the discussion with specific examples are
presented in Appendix B.

4 Experiments

This section demonstrates the effectiveness of the
proposed method, STEP, through the pre-training
experiments of LLMs. We investigate whether
STEP can achieve a comparable validation perplex-
ity to vanilla pre-training at the same computational
cost. We also compared with ReLoRA (Lialin et al.,
2024) as a conventional method of the parameter-
efficient pre-training method in a fair condition.

Stage1 →Stage2 Hidden Layers

227M →352M 1024 18 →28
409M →668M 1760 11 →18
755M →1.2B 2048 15 →24

Table 1: The configuration of models used in the ex-
periments using STEP. The number of parameters and
layers for each model at different stages are shown.

Figure 2: Memory consumption of pre-training 1.2B in
Table 1. When using STEP, it is possible to increase the
model size in Stage2 while keeping the memory usage
consistent between both stages

4.1 Datasets and Model

We used C4 (Raffel et al., 2020) as the training data
and 10M tokens exclusively extracted from C4 as
the validation data. We used the identical training
data for all experiments.

The model configuration follows an architecture
based on LLaMA (Touvron et al., 2023). The de-
tailed configurations are shown in Appendix C. To
confirm the differences in behavior due to model
size, we selected three model sizes, namely, 352M,
668M, and 1.2B.

4.2 Configuration of STEP

We evaluated the effectiveness of STEP when the
Growth Layer operator is applied once during its
pre-training. This means that we set K = 2 in
Equation 3 for STEP. Given the number of layers
L with the fixed dimension of hidden layers, we
compute n1 and n2 that can minimize the maxi-
mum memory requirements by Equation 3. Table 1
shows the calculated numbers of layers and pa-
rameters when the target model sizes are one of
{352M, 668M, 1.2B}. Figure 2 shows an example
of memory requirements when the target model
size is 1.2B for vanilla pre-training and each stage
of the two-stage STEP.

Layers are added to the upper part of the Trans-
former layers. The discussion about the position
where layers are added is provided in Appendix E.

609

352M 668M 1.2B

Vanilla 17.96 (5.6G) 15.85 (10.7G) 14.61 (19.3G)

ReLoRA 21.75 (5.6G) 19.09 (10.7G) 17.81 (19.3G)
STEP 18.14 (3.6G) 16.15 (6.6G) 14.84 (11.5G)

Table 2: Validation perplexities of vanilla pre-training
(Vanilla), ReLoRA, and STEP. The numbers in paren-
theses indicate the maximum memory requirements for
pre-training for each method in this experiment.

352M 668M 1.2B

Stacking 19.03 16.89 15.52
Queueing 19.14 16.79 15.36
Interpolation-Copy 18.73 16.51 15.10
Interpolation-Mean 18.38 16.23 14.92

Table 3: Validation perplexities for different Growth
Layer Operators

4.3 Results

Table 2 shows the validation es of vanilla pre-
training, ReLoRA, and STEP. As shown in Table 2,
STEP outperformed ReLoRA and achieved com-
parable validation to the vanilla pre-training while
significantly reducing the maximum memory re-
quirement from 5.6G to 3.6G (35.7% reduction),
10.7G to 6.6G (38.3% reduction), and 19.3G to
11.5G (40.4% reduction) for 352M, 668M, and
1.2B models, respectively. We also observed a de-
sirable characteristic of increasing the model sizes,
which led to a further reduction in maximum mem-
ory requirements, such as 35.7% to 40.4% for the
352M and 1.2B models, respectively. Based on
these results, STEP has the potential to efficiently
pra-train LLMs with reduced memory usage.

4.4 Ablation study

Type of Growth Layer Operators: We con-
ducted an ablation study on Growth Layer Op-
erators (Procedure 2) in STEP. We compared
three Growth Layer operators: Stacking, Queueing,
Interpolation-Copy, and Interpolation-Mean.

Stacking is proposed in Gong et al. (2019),
which stacks additional layers. Queueing inserts
new additional layers at the bottom. While the
structure of layers resulting from Queueing is iden-
tical to that of Stacking, we need to consider this
in STEP because PET is applied to the existing
layers before Queueing. As in Gong et al. (2019),
for both Stacking and Queueing, the weights of
the additional layers are copied from the original
layers. Interpolation-Copy and Interpolation-Mean

are Interpolation operators that use copy and mean
initialization in Section 3.2, respectively. To sim-
plify the discussion regarding the location of layer
addition, the number of layers to be added is set to
be the same as the total number of the model before
Growing layers; that is, the number of layers in the
model is doubled compared to before the addition.

The results of this ablation study are shown
in Table 3. The performance in all settings is
Interpolation-Mean > Interpolation-Copy > Queu-
ing ≈ Stacking. One possible reason Interpolation
outperformed Stacking and Queueing is that it can
add layers to preserve the overall mechanism bet-
ter. Several existing studies (Meng et al., 2022;
Chen et al., 2024, 2023) have reported analysis
results indicating that Transformers have distinct
roles for the lower, middle, and upper layers, and
it is thought that Interpolation can maintain this
structure, resulting in better performance compared
to other operators. Moreover, Interpolation-Mean
outperformed Interpolation-Copy. This result sug-
gests that the mean initialization is superior to copy
initialization. More detailed experimental explana-
tions are described in the Appendix D.

5 Conclusion and Limitation

Pre-training LLM requires substantial memory,
posing a challenge for research. We proposed a
new training method called STEP, which enables
LLM pre-training with limited memory require-
ments. Our experiments demonstrated that STEP
achieved comparative performance to vanilla LLM
pre-training while minimizing peak memory usage.

Several limitations of our study should be ad-
dressed in future research. First, while we con-
ducted experiments with up to two stages in STEP,
the effectiveness of using more than three stages
remains unexplored. Second, although our meth-
ods reduced memory usage, we did not observe
significant enhancements in training speed. Third,
although validation is the standard metric for eval-
uating the performance of pre-training, it is still un-
known whether the models pre-trained by the pro-
posed method can improve the downstream tasks.
To investigate the downstream task, we need to
fine-tune all the pre-trained models. Finally, our
experiments focused on relatively smaller model
sizes compared to the recent LLMs with billions of
parameters, such as those with 7B or more.

610

References
Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury

Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and
David Begert. 2018. Multi-level residual networks
from dynamical systems view. In International Con-
ference on Learning Representations.

Nuo Chen, Linjun Shou, Jian Pei, Ming Gong, Bowen
Cao, Jianhui Chang, Jia Li, and Daxin Jiang. 2023.
Alleviating over-smoothing for unsupervised sen-
tence representation. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3552–
3566, Toronto, Canada. Association for Computa-
tional Linguistics.

Nuo Chen, Ning Wu, Shining Liang, Ming Gong, Lin-
jun Shou, Dongmei Zhang, and Jia Li. 2024. Is big-
ger and deeper always better? probing llama across
scales and layers.

Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo
Shang. 2020. Towards adaptive residual network
training: A neural-ODE perspective. In Proceedings
of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine
Learning Research, pages 2616–2626. PMLR.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tieyan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 2337–2346. PMLR.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational conference on machine learning, pages
2790–2799. PMLR.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Vijay Anand Korthikanti, Jared Casper, Sangkug Lym,
Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. 2023. Reducing ac-
tivation recomputation in large transformer models.
Proceedings of Machine Learning and Systems, 5.

Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan
Liang, Xiaojun Chang, and Yi Yang. 2022. Auto-
mated progressive learning for efficient training of
vision transformers. In CVPR.

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-
gunde, and Anna Rumshisky. 2024. ReloRA: High-
rank training through low-rank updates. In The
Twelfth International Conference on Learning Repre-
sentations.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Advances in Neural Information
Processing Systems, volume 35, pages 17359–17372.
Curran Associates, Inc.

James O’Neill, Greg V. Steeg, and Aram Galstyan. 2021.
Layer-wise neural network compression via layer
fusion. In Proceedings of The 13th Asian Conference
on Machine Learning, volume 157 of Proceedings
of Machine Learning Research, pages 1381–1396.
PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge,
Matthew Peters, and Iz Beltagy. 2022. Staged train-
ing for transformer language models. In Inter-
national Conference on Machine Learning, pages
19893–19908. PMLR.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao
Wang, Ye Feng, Ping Luo, and Ying Shan. 2024.
Llama pro: Progressive llama with block expansion.
arXiv preprint arXiv:2401.02415.

611

https://openreview.net/forum?id=SyJS-OgR-
https://openreview.net/forum?id=SyJS-OgR-
https://doi.org/10.18653/v1/2023.acl-long.197
https://doi.org/10.18653/v1/2023.acl-long.197
http://arxiv.org/abs/2312.04333
http://arxiv.org/abs/2312.04333
http://arxiv.org/abs/2312.04333
https://proceedings.mlr.press/v119/dong20c.html
https://proceedings.mlr.press/v119/dong20c.html
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=DLJznSp6X3
https://openreview.net/forum?id=DLJznSp6X3
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f1d43d5a82a37e89b0665b33bf3a182-Paper-Conference.pdf
https://proceedings.mlr.press/v157/o-neill21a.html
https://proceedings.mlr.press/v157/o-neill21a.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang.
2024. Masked structural growth for 2x faster lan-
guage model pre-training. In The Twelfth Interna-
tional Conference on Learning Representations.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang
Wang, Anima Anandkumar, and Yuandong Tian.
2024. Galore: Memory-efficient llm training
by gradient low-rank projection. arXiv preprint
arXiv:2403.03507.

612

https://openreview.net/forum?id=rL7xsg1aRn
https://openreview.net/forum?id=rL7xsg1aRn

A About Zero Initialization

Shen et al. (2022); Wu et al. (2024) apply zero-
initialization to some modules when applying In-
terpolation to preserve the value. However, as Yao
et al. (2024) points out, the existing layers may re-
ceive gradients similar to the previous stage, lead-
ing to unnecessary constraints and potentially slow-
ing down the model’s convergence. Therefore, in
this paper, we consistently refrained from using
zero-initialization.

B STEP with LLaMA and LoRA

In STEP, we use ReLoRA (LoRA) for PET and
LLaMA as the model. When not considering
Grouped Query Attention (Ainslie et al., 2023)
in LLaMA, the Self-Attention layer contains four
matrices of size (dhidden, dhidden). Additionally,
the FFN layer has three matrices of size (83dhidden,
dhidden), and there are two vectors of size dhidden for
Layer Normalization. Therefore, Player is given by:

Player = 4d2hidden + 3(dhidden ×
8

3
dhidden) + 2dhidden

= 12d2hidden + 2dhidden
(4)

Furthermore, since ReLoRA assigns two matrices
of size (d, r) to a matrix of size (d, d), we have:

E(Player) = 8(rdhidden) + 3r(dhidden +
8

3
dhidden)

= 19rdhidden
(5)

For example, if dhidden = 2048 and r = 128, equa-
tion 2 becomes, in units of GB,

P STEP
i =

{
0.8ni if i = 1

0.2Ni−1 + 0.8ni + 0.079Ni−1 otherwise
(6)

C Details of training configurations

Configurations Selected Value

Optimizer Adam (β1 = 0.9, β2 = 0.95)
Learning Rate 0.0003
LoRA rank 128
Learning Rate Schedule cosine restarts (Lialin et al., 2024)
Restart warmup steps 500
Warmup Steps 1000
Training tokens (billions) 20B

Table 4: List of training configurations in our experi-
ments

Figure 3: The image compares two methods for initializ-
ing added layers in Interpolation. The x-axis represents
the index of the added layer, while the y-axis shows the
cosine similarity between the output of the expanded
model after adding the layer and the input to the original
model before adding the layer. The blue line indicates
the results when the added layer is initialized as a copy
of the layer below, while the orange line shows the re-
sults when the added layer is initialized as the mean
of the layers above and below. Initialization using the
mean better preserves the connections between layers.

The training configurations used in the experi-
ment are shown in Table 4. These settings are the
same across all experiments.

D Interpolation-Copy and
Interpolation-Mean

To verify whether the mean initialization in Inter-
polation actually possesses the desired properties,
we compare the cosine similarity between the out-
put of the added layer ϕnew_i after Interpolation
and the input to the layer ϕi+1 before Interpolation.
In this case, if the output of ϕnew_i is similar to
the input of ϕi+1, it can be considered that ϕnew_i
appropriately processes the output from ϕi and out-
puts something that is easy for ϕi+1 to process. We
apply Interpolation to a 334M model with nine lay-
ers that have been trained on the C4 dataset (Raffel
et al., 2020) and has a perplexity of 18.54 on the
validation dataset. Interpolation expands the model
to a 668M model with 18 layers. Subsequently,
using the same validation dataset, we obtain the
embeddings of the output from ϕnew_i in the ex-
panded 668M model and the embeddings of the
input to ϕi+1 in the original 334M model before
Interpolation. We then compare the cosine simi-
larity between these two embeddings. The results
are shown in Figure 3. As expected, using the aver-
age initialization yields a higher cosine similarity
compared to copy initialization, suggesting that the

613

668M

Vanilla 15.85 (10.7G)

bottom_index 0 16.58 (6.6G)
1 16.40 (6.6G)
2 16.25 (6.6G)
3 16.15 (6.6G)

Table 5: Validation perplexities when changing the loca-
tion of the additions. As the bottom_index increases,
it indicates that the additions are made closer to the top
of the model.

connections between layers are better preserved.

E Effective position for adding new layers

This ablation study investigates the most effec-
tive position to add new layers when applying the
Growth Layer operator using Interpolation-Mean
in Procedure 2. In this ablation study, we perform
layer additions on 409M →668M configurations in
Table 1. We added the seven layers together start-
ing from the bottom_index to the upper layer. In
other words, when bottom_index is 3, the layers
are added together at the top, and when it is 0, they
are added at the bottom. The experimental results
are shown in Table 5. As a general trend, the results
indicate that adding layers to the upper part of the
model leads to better performance improvements.

614

