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Abstract

Language models (LMs) are currently at the
forefront of NLP research due to their remark-
able versatility across diverse tasks. However,
a large gap exists between their observed
capabilities and the explanations proposed by
established formal machinery. To motivate
a better theoretical characterization of LMs’
abilities and limitations, this tutorial aims to
provide a comprehensive introduction to a spe-
cific framework for formal analysis of modern
LMs using tools from formal language theory
(FLT). We present how tools from FLT can be
useful in understanding the inner workings and
predicting the capabilities of modern neural
LM architectures. We cover recent results
using FLT to make precise and practically rel-
evant statements about LMs based on recurrent
neural networks and transformers by relating
them to formal devices such as finite-state
automata, Turing machines, and analog circuits.
Altogether, the results covered in this tutorial
allow us to make precise statements and expla-
nations about the observed as well as predicted
behaviors of LMs, as well as provide theoret-
ically motivated suggestions on the aspects of
the architectures that could be improved.

https://acl2024.ivia.ch

1 Introduction and Motivation

Language models pre-trained on massive amounts
of web text have revolutionized NLP (Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020). They
have demonstrated utility in a variety of NLP tasks
and have recently been proposed as a general model
of computation for a wide variety of reasoning tasks
(Brown et al., 2020; Chowdhery et al., 2022; Wei
et al., 2022; Kojima et al., 2023; Kim et al., 2023;
Huang and Chang, 2023, inter alia) or even as a
basis for general AI (Kosinski, 2023).

Such beliefs are an extrapolation from LMs’
prowess at a number of tasks that were long deemed
difficult for computers to solve. These realizations

mostly stem from contemporary empirical research
on LMs’ abilities. However, empirical exploration
can only take us so far; these types of analyses
require large amounts of time and resources, and
arguably, a bit of luck. Further, the individual find-
ings from such studies rarely advance our actual
knowledge of how LMs work and are often not
generalizable (Chen et al., 2021; Anil et al., 2022)
or reproducible (Melis et al., 2018; Belz et al.,
2021; Nityasya et al., 2023). This has resulted
in many imprecise claims being put forth in the
literature—e.g., the claim that LMs are general-
purpose reasoners—without appropriate technical
definitions. However, in the context of computer
science, the notion of a general-purpose reasoner
is concretely defined. In fact, a formal definition
for an algorithm was the motivation behind Alan
Turing’s famous 1937 paper that introduced a Tur-
ing machine. Thus, a fair rephrasing of the claim
that LMs are general-purpose reasoners is that they
are Turing complete, which is a claim about their
expressivity. With this in mind, the successes of
large LMs have sparked interest in their representa-
tional capabilities. More broadly, a standard way of
quantifying the expressive power of computational
models is with the complexity of formal languages
they can recognize (Delétang et al., 2023). Thus,
we can expect that deeper integration of FLT into
the study of neural LMs can facilitate a better un-
derstanding of the inherent types of computation
that LMs are capable of performing.

A formal language L is a subset of Σ∗, the set
of all strings over some alphabet Σ. The study
of LMs with FLT concerns itself with the ques-
tion: What classes of formal languages are LMs
capable of modeling? Making this connection al-
lows us to draw from the long line of work from
classical computer science which has thoroughly
described different classes of formal languages. In
other words, the machinery allowing us to precisely
understand LMs already exists, what is needed is
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only the concrete connection to LMs. However,
as most modern LMs are implemented as large
neural networks, they are notoriously difficult to
analyze theoretically, making the connection to for-
mal models nontrivial. To be able to make any
claims about their capabilities, existing work has
introduced formalizations of modern LM architec-
tures such as RNNs (Elman, 1990; Hochreiter and
Schmidhuber, 1997; Cho et al., 2014) and trans-
formers (Vaswani et al., 2017), focusing on investi-
gating what classes of formal languages LMs can
recognize. Through this, diverse formal properties
of modern LM architectures have been shown (e.g.,
Siegelmann and Sontag, 1992; Hao et al., 2018;
Korsky and Berwick, 2019; Merrill, 2019; Merrill
et al., 2020; Hewitt et al., 2020; Hahn, 2020; Mer-
rill et al., 2022; Chiang and Cholak, 2022; Merrill
and Sabharwal, 2023; Strobl, 2023; Chiang et al.,
2023, inter alia). These reveal, among others, that
the behavior of some RNNs can be described as
counting, and that transformers struggle to recog-
nize some simple formal languages. These, and
many similar results, are covered in the tutorial.
However, studying the recognition of formal lan-
guages only reveals half of the story. A language
model is formally a distribution over Σ∗—as such,
LMs do not define formal languages—rather, they
define distributions over Σ∗. In a sense, attempt-
ing to shoehorn LMs into classical FLT is, there-
fore, somewhat misplaced. In this tutorial, we thus
ask an additional question: What classes of prob-
ability distributions can different LMs represent?
In a recent survey, Delétang et al. (2023) tried to
locate LMs on the Chomksy hierarchy, a notion
that does not easily generalize to probabilistic lan-
guages (Chattopadhyay et al., 2020). Nonetheless,
a thorough understanding of various probabilistic
language classes exists (Icard, 2020), and studying
LMs in their raw probabilistic form allows us to
draw from those results directly.

In this cutting-edge tutorial, we give a compre-
hensive overview of various results characterizing
the computation power of modern LMs. The tu-
torial is divided into four main parts. First, we
formally introduce language models and the array
of tools at our disposal in the form of computa-
tional devices used in FLT. In the second part, we
explore the relationship between RNN LMs and
formal models, covering both classic results span-
ning back to the first works on neural networks as
well as some very recent findings. Then, we bring

our analysis over to the current state-of-the-art LM
architecture, the transformer, and show how, de-
spite its empirical success, its theoretical abilities
are very nuanced. Finally, we discuss the implica-
tions of these theoretical results and outline some
potential future research avenues. We believe that
this tutorial can provide the NLP community with
tools to better understand the capabilities and lim-
itations of existing LMs, with the hope that this
knowledge will help spark a more grounded dis-
cussion on their abilities as well as provide ideas
for developing new methods that overcome their
limitations.

2 Target Audience

Our tutorial is targeted at members of the NLP
community interested in the theoretical capabilities
of modern LMs. This includes both researchers
seeking to gain insight into the inner workings of
such models as well as those actively developing
methods that might leverage the results presented
in this tutorial. Although we intend to give a brief
overview of the FLT concepts required for this tuto-
rial, we expect some basic knowledge of (weighted)
formalisms, including finite-state automata (FSAs),
pushdown automata (PDAs), and Turing machines
(TMs). Additionally, we expect familiarity with
contemporary neural network architectures such as
RNNs and transformers. While do not require any
reading in particular, we have compiled a list of
papers that we encourage reviewing (marked with
an asterisk in the bibliography of the proposal).

3 Outline

3.1 Part 1: Background
A language model p is formally a probability
distribution over Σ∗. Most modern LMs de-
fine p (y) autoregressively, i.e., as a product of
conditional probability distributions: p (y)

def
=

p (EOS | y)
∏|y|

t=1 p (yt | y<t), where EOS /∈ Σ is a
special end of sequence symbol. In the first part of
the tutorial, we formally introduce LMs and discuss
some subtleties that arise in this definition, e.g., the
notion of tightness (Du et al., 2023). To enable our
formal analysis, we then introduce and motivate
a suite of tools that FLT puts at our disposal for
precisely characterizing the computational capacity
of LMs. We describe common computational de-
vices such as FSAs, PDAs, and TMs, both in their
classical formulation as well as their probabilistic
interpretations.



We then discuss a crucial difference between
two paradigms of the analysis of LMs using FLT:
(i) using LMs as discrete recognizers and studying
which classes of formal languages they can recog-
nize and (ii) embracing the true probabilistic nature
of LMs and studying the classes of probability dis-
tributions over strings that they can represent. To
give a concrete example, previous work has shown
that modern language models correctly model syn-
tax (Linzen et al., 2016). This raises the question
of whether an LM architecture is formally able
to model specific grammatical structures such as
parse trees and existing work has shed light on this
phenomenon (Hewitt et al., 2020). At an even more
basic level, for example, computing a product of
a sequence of −1’s requires a model to be able
to recognize the PARITY language, a very simple
regular language, which was shown to be difficult
to model by transformers (Hahn, 2020). Consider-
ing the probabilistic nature of an LM, on the other
hand, allows us to investigate them in their raw
form, which is motivated both by a more direct
analysis as well as the suitability of stochastic mod-
eling of human cognition (Icard, 2020). A concrete
question one might ask, for example, is whether
an LM is capable of modeling a distribution over
parse trees that appear in human language.

3.2 Part 2: Expressivity of RNN LMs

In the second part of our tutorial, we use the in-
troduced toolset to characterize the computational
capacity of various RNN-based LMs such as the
Elman RNN (Elman, 1990), the LSTM (Hochre-
iter and Schmidhuber, 1997), and the GRU (Cho
et al., 2014), using formal computational devices.
More precisely, we explore the relationship be-
tween RNN LMs and probabilistic finite-state au-
tomata, counter machines, and Turing machines.
We demonstrate that, under certain realistic condi-
tions, Elman RNN LMs have the same expressive
capacity as probabilistic FSAs. In contrast, LSTMs,
due to their more elaborate recurrent mechanism,
allow for a natural interpretation as counter devices,
making them more powerful. Furthermore, we
showcase that under a different set of assumptions
even the simplest RNN LMs can emulate Turing
machines, providing a mechanism for executing
algorithms. We consider both the weighted as well
as unweighted versions of this relationship through
a generalization of the classic construction due to
Siegelmann and Sontag (1992).

3.3 Part 3: Expressivity of Transformer LMs

Transformer-based LMs have shown unparalleled
performance, which raises the natural question of
the mechanisms behind their success, and in the
third part of the tutorial, we cover many recent re-
sults trying to explain these successes. The study
of transformers through the lens of FLT is both
relatively new as well as more nuanced than that
of RNNs. Due to their inherent parallelizability,
transformers do not keep any internal state, which
makes it difficult to formalize their connection
to sequential models of computation such as au-
tomata. Indeed, a number of negative results have
shown some theoretical limitations of self-attention
(Hahn, 2020; Chiang and Cholak, 2022) in pro-
cessing languages requiring sequentiality, which
has sparked a line of work relating transformers
to the less-expressive boolean circuits (Hao et al.,
2022; Merrill et al., 2022; Merrill and Sabharwal,
2023; Strobl, 2023; Chiang et al., 2023). More-
over, the statelessness of the architecture invites
an interpretation through the lens of simpler local
models. In this spirit, we showcase that transformer
LMs can exactly simulate n-gram LMs. While this
establishes a concrete lower bound on the expres-
sivity of transformer LMs, it can be seen as some-
what disappointing—n-gram models are examples
of very simple subregular languages, and character-
izing state-of-the-art models with respect to such
formalisms leaves much to be desired. We then
showcase a trick that allows one to significantly
increase the computational power of transformer
LMs by storing additional information in the gen-
erated string, which effectively gives the model
access means of a memory structure. We present a
construction whereby transformers can simulate se-
quential models from simple finite-state automata
to Turing machines (Pérez et al., 2021). Interest-
ingly, storing additional information in the output
invites a very natural connection to the very popu-
lar mechanism of chain-of-thought prompting, and
we showcase how chain-of-thought reasoning can
be concisely formulated in this framework, bridg-
ing the gap between abstract theoretical work and
tools used in practice.

3.4 Part 4: Implications of the Results

We finish the tutorial with a discussion of some
immediate as well as less obvious implications of
these results. An example is the undecidability of
many standard NLP tasks such as finding the most



probable string under an LM or model minimiza-
tion (Chen et al., 2018). These hold both for RNN
LMs as well as those based on self-attention. While
this sounds limiting, it justifies the use of heuristic
approaches to language generation, including vari-
ous sampling strategies. Some of these results also
provide an explanation for the limited generaliza-
tion capabilities of these models. Additionally, the
theoretical upper bounds of their expressiveness
provide insight into when these models should be
able to truly learn algorithmic patterns and be able
to execute them. Lastly, we cover a suite of possi-
ble future directions of research for those who are
interested in continuing to study the relationship
between neural LMs and FLT.

Included work. The tutorial presents a collection
of works from a diverse set of authors who have
helped establish the current formal understanding
of LMs. We cover classical results from the 20th

century as well as contemporary research from dif-
ferent research groups working in this field (as
referenced above), together with some published
and current work by the presenters of the tutorial.

4 Presenters

• Alexandra Butoi is a PhD student at ETH
Zürich. Her current interests include formal
language theory and its applications in under-
standing the abilities of modern neural net-
work architectures.

• Robin Chan is a PhD student at ETH Zürich.
His main research interests are formal lan-
guage theory and human-AI collaboration.

• Ryan Cotterell is an assistant professor at
ETH Zürich in the Institute for Machine
Learning. His research focuses on a wide
range of topics, including information-
theoretic linguistics, parsing, computational
typology and morphology, and bias and
fairness in NLP systems.

• Franz Nowak is a PhD student at ETH
Zürich. His research revolves around the
formal properties of neural sequence models.

• William Merrill is a PhD student at NYU.
His research focuses on using formal methods
to understand the computational capabilities
and limitations of language models, including
their ability to represent linguistic structure
and solve reasoning tasks.

• Clemente Pasti is a PhD student at ETH
Zürich. His main research interests focus on

formal language theory and its applications
in constraining and controlling the text
generation of language models.

• Lena Strobl is a PhD student at the Foun-
dations of Language Processing research
group at Umeå University. Her main research
interests focus on making modern neural
network architectures more interpretable
through formal language theory.

• Anej Svete is a PhD student at ETH AI
Center at ETH Zürich. His main research
interests lie at the intersection of formal
language theory and LMs, where he is
working on improving our understanding of
the formal properties of modern architectures.

The presenters have collaborated to organize mul-
tiple relevant NLP-related courses at ETH Zürich
together in the last few years: Large Language
Models, Advanced Formal Language Theory, and
Natural Language Processing. Besides, they pre-
pared a course on very similar material at ESSLLI
2023. Ryan has additionally given another ESSLLI
course and taught at the University of Cambridge.
He was also recently involved in teaching a tutorial
on generating from LMs at ACL 2023.

5 Diversity Considerations

The tutorial centers on the theoretical properties of
LMs used for a wide array of tasks and languages,
making our presentation relevant to a large
proportion of the NLP community. It is agnostic
to the specifics of particular trained models and
can be applied to many languages. Moreover,
understanding the theoretical limitations to gen-
eralization can reveal when LMs can be expected
to generalize to less-represented languages and
capture their specific phenomena. Finally, our team
of presenters comprises of both junior and senior
researchers, including PhD students from three
different universities and an assistant professor.

6 Ethics Statement

The tutorial motivates and outlines the theoretical
investigation of the computational abilities of var-
ious modern LM architectures, aiming to better
understand their limitations. As such, the presen-
ters do not foresee any ethical issues.
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