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Abstract

Real-world simultaneous machine translation
(SimulMT) systems face more challenges than
just the quality-latency trade-off. They also
need to address issues related to robustness
with noisy input, processing long contexts,
and flexibility for knowledge injection. These
challenges demand models with strong lan-
guage understanding and generation capabil-
ities which may not often equipped by ded-
icated MT models. In this paper, we investi-
gate the possibility of applying Large Language
Models (LLM) to SimulMT tasks by using ex-
isting incremental-decoding methods with a
newly proposed RALCP algorithm for latency
reduction. We conducted experiments using
the Llama2-7b-chat model on nine different
languages from the MUST-C dataset. The re-
sults show that LLM outperforms dedicated
MT models in terms of BLEU and LAAL met-
rics. Further analysis indicates that LLM has
advantages in terms of tuning efficiency and ro-
bustness. However, it is important to note that
the computational cost of LLM remains a sig-
nificant obstacle to its application in SimulMT.1

1 Introduction

Simultaneous Machine Translation (SimulMT) is a
highly challenging task, demanding both high qual-
ity and low latency (Gu et al., 2017a), while also
confronting various real-world challenges. Since
SimulMT systems are typically part of a Simultane-
ous Speech Translation (SimulST) system cascaded
with an Automatic Speech Recognition (ASR) mod-
ule, these challenges include, but are not limited
to: (i) ASR outputs often contain errors, necessi-
tating a degree of fault tolerance in the SimulMT
model (Ruiz and Federico, 2014; Hu and Li, 2022);
(ii) SimulMT is typically applied to nearly end-
less input streams, requiring translation content
to maintain good contextual consistency (Radford

1Repository: https://github.com/yuriak/LLM-SimulMT
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Figure 1: The illustration of the pipeline of our frame-
work where the source texts are read from the streaming
input buffer and incrementally added to the prompt. Tar-
get texts are written to the streaming output buffer and
are also added to the prompt incrementally. RALCP de-
notes the Relaxed Agreement Longest Common Prefix
algorithm proposed by us (§3.3).

et al., 2023); (iii) System needs to easily incorpo-
rate external knowledge for intervention in trans-
lation content, such as sensitive word blacklists or
specific name translations.

Most existing work primarily focuses on build-
ing dedicated SimulMT models and policies to
find the optimal balance between quality and la-
tency (Ma et al., 2019a; Chiu and Raffel, 2017; Ari-
vazhagan et al., 2019; Raffel et al., 2017; Gu et al.,
2017a; Arthur et al., 2021a; Wang et al., 2022).
Some efforts have successfully transformed offline
Neural Machine Translation (NMT) models into
SimulMT models to avoid the high cost of train-
ing from scratch (Liu et al., 2020; Nguyen et al.,
2021a; Guo et al., 2023; Arivazhagan et al., 2020;
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Papi et al., 2022a), but they have not sufficiently ex-
plored the challenges mentioned above. Recently,
the rapid development of large language models
(LLMs) has demonstrated their multitasking and
multilingual capabilities, offering new solutions
for many complex NLP tasks (OpenAI, 2023; Tou-
vron et al., 2023a,b; Bang et al., 2023). Research
indicates that they also have certain advantages
in offline translation tasks, specifically for high-
resource languages (Hendy et al., 2023; Zhu et al.,
2023; Robinson et al., 2023; Yang et al., 2023).
Therefore, it is natural to consider whether the pow-
erful understanding and generation capabilities of
LLMs can be leveraged to address the challenges
in SimulMT.

However, applying LLMs to SimulMT itself
presents challenges, such as designing suitable
read-write policies for LLMs and effectively han-
dling incremental source and target states, along
with their benefits or costs. Therefore, in this pa-
per, we pose two research questions: (1) whether
we could effectively transform off-the-shelf open-
source LLMs with light adjustments into SimulMT
models? and (2) whether LLMs’ application in
SimulMT address some of the aforementioned chal-
lenges, and in doing so, are there any limitations?

To address these questions, we first select the
Llama2-7b-chat (Touvron et al., 2023b) as the
backbone LLM. Then, considering the expensive
training cost of LLM, we choose to find an ap-
proach that could endue LLM the ability of simul-
taneous decoding without training. Thus, we de-
sign the “read-n & incremental decoding" policy
based on the approach proposed in (Liu et al., 2020;
Nguyen et al., 2021a), namely the incremental-
decoding with local agreement (LA), which could
turn a sequence-to-sequence model that is trained
specifically for offline decoding into a model sup-
porting simultaneous decoding. Furthermore, to ad-
dress the high latency issue caused by the Longest
Common Prefix (LCP) algorithm used in the incre-
mental decoding, we propose the Relaxed Agree-
ment Longest Common Prefix (RALCP) algorithm
to improve the selection of candidates to write dur-
ing incremental decoding, resulting in a significant
reduction of latency. We then conduct experiments
on nine language pairs from the MUST-C (Gangi
et al., 2019) dataset, comparing our LLM with ded-
icated NMT models such as Transformer (Vaswani
et al., 2017). Our findings indicate that LLMs can
outperform dedicated MT models using exactly
the same decoding policy. Finally, we conduct a

detailed analysis of different factors affecting the
use of LLM for SimulMT, including its potential
advantages (e.g. the improvement of data utiliza-
tion efficiency, the robustness of noisy input) and
limitations (e.g. the efficiency issue).

Our contributions can be summarized as follows:

• In this paper, we use the incremental decoding
framework to turn an LLM into a simulMT
model and propose RALCP to address the
high latency issue caused by the LCP algo-
rithm.

• We showcase the potential of applying LLMs
to SimulMT tasks and demonstrate that LLMs,
after undergoing supervised fine-tuning, can
achieve comparable performance to dedicated
SimulMT systems.

• Through our analysis, we discover that LLMs’
prior knowledge is helpful for improving the
efficiency of supervised fine-tuning on certain
languages, and for the robustness of noisy in-
put.

• We identify that the computational cost of
LLMs during inference is a potential issue
limiting their application in SimulMT.

2 Background

Simultaneous Machine Translation (SimulMT)
is a task requiring the MT model to return trans-
lation content with the incremental source con-
text in a real-time manner. It can be formalized
as a Markov Decision Process (MDP), where the
model can be considered as a policy function π.
It receives the current state St at a specific time
step t, and returns an action: At = π(St), where
At ∈ {R,W}. Here, R represents continuing to
READ the source context, and W signifies the action
to WRITE the most recent translation segment. The
state St generally encompasses the history of the
already read source text and the translated target
text St = ⟨St

i , T
t
j ⟩, where i and j are the length of

the source and target history. Therefore, we can
use R(i+ 1) to represent an action of reading one
additional source token and use W(w, j + 1) to
represent the writing of a token w. The update of
state St according to the action At can be denoted
as:

St+1 =

{
⟨St

i ∪ {w}, T t
j ⟩ At = R(i+ 1)

⟨St
i , T

t
j ∪ {w}⟩ At = W(w, j + 1)
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where w represents any source or target word.
The evaluation of SimulMT systems not only

considers translation quality but also accounts for
latency, which measures the delay between tar-
get and source trajectory. Metrics used to mea-
sure latency include Average Lagging (AL) (Ma
et al., 2020), Average Proportion (AP) (Cho and
Esipova, 2016) or Length-Adaptive Average Lag-
ging (LAAL) (Papi et al., 2022b). In this paper,
we adopt LAAL (See Appendix C.1 for definition)
because of its better calibration on the length dif-
ference between the hypothesis and the reference.

Large Language Model (LLM) leverage auto-
regressive decoding to conduct unsupervised lan-
guage modeling on extensive text corpora, which
equips them with language understanding and
generation capabilities. Most LLMs nowadays
are using the decoder-only Transformer architec-
ture (Vaswani et al., 2017) composed of layers of
self-attention and feed-forward blocks. In addition
to unsupervised training, recent LLMs undergo
supervised fine-tuning (SFT) and reinforcement
learning from human feedback (RLHF) to align
their behavior with human preferences (Ouyang
et al., 2022). This allows these models to perform
various NLP tasks through conversational interac-
tions. More specifically, users construct prompts
that include instructions and context and prompt
the model to generate responses containing the de-
sired results. In our paper, we mainly use beam
search instead of top-p sampling to acquire more
stabilized translations. Thus, we consider the call-
ing of LLMs as a generative function gθ with the
prompt X sequence and the beam size B as input
and the response sequences Y (for all beam candi-
dates) as well as their probabilities Pr as the return
values: Y,Pr = gθ(X,B).

3 Adapting LLM to SimulMT

3.1 Prompt Design of Incremental States

While there are significant differences in the de-
coding process between SimulMT models and of-
fline MT models, the fundamental approach to
guiding LLMs in translation remains consistent.
This approach continues to rely on constructing
prompts composed of instructions + context as
input, prompting LLMs to perform text comple-
tion. To elaborate further, in offline translation, we
usually construct a prompt as follows: “[INST]
Translate the following sentence from English

Algorithm 1 Read-n & Incremental Decoding π

Require: LLM : gθ,
Cumulative Source Content: Si,
Cumulative Target Content: Tj ,
Variables Definition: Read-n: n, Beam-size:
B, Agreement-degree: γ, Time step: t { t start
from 0}, i and j {source and target length}

1: if NOT_FINISHED(St
i ) then

2: if i == 0 or i mod n > 0 then
3: return R(i+ 1)
4: end if
5: end if
6: Xt ← create_prompt(St

i , T
t
j )

7: //LLM only returns new tokens after Xt

8: Ct,Prt ← gθ(Xt, B)
9: //Ct and Prt are sets of beam candidates and

their probabilities.
10: if NOT_FINISHED(Si) then
11: Pt ← RALCP(Ct, B, γ)
12: else
13: b∗ ← argmaxb Prt
14: Pt ← Cb∗

t , Cb∗
t ∈ Ct

15: end if
16: if Pt == ∅ then
17: return R(i+ 1)
18: end if
19: return W(Pt, j + |Pt|)

to German: S [/INST]", where S is the source
sentence. LLMs then provide the translation in the
content completed after “[/INST]". The completed
translation can be denoted as T .

In SimulMT, we keep the instruction unchanged
and consider the source text as a time-dependent
variable-length sequence St

i indicating at time step
t, i source tokens have been read. Additionally, we
treat the accumulated translation content as another
variable-length sequence T t

j , indicating j target to-
kens have been written at time step t. At this point,
the model’s input is also time-dependent, and we
define Xt as the input to the model at time step t.
Xt can be obtained through the prompting function
Xt = create_prompt(St

i , T
t
j ), which puts St

i and
T t
j in the same sequence starting with the instruc-

tion: “[INST] Translate the following sentence
from English to German: St

i [/INST] T t
j ". By em-

ploying this approach, we can effectively manage
the ongoing source and target content separately
and structure them into standardized prompts (line
6 in Algo 1).
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3.2 Read-n & Incremental-decoding Policy

Given our goal of exploring the practical appli-
cation of LLMs in SimulMT tasks in a straight-
forward and effective manner, our policy design
adheres to two main principles. Firstly, we aim
for the policy to rely primarily on LLMs’ inherent
text generation capabilities, avoiding the introduc-
tion of additional parameters for policy learning.
Secondly, recognizing that invoking LLMs typi-
cally incurs substantial computational overheads
and may result in additional processing delays, we
seek to provide users with convenient control over
the frequency of LLM invocation.

Building upon these principles, we introduce the
Read-n & incremental-decoding policy. To deter-
mine the timing of taking READ action, we employ
a straightforward approach: after each WRITE ac-
tion, a fixed number of n tokens are read (line 2 in
Algo 1). This method offers a convenient means
of controlling the frequency of LLM invocation, as
the decision-making process does not require LLM
participation. Additionally, this approach aligns
with the operational mode of many streaming ASR
systems such as U2++ (Wu et al., 2021), which read
speech chunks at fixed time intervals and predict
multiple transcript tokens to feed into SimulMT
system for translation.

For the decision of WRITE action, we directly em-
ploy the incremental-decoding method proposed
in (Liu et al., 2020; Nguyen et al., 2021a). This
entails invoking LLM based on the current incre-
mental state to perform a complete beam search
decoding (line 8 in Algo 1). Subsequently, we uti-
lize the longest common prefix (LCP) algorithm
to identify a prefix (line 11 in Algo 1) with local
agreement (LA) in the word level (§3.3). If such a
prefix is found, the policy triggers a WRITE action;
otherwise, it proceeds to read n consecutive tokens
(line 17 in Algo 1).

3.3 Latency Reduction with RALCP

Although the incremental-decoding algorithm has
endowed LLM with the capability to perform
SimulMT, there is a challenge when dealing with
beam search candidates exhibiting significant di-
versity (See Figure 2 for an example). In such
cases, the original LCP algorithm may struggle to
promptly provide the longest prefix suitable for
writing out. Consequently, the LLM invocation
associated with the current incremental state goes
to waste, resulting in a substantial increase in la-

X = "<s>[INST] Translate this sentence from English to
German: {A few weeks later, the department} [/INST] {"

Einige Wochen später, die Abteilung}</s>
Einige Wochen später, der Abteilung}</s>
Ein paar Wochen später, der Abteilung}</s>
Ein paar Wochen später, das Department}</s>
Ein paar Wochen später, das Departement}</s>

LLM(X, b=5)

 

Einige Wochen später, die Abteilung}</s>
Einige Wochen später, der Abteilung}</s>
Ein paar Wochen später, der Abteilung}</s>
Ein paar Wochen später, das Department}</s>
Ein paar Wochen später, das Departement}</s>

Figure 2: This example shows the scenario where the
LCP algorithm fails to find a common prefix because of
the difference of the first token, but RALCP successfully
returns the prefix because of the relaxed constraints. For
RALCP, words at the same position are annotated with
the same color group, their votes are indicated by the
darkness of the color. The selected prefix is annotated
with gray background.

tency. To address this problem, we optimize the
LCP algorithm and introduce the Relaxed Agree-
ment Longest Common Prefix (RALCP) algorithm.

RALCP employs a voting mechanism to relax
the constraints on identifying the common prefix.
For example, if 80% of the candidates can propose
the same token, then that token is accepted as a
part of the prefix. We denote γ as the agreement
threshold, which is considered as the threshold of
accepting the most frequent token at the certain
position. Specifically, in conventional LCP, the
prefix with local agreement is located by matching
the token at the same position i for all candidate
sequences, if they are holding the same token, the
token will be gathered into the prefix. In RALCP,
we relax the criteria of selecting the token by em-
ploying the voting mechanism, i.e. if the token at i
has the normalized votes (frequency) larger than γ,
it will be accepted in the prefix. In our experiments,
we explored γ ranging from 0.1 to 1.0 and found
that 0.6 is an empirically balanced value toward
performance and latency (See C.4 for detail).

3.4 SFT and Prefix Training
Due to the fact that 89.7% of the pretraining cor-
pus of Llama2 consists of English, we observed a
significant limitation in its multilingual translation
capabilities during our experiments (§4.2). In the
one-shot setting, it still exhibited a considerable
performance gap when compared to other base-
lines. To address this inherent disadvantage caused
by the low coverage of non-English languages in
its pretraining data, we further explored the use of
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supervised fine-tuning (SFT) to explore the extent
of achievable improvement.

However, due to the high computational cost
associated with fine-tuning on a large dataset with
full parameters, which is infeasible and not align
with our aforementioned principles in §3.2. We
placed restrictions on the SFT method to control the
cost. Specifically, we used LoRA (Hu et al., 2022)
for efficient fine-tuning, and frozen original LLM
parameters. Furthermore, we conducted training
for just one epoch on the fine-tuning set in the main
experiment.

We explored two SFT strategies in total: (i)
Pure Offline SFT, where we used full sentence
source-target pairs to construct prompts and re-
sponses for training, and (ii) offline + Prefix, where
we mixed full sentence source-target pairs with a
small number of prefix-to-prefix pairs (introduced
shortly) and conducted fine-tuning on this com-
bined dataset.
Pure Offline SFT We mixed all the training data
of MUST-C dataset for each selected language
pair into a combined dataset. For each sample,
to achieve better generalisation, we first sample
a template from a list of 10 predefined templates
to construct the prompt input as in sec §3.1. The
predefined templates are shown in Appendix B.
During the fine-tuning, we only compute loss on
target response to avoid catastrophic forgetting as
suggested in (Touvron et al., 2023b).
Offline + Prefix SFT Inspired by the approach of
tuning the model on the prefix-to-prefix data de-
scribed in (Niehues et al., 2018; Liu et al., 2020),
which is aiming at solving the “fantasize" problem
(the translation is often fantasized by the model
to be a full sentence), we create our prefix-to-
prefix dataset. However, instead of creating a
1:1 sized artificial prefix dataset with proportional-
based truncating, we choose to use ChatGPT
(gpt-3.5-turbo) to create a much smaller one
for convenience. Specifically, we randomly sam-
pled 1000 source sentences from the training set of
each language pair and truncated them into 20% to
80% of the full length uniformly, resulting in 9000
source prefixes. We then used ChatGPT to trans-
late these source prefixes into target prefixes. We
checked the quality of the generated prefixes with a
quantitative analysis to ensure the quality was rea-
sonable. Further details are provided in Appendix
A. These prefix pairs are mixed together with the
full sentence dataset used in the pure offline SFT
strategy for SFT in the same manner.

Language Pretraining
Coverage %

# SFT
sample

# Test
sample Genus Word

Order

Czech 0.03 116.2k 2034 Slavic SVO
German 0.17 206.9k 2640 Germanic SOV
Spanish 0.13 240.3k 2501 Romance SVO
French 0.16 247.9k 2631 Romance SVO
Italian 0.11 228.3k 2573 Romance SVO
Dutch 0.12 224.8k 2614 Germanic SVO
Portuguese 0.09 186.8k 2501 Romance SVO
Romanian 0.03 212.9k 2555 Romance SVO
Russian 0.13 257.8k 2512 Slavic SOV

Table 1: This table presents the statistic of the parallel
dataset used in our experiments, including the coverage
of each in Llama2 pretraining corpus, the number of
examples for SFT in our experiments, the number of
test samples in the MUST-C test set, as well as the
Genus of each target language. Note that all of these
languages belong to the Indo-European family.

4 Experiments

4.1 Experimental Setup

Data and Evaluation We selected nine language
pairs from the MUST-C (Gangi et al., 2019) dataset,
which has been commonly used in the evaluation of
the performance of speech and text translation sys-
tems. These nine language pairs all have English
as the source language and consist of TED talk
speech utterances. Detailed statistics of each lan-
guage pair can be found in Table 1. During training,
the combined training set has a total number of 2M
samples with an additional 9000 prefix-to-prefix
samples (§3.4) for the SFT+prefix training. We
used the tst-COMMON test set for evaluation. For
evaluation metrics, BLEU (Papineni et al., 2002) is
used for evaluating quality, and LAAL (Papi et al.,
2022b) is used for evaluating latency. All evalu-
ations are conducted with the SimulEval toolkit
(Ma et al., 2020), which follows the restriction of
IWSLT evaluation (Agrawal et al., 2023) that the
committed translation segments are not allowed to
be updated.
LLM We used Llama2-7B-chat2 as the LLM
(Touvron et al., 2023b) in the experiments. It has
been pretrained on 2B of tokens, and with a context
length of 4K. The reason for choosing the 7B ver-
sion in the experiment is that the model with this
parameter size can perform inference on a single
GPU, making it more suitable for real-world use
cases.

During SFT, we use LoRA (Hu et al., 2022) to

2We choose to use the chat version of Llama2 as it has bet-
ter alignment with human preferences, and is a more realistic
fit for a SimulMT use.
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MODEL EN-CS EN-DE EN-ES EN-FR EN-IT EN-NL EN-PT EN-RO EN-RU AVG BL/AL
OFFLINE BASELINES (I)

Transformer 22.31 30.82 35.19 42.95 31.54 35.04 38 29.71 20.04 31.73 -
OFFLINE LLM (II)

LLM-One-Shot 9.55 21.44 26.80 30.70 18.68 23.35 23.01 14.63 12.40 20.06 -
LLM-PFX-SFT 20.27 30.88 36.65 42.68 32.04 33.11 37.63 27.27 21.15 31.30 -

SIMULTANEOUS BASELINES (III)
Transformer 21.10 29.24 33.67 42.09 30.13 33.87 36.77 29.40 19.15 30.60 (8.60) 3.544
Transformer⋆ 17.19 24.20 29.34 35.84 25.67 29.37 30.45 24.42 16.38 25.87 (4.81) 5.366

SIMULTANEOUS ONE-SHOT-LLM (IV)
LLM-One-Shot 10.31 21.34 27.54 30.74 19.25 23.77 23.50 14.95 12.79 20.47 (11.65) 1.768
LLM-One-Shot⋆ 11.19 22.03 27.59 31.27 20.32 23.68 24.13 15.48 13.70 21.04 (7.29) 2.903

SIMULTANEOUS SFT-LLM (V)
LLM-PFX-SFT 20.22 30.52 36.34 41.70 31.88 34.11 36.85 26.38 21.28 31.03 (12.23) 2.538
LLM-PFX-SFT⋆ 21.31 31.06 36.34 42.59 31.53 33.92 37.56 27.03 20.66 31.33 (7.62) 4.117

Table 2: This table presents the overall results. They are classified into five groups, where the first two groups
are offline results, and the rest three groups are simultaneous results. Models annotated with ⋆ are using RALCP
(γ = 0.6), and others are with LCP (γ = 1.0). For LLM results, LLM-PFX-SFT stands for the model tuned with
the combination of full sentences and prefixes (introduced in §3.4). The metrics are annotated as BLEU for offline
results and BLEU (LAAL) for simultaneous results (Note that due to space limitation, we only present LAAL on
the average column in this table, full results are presented in Table 7). The best results within each group are bolded
(in terms of BLEU) and/or colored red (in terms of LAAL). The last column (BL/AL) is the normalized BLEU over
LAAL obtained from the average (Avg) column, meaning the BLEU score acquired from each latency unit.

reduce the computation overhead, LoRA adapters
were configured with r = 64 and α = 16, thus
having the total trainable parameters to be 33M.
We set the learning rate to 2e-4, the batch size
to 48, and employed 4-bit quantization. For all
experiments involving an LLM, a single A100 GPU
is used. SFT is done only for one epoch, except
when stated otherwise.
Baselines We established a baseline model i.e. an
offline NMT-Transformer(Vaswani et al., 2017)
consists of 6 encoder and decoder layers, trained
on full-sentence parallel data (but with source sen-
tences prepended with a language tag for multilin-
gual training) from scratch for 300K steps with 16k
tokens per batch on 4 A40 GPUs, the parameter
size of it is 48M. It used the same decoding policy
as the LLM, but processed incremental source and
target text with the encoder and decoder separately,
similar to the implementation of (Polák et al., 2022;
Guo et al., 2023).

4.2 Experimental Results

Table 2 presents our primary experimental results.
Our experiments are divided into two scenarios and
5 groups, i.e. offline (group I and II) and simultane-
ous (group III-V). For each scenario, we evaluated
the performance of baseline models, and the LLM
under one-shot and SFT settings (we found that
LLM under zero-shot setting often generates unex-
pected format in the response, the detail of the one-

shot setting can be found in Appendix C.2). For
each model in the simultaneous scenario, we eval-
uated them with both LCP (γ = 1.0) and RALCP
(γ = 0.6, annotated with ⋆), the reason for choos-
ing γ = 0.6 is discussed in Appendix C.4. We
set n = 6 for all simultaneous models because
of the moderate latency it leads to. For all mod-
els in both scenarios reported in Table 2, we set
the beam size as 10. More results using different
hyper-parameter configurations and evaluation met-
rics such as COMET (Rei et al., 2020) are reported
in Appendix C.5. The following findings can be
summarized in Table 2.

Offline scenario We observe a substantial perfor-
mance gap between LLM’s one-shot setting and
the baseline model (an average difference of 10
points). Despite the fact that fine-tuning Llama2
achieved performance similar to that of the NMT-
Transformer, it still fell short of our expectations,
where we anticipated that a larger model would
yield better results. We offer the following reason-
able hypothesis for this outcome: according to find-
ings by Allen-Zhu and Li (2024), LLMs primarily
acquire knowledge during the pre-training phase,
and the efficiency of learning additional knowledge
in the SFT phase is quite limited. This could ex-
plain why, despite using a substantial amount of
training data, the model was unable to further ac-
quire multilingual knowledge, ultimately reaching
a plateau in translation capability. Additionally,
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Figure 3: This figure illustrates how SimulMT perfor-
mance (BLEU) is maintained (in %) with reduced data,
in comparison to training on the full dataset (all): (i)
one-shot, (ii) varying amount of training size from 1K
to 100K and (iii) multilingual SFT on all data (multi-L).
The legend shows the language pair and its coverage in
Llama2 pretraining data.

since we performed SFT with LoRA for only one
epoch, and the number of learnable parameters in
LoRA is smaller than that of the NMT-Transformer,
this further constrained the model’s translation abil-
ities.
Simultaneous scenario We found that both LLM-
One-Shot’s and LLM-PFX-SFT’s remained on par
with its offline scenario results indicating the ro-
bustness of the read-n & incremental-decoding ap-
proach on LLM.
Benefits of RALCP All simultaneous results
demonstrated that RALCP effectively reduced la-
tency (around 45%). In the case of baseline mod-
els, RALCP had a noticeable negative impact on
BLEU. However, for LLM, it managed to keep
BLEU unchanged. We speculate this is because
LLM’s decoder-only structure ensures a monotonic
dependency on source context, guaranteeing higher
consistency in beam candidates. Consequently,
RALCP effectively reduces latency while maintain-
ing prefix quality. For baseline models, the use of
RALCP resulted in errors due to the inherent non-
monotonic nature of bi-directional encoders, which
led to higher uncertainty and diversity in beam
candidates. This issue is also discussed in (Liu
et al., 2020). In conclusion, our results indicate that
RALCP is better suited for models with a mono-
tonic dependency on source context.

5 Analysis

5.1 Data Utilization Efficiency
Figure 3 presents the percentage of performance
retained after SFT using different data sizes rang-
ing from 1k to 100k, compared to the performance
achieved with full data (denoted as all) on three rep-
resentative language pairs (en-de, en-ro, en-ru). We
also provide the one-shot performance as the base-
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Figure 4: The performance in BLEU and COMET of
baseline methods and LLM with ground truth or ASR
transcripts as input. (Averaging across 9 language pairs)

line and the best performance obtained by multilin-
gual SFT (described in §3.4) denoted as multi-L.
We can observe a high correlation between lan-
guage coverage (see Table 1, column "Pretraining
Coverage") in the pretraining corpus of Llama2 and
the retained translation performance in the one-shot
setting. There are 2 interesting observations we can
mention here to emphasise the benefit of LLM: (i)
1k samples can provide significant improvement
compared to one-shot decoding, but still not suf-
ficient for low-resource language. (ii) With only
10k samples, it retains 90% performance and closes
the gap between low and high-resource language.
Detailed experimental setup and results are shown
in Appendix C.3.

5.2 Robustness of Noisy Inputs

To further investigate the potential advantages of
LLM in the SimulMT task, we evaluated LLM’s
performance when using ASR transcripts as in-
puts. To ensure consistency in inputs for different
methods, we did not directly use a streaming ASR
system during inference. Instead, we first used
Whisper-base (Radford et al., 2023) to generate
transcripts (with an average WER of 17.31) for
test sets of all 9 language pairs, which were then
used as inputs for SimulMT, replacing the previous
ground-truth inputs.

For this experiment, we employed both BLEU
and COMET (Rei et al., 2020) as evaluation met-
rics. We included COMET because assessing
model robustness in noisy input scenarios requires
more than just n-gram matching in BLEU. Figure 4
displays the averaged BLEU and COMET scores
for all 9 language pairs using three models with
ground truth and ASR as inputs. For both BLEU
and COMET scores, LLM outperforms dedicated
NMT models by a large margin, indicating that
LLM has better robustness on the noisy input.
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Figure 5: The average time of predicting one target
token (in milliseconds) of baseline models and LLM
under offline and simultaneous scenarios.

5.3 Inference Efficiency

Compared to the Transformer baseline, LLM has
a larger number of parameters, which typically in-
curs higher inference costs. Figure 5 illustrates the
average time it takes to predict a single token in
both offline and simultaneous scenarios. This time
is obtained by averaging the actual wall time across
all hypothesis lengths for the three test sets (en-
de, en-ro, en-ru), which also accounts for the time
spent on model calls wasted due to RALCP fail-
ing to select a prefix during incremental decoding.
As shown in the figure, LLM consumes more time
in both scenarios compared to the other baseline
methods. This suggests that in real-world usage,
LLM must consider the additional latency brought
about by computational expenses.

6 Related Works

Simultaneous Machine Translation (SimulMT)
is the task to provide real-time translation of a
source sentence stream where the goal is to min-
imize the latency while maximizing the transla-
tion quality. A common approach is to train a
MT model on prefix-to-prefix dataset to directly
predict target tokens based on partial source to-
kens (Ma et al., 2019b). Alternatively, Liu et al.
(2020) proposed the incremental decoding frame-
work to leverage the pretrained offline NMT and
turn it into a SimulMT model without further train-
ing. A core component of SimulMT is a read-write
policy to decide at every step whether to wait for
another source token (READ) or to generate a tar-
get token (WRITE). Previous methods have explored
fixed policy, which always waits for k tokens be-
fore generation (Ma et al., 2019b; Zhang et al.,
2022) and adaptive policy, which trains an agent
via reinforcement learning (Gu et al., 2017b; Arthur
et al., 2021b). Re-translation (Arivazhagan et al.,

2019) from the beginning of the source sentence at
the WRITE step will incur high translation latency.
Stable hypothesis detection methods such as Local
Agreement (Liu et al., 2020), hold-n (Liu et al.,
2020) and Share prefix SP-n (Nguyen et al., 2021b)
are employed to commit stable hypothesis and only
regenerate a subsequence of source sentence. The
goal is to reduce the latency and minimize the po-
tential for errors resulting from incomplete source
sentence (Polák et al., 2022).

LLM for NMT Recent research has delved into
the potential usage of LLMs in MT (Hendy et al.,
2023; Zhu et al., 2023; Robinson et al., 2023).
While LLMs do exhibit some level of translation ca-
pability, prior research has identified that they still
lags behind the conventional NMT models, espe-
cially for low resource languages (Robinson et al.,
2023). Additionally, the translation performance
varies depending on prompting strategies (Zhang
et al., 2023). Efforts have been made to enhance the
translation performance of LLMs by incorporating
guidance from dictionary (Lu et al., 2023), further
fine-tuning (Zeng et al., 2023; Xu et al., 2023) and
augmenting with translation memories (Mu et al.,
2023). However, to the best of our knowledge,
there is a lack of research exploring the simultane-
ous translation capability of LLMs.

7 Conclusion

In this paper, we focus on exploring the feasibility
of applying LLM to SimulMT. We initially trans-
formed the Llama2-7B-chat into a model that sup-
ports simultaneous translation using the existing
incremental-decoding approach. We then intro-
duced the RALCP algorithm to reduce inference la-
tency. In our experiments, we found that the LLM
after SFT could outperform the dedicated NMT
model using the same decoding policy, showcasing
the potential of LLM in this task. Additionally, we
observed that LLM exhibited a degree of robust-
ness against noisy input and could offer effective
improvements through supervised fine-tuning with
limited data. However, we also identified that the
computational overhead of LLM is a significant
challenge. In future work, we intend to propose
policies more suitable for LLM and further explore
the possible applications of various LLM capabili-
ties in SimulMT tasks.
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Limitations

We summarize the limitations of this study in three
aspects:

Policy In this paper, we only explored a rela-
tively simple policy, i.e. “read-n & incremental-
decoding". Especially, the decision-making pro-
cess for the READ action is almost naive. We recog-
nize that the frequent LLM invocation for full-stop
generation due to the inefficiency of the policy is a
major factor for the high computational overhead.
In future work, we aim to explore more adaptive
and efficient policies.

Data Our evaluation was conducted solely on the
MUST-C dataset, which has limited the domain
and style diversity. We believe that richer datasets
should be considered to allow for a more compre-
hensive evaluation of the approach.

Usage of LLM Currently, we only investigated
the possibility of using LLM as a translation model
in the entire SimulMT pipeline. However, LLM
has capabilities beyond translation. In our future
work, we plan to fully leverage LLM’s multitask-
ing capabilities and explore more diverse usage
patterns in the pipeline.

These limitations provide directions for future
research to further enhance the applicability and
performance of LLM in the SimulMT task.
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Appendix

A Prefix Quality Evaluation

Method EN-CS EN-DE EN-ES EN-FR EN-IT EN-NL EN-PT EN-RO EN-RU

RatioCut 18.64 13.90 22.05 19.80 19.38 19.34 20.59 19.71 14.68
ChatGPT 21.40 26.77 36.45 32.80 30.04 28.75 27.90 25.43 19.13

Table 3: This table presents the BLEU score of the
created prefixes using length-ratio-based truncation or
using ChatGPT.

To ensure the quality of the translation prefixes
generated by ChatGPT (§3.4), we performed a ba-
sic evaluation on them. First of all, for each lan-
guage, we use the fast_align (Dyer et al., 2013)
toolkit to learn the alignment on full sentence pairs.
Then, a golden prefix reference set is created based
on the randomly truncated source text (the input for
ChatGPT) and the learned alignment table. Finally,
we evaluate the BLEU score of the hypothesis of
ChatGPT. A baseline approach is also explored
by directly using the length ratio to cut target text
based on the source prefix length. Results in Ta-
ble 3 demonstrate that the quality of ChatGPT is
reasonable and better than the length-ratio-based
truncation.

B Instruction Template for SFT

Translate the following sentence: {src_text} from {src_lang} to {tgt_lang}.
I need a translation from {src_lang} to {tgt_lang} for the text: {src_text}.
Please translate {src_text} from {src_lang} to {tgt_lang}.
Could you help me translate {src_text} from {src_lang} to {tgt_lang}?
I require a translation of {src_text} from {src_lang} to {tgt_lang}.
Take the sentence {src_text} in {src_lang} and translate it to {tgt_lang}.
Translate {src_text} from {src_lang} to {tgt_lang}.
Provide me with a translation from {src_lang} to {tgt_lang} for the text: {src_text}.
I’m looking for a translation of {src_text} from {src_lang} to {tgt_lang}.
Translate the sentence {src_text} from {src_lang} to {tgt_lang}.

Table 4: This table shows the ten prompt templates used
in the SFT.

C Complementary Experimental Details

C.1 Latency Measurement
The computation of LAAL (Papi et al., 2022b) is
defined as:

LAAL =
1

τ

τ∑

i

di − (i− 1)
|S|

max(|T |, |T̂ |)
,

where S, T, T̂ represent source, reference and hy-
pothesis, τ = argmini(di = |S|) is the normal-
ization factor, di = j, j <= |S| is the delay of
hypothesis Ti represented by the index j of the
source word Sj at which Ti is predicted.

C.2 One-Shot Prompts
We follow the method introduced in (Touvron et al.,
2023b) to perform one-shot inference by creat-
ing the prompt with a complete round of dialogue
with a system message. Specifically, the exam-
ple used in the prompt is “Good morning." in
English as the source context and a translation
in the target language. We consider this exam-
ple as a complete dialogue history in the prompt
with a system message placed before it, which
looks like: “<s><<SYS>>\nYou are a profes-
sional translator, you should try your best to
provide translation with good quality, no expla-
nations are required.\n<</SYS>>\n\n[INST]
Translate the following sentence from English
to German: {Good morning.} [/INST] {Guten
Morgen.}</s><s>[INST] Translate the following
sentence from English to German: St

i [/INST]
T t
j ", where St

i and T t
j are incremental source and

target text being processed.

C.3 Experimental Setup and Results for §5.1

Data Scale Effective Batch Size # Epoch # Train step

1k 8 5 625
5k 8 1 625
10k 32 5 1563
20k 32 2 1250
100k 48 1 2084
BiL-all (220k) 32× 4 1 1800
MultiL-mix (2M) 48× 2 1 20.8k

Table 5: This table presents the detailed SFT hyper-
parameters under different data scales. Values with
italics represent an averaged value across languages.
BiL-all stands for using all available bilingual training
set for the specific language pair, and MultiL-mix stands
for the mixed multilingual dataset (without prefix) in-
troduced in §3.4. The effective batch size stands for
the batch size times gradient accumulation steps. All
models are trained using 1 A100 GPU.

Language Pair One-shot 1k 5k 10k 20k 100k all Multi-L

EN-DE (0.17%) 22.03 25.30 26.36 27.21 28.52 29.03 29.85 30.66
EN-RO (0.03%) 15.48 19.61 21.97 23.09 23.64 24.52 25.44 27.26
EN-RU (0.13%) 13.70 16.93 18.13 18.88 19.23 19.53 20.52 20.67

Table 6: The BLEU score for all three language pairs
under different data scales.

For the investigation of data utilization efficiency,
we ensured fair comparisons by setting appropriate
training parameters to guarantee that the models
converge properly. Thus, based on the data size,
we configured the hyper-parameters listed in Table
5 for SFT. The detailed BLEU scores are shown in
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Table 6. We use n = 6, γ = 0.6, and beam size as
10 for all models during inference.

C.4 Ablation Study on Policy
Hyper-parameters

We conducted a detailed ablation study on three hy-
perparameters: n, γ, and beam size. These exper-
iments were primarily conducted on en-de, en-ro,
and en-ru language pairs due to their distinct char-
acteristics such as scripts, belonging to different
Genus categories, and variations in pretraining lan-
guage coverage, making them highly representative
choices.

As shown in Figure 6, we separately illustrate
the impact of different n, γ, and beam size settings
on BLEU and LAAL. Regarding the exploration of
n, we kept γ and beam size fixed at 0.6 and 10, re-
spectively. The results show that n has a relatively
minor influence on BLEU, typically achieving sta-
ble performance when n > 3. However, the impact
of n on LAAL is linear, which aligns with the op-
erational pattern of the policy itself.

For the investigation of γ, we set n to 6 and beam
size to 10. It is observed that gamma has a certain
effect on BLEU, but it is not linear. The better
results tend to cluster around a value of approxi-
mately 0.6. This implies that when γ is too large,
it leads to a significant increase in latency without
necessarily improving the results. This observation
underscores the effectiveness of RALCP, as it can
reduce latency effectively without compromising
quality.

In the exploration of beam size, we set n to 6
and γ to 0.6. Beam size exhibits a linear corre-
lation with BLEU, though not highly significant.
However, its impact on latency is more pronounced.
This is mainly because a larger beam size makes
it more challenging for RALCP to select common
prefixes, resulting in more wasted LLM calls and
increased latency. Additionally, we noticed that
LAAL exhibits regular peaks at beam sizes of 5,
7, and 9. This phenomenon may be attributed to
rounding errors during RALCP’s voting process,
reducing the chances of tokens being selected. It
motivates us to explore improved mechanisms for
local agreement identification.

C.5 Additional Details in the Main
Experiment

In Table 7 and Table 8, we provide more experi-
mental results evaluated with both of BLEU and
COMET score (Rei et al., 2020), which are further

divided into 10 groups compared to Table 2. These
groups include the performance in offline decoding
with two different beam sizes and the performance
in simultaneous decoding under various latency
degrees controlled by n. Specifically, for the si-
multaneous mode, we categorized the results into
low-latency (beam size=5, n=3) and high-latency
(beam size=10, n=6) configurations.

Consistent Effectiveness of RALCP Similarly,
we also compared the results for each model using
LCP and RALCP. Across different latency levels,
RALCP exhibits similar latency reduction effects,
consistent with the findings in section §4.2.

Ineffectiveness of Prefix data Furthermore, we
also compared the results for LLM using SFT with
and without the use of prefix data. We found that
prefix data does not seem to have a positive impact
on LLM in terms of quality and latency. The final
results are almost identical to those without using
prefix data. This may be related to the relatively
small scale of the prefix data. However, due to
cost constraints, we didn’t construct a larger prefix
dataset, so further exploration in this area is left for
future work.
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Figure 6: The correlation between BLEU and LAAL under different n, γ and beam size.

MODEL EN-CS EN-DE EN-ES EN-FR EN-IT EN-NL EN-PT EN-RO EN-RU AVG BL/LA
OFFLINE BASELINES (B=5) (I)

Transformer 22.29 30.65 35.08 42.91 31.46 34.91 38.05 29.58 20.09 31.669 -
OFFLINE BASELINES (B=10) (II)

Transformer 22.31 30.82 35.19 42.95 31.54 35.04 38 29.71 20.04 31.733 -
OFFLINE LLM (B=5) (III)

LLM-One-Shot 10.37 21.79 27.4 31.25 19.71 23.8 23.87 15.44 13.4 20.781 -
LLM-SFT 20.47 30.73 36.43 42.77 32.05 34.51 37.58 27.45 20.65 31.404 -
LLM-PFX-SFT 20.73 30.93 36.47 42.89 31.91 33.87 37.66 27.15 21.02 31.403 -

OFFLINE LLM (B=10) (IV)
LLM-One-Shot 9.552 21.439 26.8 30.7 18.681 23.345 23.009 14.631 12.404 20.062 -
LLM-SFT 20.405 30.621 36.589 42.561 32.14 33.648 37.501 27.126 20.677 31.252 -
LLM-PFX-SFT 20.267 30.88 36.653 42.682 32.041 33.105 37.633 27.296 21.153 31.301 -

SIMULTANEOUS BASELINES (LOW-LATENCY, B=5, N=3) (V)
Transformer 19.45 (5.45) 27.48 (5.54) 32.54 (6.57) 40.10 (6.28) 29.23 (6.65) 32.43 (6.36) 35.07 (6.65) 28.00 (7.33) 18.10 (5.97) 29.156 (6.311) 4.610
Transformer⋆ 14.11 (2.72) 19.73 (2.83) 25.37 (3.17) 30.50 (3.03) 21.83 (3.19) 25.41 (3.13) 25.79 (3.06) 20.60 (3.32) 13.52 (2.91) 21.873 (3.040) 7.163

SIMULTANEOUS BASELINES (HIGH-LATENCY, B=10, N=6) (VI)
Transformer 21.10 (7.72) 29.24 (7.93) 33.67 (8.71) 42.09 (8.60) 30.13 (8.87) 33.87 (8.71) 36.77 (9.27) 29.40 (9.29) 19.15 (8.34) 30.602 (8.604) 3.544
Transformer⋆ 17.19 (4.58) 24.20 (4.61) 29.34 (4.88) 35.84 (4.78) 25.67 (4.95) 29.37 (4.87) 30.45 (4.91) 24.42 (4.95) 16.38 (4.78) 25.873 (4.812) 5.366

SIMULTANEOUS ONE-SHOT-LLM (LOW-LATENCY, B=5, N=3) (VII)
LLM-One-Shot 11.70 (7.72) 22.38 (7.29) 27.75 (8.38) 31.89 (8.22) 20.43 (8.19) 24.02 (7.60) 24.32 (8.58) 15.80 (8.13) 13.65 (8.40) 21.327 (8.057) 2.648
LLM-One-Shot⋆ 10.63 (4.07) 19.10 (3.81) 24.48 (3.92) 28.57 (4.03) 17.12 (4.03) 20.89 (3.71) 21.86 (4.03) 14.21 (4.08) 12.63 (4.12) 18.832 (3.978) 4.757

SIMULTANEOUS ONE-SHOT-LLM (HIGH-LATENCY, B=10, N=6) (VIII)
LLM-One-Shot 10.31 (11.66) 21.34 (10.64) 27.54 (12.00) 30.74 (11.43) 19.25 (11.97) 23.77 (10.93) 23.50 (11.99) 14.95 (11.99) 12.79 (12.20) 20.466 (11.646) 1.768
LLM-One-Shot⋆ 11.19 (7.41) 22.03 (6.88) 27.59 (7.18) 31.27 (7.28) 20.32 (7.41) 23.68 (6.91) 24.13 (7.43) 15.48 (7.52) 13.70 (7.60) 21.043 (7.291) 2.903

SIMULTANEOUS SFT-LLM (LOW-LATENCY, B=5, N=3) (IX)
LLM-SFT 20.62 (7.69) 30.51 (7.94) 36.66 (9.12) 42.50 (8.64) 31.96 (9.02) 34.28 (8.22) 37.28 (9.48) 27.19 (9.21) 20.86 (7.89) 31.318 (8.579) 3.634
LLM-SFT⋆ 19.09 (4.02) 28.31 (4.07) 33.82 (4.15) 41.23 (4.19) 29.46 (4.24) 30.87 (3.92) 35.05 (4.38) 25.67 (4.30) 18.29 (4.05) 29.088 (4.147) 7.001
LLM-PFX-SFT 21.01 (8.16) 31.02 (8.58) 36.63 (9.34) 42.69 (9.15) 31.97 (9.47) 34.03 (8.32) 37.47 (9.68) 27.11 (9.66) 20.80 (8.80) 31.414 (9.018) 3.476
LLM-PFX-SFT⋆ 19.80 (4.21) 28.80 (4.15) 33.86 (4.40) 41.34 (4.29) 29.07 (4.36) 31.46 (3.99) 34.87 (4.41) 25.89 (4.40) 19.21 (4.29) 29.367 (4.278) 6.866

SIMULTANEOUS SFT-LLM (HIGH-LATENCY, B=10, N=6) (X)
LLM-SFT 20.29 (11.49) 30.30 (11.57) 36.06 (12.73) 41.52 (12.14) 31.62 (12.62) 34.19 (11.98) 36.38 (13.40) 26.39 (13.00) 20.82 (12.09) 30.841 (12.336) 2.496
LLM-SFT⋆ 21.32 (7.29) 30.66 (7.18) 36.52 (7.67) 42.20 (7.53) 31.68 (7.79) 34.09 (7.23) 37.40 (8.08) 27.26 (7.97) 20.67 (7.45) 31.311 (7.577) 4.130
LLM-PFX-SFT 20.22 (11.45) 30.52 (11.47) 36.34 (12.44) 41.70 (12.20) 31.88 (12.53) 34.11 (11.46) 36.85 (12.97) 26.38 (13.32) 21.28 (12.28) 31.031 (12.236) 2.538
LLM-PFX-SFT⋆ 21.31 (7.38) 31.06 (7.31) 36.34 (7.72) 42.59 (7.61) 31.53 (7.72) 33.92 (7.08) 37.56 (8.03) 27.03 (7.91) 20.66 (7.82) 31.333 (7.620) 4.117

Table 7: This table is the full version of Table 2 which further includes results under different configurations. Results
are further classified into 10 groups, with respect to offline/simultaneous mode, low latency (beam=5, n = 6), and
high latency (beam=10, n = 6) mode. Models annotated with ⋆ are using RALCP (γ = 0.6), and others are with
LCP (γ = 1.0). For LLM results, LLM-(PFX-)SFT stands for the model tuned with the pure offline full sentences
w/wo prefixes (introduced in §3.4). The metrics are annotated as BLEU for offline results and BLEU (LAAL) for
simultaneous results. The best results within each group are bolded (in terms of BLEU) and/or colored red (in terms
of LAAL). The last column is the normalized BLEU over LAAL obtained from the average (Avg) column, meaning
the BLEU score acquired from each latency unit.
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MODEL EN-CS EN-DE EN-ES EN-FR EN-IT EN-NL EN-PT EN-RO EN-RU AVG CM/LA

OFFLINE BASELINES (B=5) (I)
Transformer 78.86 80.21 82.33 82.76 82.26 83.64 83.71 82.96 78.08 81.646 -

OFFLINE BASELINES (B=10) (II)
Transformer 79.15 80.41 82.38 82.85 82.35 83.67 83.77 83.06 77.73 81.708 -

OFFLINE LLM (B=5) (III)
LLM-One-Shot 69.38 77.85 81.92 81.06 78.06 79.47 81.45 75.74 73.8 77.637 -
LLM-SFT 83.58 84.4 85.13 85.68 85.45 86.42 86.42 85.46 83.6 85.127 -
LLM-PFX-SFT 83.49 84.3 85.16 85.66 85.59 86.31 86.34 85.66 83.57 85.120 -

OFFLINE LLM (B=10) (IV)
LLM-One-Shot 68.41 77.43 81.71 80.76 77.37 79.2 81 74.68 72.19 76.972 -
LLM-SFT 83.6 84.35 85.06 85.58 85.48 86.38 86.33 85.35 83.47 85.067 -
LLM-PFX-SFT 83.49 84.29 85.06 85.63 85.59 86.23 86.27 85.46 83.4 85.047 -

SIMULTANEOUS BASELINES (LOW-LATENCY, B=5, N=3) (V)
Transformer 76.14 77.79 81.29 81.11 81 82.38 82.38 81.98 76.69 80.084 (6.311) 12.690
Transformer⋆ 67.38 68.64 75.79 73.64 74.91 76.05 75.4 75.62 70.35 73.087 (3.040) 24.042

SIMULTANEOUS BASELINES (HIGH-LATENCY, B=10, N=6) (VI)
Transformer 77.73 79.24 81.82 82.08 81.72 83.28 83.19 82.7 77.57 81.037 (8.604) 9.418
Transformer⋆ 72.27 74.31 78.64 78.11 78.13 79.61 79.25 78.66 73.78 76.973 (4.812) 15.996

SIMULTANEOUS ONE-SHOT-LLM (LOW-LATENCY, B=5, N=3) (VII)
LLM-One-Shot 69.48 77.61 81.62 81.06 78.36 79.42 81.51 76.04 74.1 77.689 (8.057) 9.642
LLM-One-Shot⋆ 66 73.31 78.59 77.46 74.01 75.05 78.16 72.28 71.36 74.024 (3.978) 18.608

SIMULTANEOUS ONE-SHOT-LLM (HIGH-LATENCY, B=10, N=6) (VIII)
LLM-One-Shot 68.28 77.21 81.55 80.76 77.42 79.05 81.09 75.26 72.04 76.962 (11.646) 6.608
LLM-One-Shot⋆ 68.71 77.23 81.4 80.6 77.99 78.93 81.24 75.15 73.74 77.221 (7.291) 10.591

SIMULTANEOUS SFT-LLM (LOW-LATENCY, B=5, N=3) (IX)
LLM-SFT 83.2 84.21 84.86 85.46 85.23 86.1 86.21 85.23 83.23 84.859 (8.579) 9.891
LLM-SFT⋆ 81.6 82.17 84.06 84.5 84.26 84.66 85.63 83.92 81.7 83.611 (4.147) 20.162
LLM-PFX-SFT 83.08 84.05 84.91 85.4 85.28 86 86.14 85.36 82.95 84.797 (9.018) 9.403
LLM-PFX-SFT⋆ 81.47 82.26 83.97 84.35 84.21 84.77 85.3 84.31 81.78 83.602 (4.278) 19.542

SIMULTANEOUS SFT-LLM (HIGH-LATENCY, B=10, N=6) (X)
LLM-SFT 83.1 84.02 84.71 85.14 85.19 86.06 85.95 84.86 83 84.670 (12.336) 6.864
LLM-SFT⋆ 83.44 83.91 84.92 85.37 85.29 85.98 86.18 85.24 83.19 84.836 (7.577) 11.196
LLM-PFX-SFT 82.87 84 84.74 85.09 85.2 85.94 85.94 84.92 82.93 84.626 (12.236) 6.916
LLM-PFX-SFT⋆ 83.1 83.76 84.79 85.39 85.15 85.89 86.11 85.15 83 84.704 (7.620) 11.116

Table 8: This table presents the COMET scores with the same structure as Table 7. LAAL results are only shown in
the average column (Avg). The last column (CM/LA) is the normalized COMET score over LAAL obtained from
the average (Avg) column. Best performed result (in terms of COMMET score) are bolded.
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