@inproceedings{xu-etal-2024-plot,
title = "Plot Retrieval as an Assessment of Abstract Semantic Association",
author = "Xu, Shicheng and
Pang, Liang and
Li, Jiangnan and
Yu, Mo and
Meng, Fandong and
Shen, Huawei and
Cheng, Xueqi and
Zhou, Jie",
editor = "Fu, Xiyan and
Fleisig, Eve",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-srw.57/",
pages = "543--558",
ISBN = "979-8-89176-097-4",
abstract = "Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query based on their own understanding, summaries, or speculations of the plot, which requires the retrieval model to have a strong ability to estimate the abstract semantic associations between the query and candidate plots. However, existing information retrieval (IR) datasets cannot reflect this ability well. In this paper, we propose PlotRetrieval, a labeled dataset to train and evaluate the performance of IR models on the novel task Plot Retrieval. Text pairs in PlotRetrieval have less word overlap and more abstract semantic association, which can reflect the ability of the IR models to estimate the abstract semantic association, rather than just traditional lexical or semantic matching. Extensive experiments across various lexical retrieval, sparse retrieval, dense retrieval, and cross-encoder methods compared with human studies on PlotRetrieval show current IR models still struggle in capturing abstract semantic association between texts. PlotRetrieval can be the benchmark for further research on the semantic association modeling ability of IR models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2024-plot">
<titleInfo>
<title>Plot Retrieval as an Assessment of Abstract Semantic Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shicheng</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liang</namePart>
<namePart type="family">Pang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangnan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mo</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fandong</namePart>
<namePart type="family">Meng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huawei</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueqi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jie</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiyan</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eve</namePart>
<namePart type="family">Fleisig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-097-4</identifier>
</relatedItem>
<abstract>Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query based on their own understanding, summaries, or speculations of the plot, which requires the retrieval model to have a strong ability to estimate the abstract semantic associations between the query and candidate plots. However, existing information retrieval (IR) datasets cannot reflect this ability well. In this paper, we propose PlotRetrieval, a labeled dataset to train and evaluate the performance of IR models on the novel task Plot Retrieval. Text pairs in PlotRetrieval have less word overlap and more abstract semantic association, which can reflect the ability of the IR models to estimate the abstract semantic association, rather than just traditional lexical or semantic matching. Extensive experiments across various lexical retrieval, sparse retrieval, dense retrieval, and cross-encoder methods compared with human studies on PlotRetrieval show current IR models still struggle in capturing abstract semantic association between texts. PlotRetrieval can be the benchmark for further research on the semantic association modeling ability of IR models.</abstract>
<identifier type="citekey">xu-etal-2024-plot</identifier>
<location>
<url>https://aclanthology.org/2024.acl-srw.57/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>543</start>
<end>558</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Plot Retrieval as an Assessment of Abstract Semantic Association
%A Xu, Shicheng
%A Pang, Liang
%A Li, Jiangnan
%A Yu, Mo
%A Meng, Fandong
%A Shen, Huawei
%A Cheng, Xueqi
%A Zhou, Jie
%Y Fu, Xiyan
%Y Fleisig, Eve
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%@ 979-8-89176-097-4
%F xu-etal-2024-plot
%X Retrieving relevant plots from the book for a query is a critical task, which can improve the reading experience and efficiency of readers. Readers usually only give an abstract and vague description as the query based on their own understanding, summaries, or speculations of the plot, which requires the retrieval model to have a strong ability to estimate the abstract semantic associations between the query and candidate plots. However, existing information retrieval (IR) datasets cannot reflect this ability well. In this paper, we propose PlotRetrieval, a labeled dataset to train and evaluate the performance of IR models on the novel task Plot Retrieval. Text pairs in PlotRetrieval have less word overlap and more abstract semantic association, which can reflect the ability of the IR models to estimate the abstract semantic association, rather than just traditional lexical or semantic matching. Extensive experiments across various lexical retrieval, sparse retrieval, dense retrieval, and cross-encoder methods compared with human studies on PlotRetrieval show current IR models still struggle in capturing abstract semantic association between texts. PlotRetrieval can be the benchmark for further research on the semantic association modeling ability of IR models.
%U https://aclanthology.org/2024.acl-srw.57/
%P 543-558
Markdown (Informal)
[Plot Retrieval as an Assessment of Abstract Semantic Association](https://aclanthology.org/2024.acl-srw.57/) (Xu et al., ACL 2024)
ACL
- Shicheng Xu, Liang Pang, Jiangnan Li, Mo Yu, Fandong Meng, Huawei Shen, Xueqi Cheng, and Jie Zhou. 2024. Plot Retrieval as an Assessment of Abstract Semantic Association. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop), pages 543–558, Bangkok, Thailand. Association for Computational Linguistics.