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Abstract

Describing images using structured data en-
ables a wide range of automation tasks, such as
search and organization, as well as downstream
tasks, such as labeling images or training ma-
chine learning models. However, there is cur-
rently a lack of structured data labels for large
image repositories such as Wikimedia Com-
mons. To close this gap, we propose the task
of Visual Entity Linking (VEL) for Wikimedia
Commons, which involves predicting labels for
Wikimedia Commons images based on Wiki-
data items as the label inventory. We create
a novel dataset leveraging community-created
structured data on Wikimedia Commons. Addi-
tionally, we fine-tune pre-trained models based
on the CLIP architecture using this dataset.
Although the best-performing models show
promising results, the study also identifies key
challenges of the data and the task.

1 Introduction

Wikimedia Commons is a service that hosts around
100 million community-contributed, openly li-
censed images and media files, including metadata,
multilingual textual descriptions, and categories
similar to Wikipedia categories. At the same time,
Wikimedia’s Knowledge Graph (KG), Wikidata, of-
fers detailed structured knowledge descriptions of
over 100 million entities. In 2017, the Commons:
Structured Data project was initiated to organize
and search images by better connecting the two
efforts. Community members tag relevant Wiki-
data items in images, adding them to Commons
as structured data via new depict statements, en-
abling machine-friendly association of images with
universal, language-independent concepts. In Wiki-
media Commons, structured data unlocks the full
potential of its image repository, providing users
with a more enriching and productive experience.

*In alphabetical order, as these authors contributed equally
to this work.

Yet, as of November 2023, only 15% of Wikimedia
Commons images are accompanied by structured
data, suggesting that a considerable portion of this
vast resource remains unexplored. This lack of
structured data poses a challenge for users seek-
ing to extract meaningful information from the ex-
tensive collection. Structured data is crucial for
modern information retrieval systems, providing a
systematic framework for describing entities and
their attributes, and enhancing discoverability and
interoperability across platforms and applications.

This gap in the coverage of Commons image
annotations can be addressed by automatically sug-
gesting depicted items using Visual Entity Linking
(VEL), a multi-modal task of linking visual items
in an image with corresponding entities in a KG.

This paper proposes the Wiki-VEL framework,
applying the task of VEL to Wikimedia Commons
using the structured data of Wikidata. This allows
users to perform targeted searches and explore im-
ages based on specific topics, events, or attributes,
enhancing the usability and utility of Wikimedia
Commons. Further, integrating VEL on Wikimedia
Commons opens opportunities for automation and
innovation in content management and analysis.
Images annotated with structured data can be used
for visual question answering, search algorithms,
image classification, object detection, semantic seg-
mentation, and recommender systems (de Melo and
Tandon, 2016; Shutova et al., 2015; Li et al., 2017).
Our contributions are as follows:

• A novel image dataset1 for Visual Entity Link-
ing extracted from Wikimedia Commons.

• A framework for Visual Entity Linking (Wiki-
VEL) connecting entities in the images of Wiki-
media Commons with the KG, Wikidata.

• Human evaluation of Wiki-VEL annotations.

1https://huggingface.co/datasets/
aiintelligentsystems/vel_commons_wikidata
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Figure 1: Overview of the Wiki-VEL framework.

2 Related Work

2.1 Visual Entity Linking

Visual Entity Linking (VEL; Weegar et al., 2014;
Tilak et al., 2017) is the task of linking entities de-
tected in images to their corresponding entities in
a KG. VEL works across different modalities: the
images that entities are detected in, the labels of
entities in a KG, and the KG entities themselves.
Some studies (Müller-Budack et al., 2021; Gan
et al., 2021; Dost et al., 2020) focus on coarse-
grained entity linking of items in the images to a
KG by leveraging the entity mentions in the corre-
sponding textual information. Recent years have
also witnessed entity linking models that use vi-
sual information to identify entity mentions in so-
cial media texts (Moon et al., 2018; Adjali et al.,
2020; Zhang et al., 2021; Lu et al., 2018; Biten
et al., 2019). Wang et al. (2022) propose a multi-
modal entity linking dataset based on Wikipedia,
emphasizing text input as the primary component,
complemented by visual input. However, the entity
types are limited to only persons and organisations.

Sun et al. (2022) aim to link the visual mention in
the image with the entire image as the context to the
corresponding named entity in KGs without textual
descriptions. This model focuses mostly on images
of persons. For this, they create a human-annotated
dataset and then finetune a variety of models that
are partly based on CLIP, adding output heads on
top of pre-trained models such as CLIP to obtain
more task-specific features.

In their OVEN task, Hu et al. (2023) aim to
link over 6 million open domain images to (En-
glish) Wikipedia, given also a natural language
question as input. They, too, finetune composed

models with CLIP as a backbone along with an-
other much larger multimodal model named PaLI
(Chen et al., 2023), and achieve state-of-the-art re-
sults on visually-situated text understanding and
object localization tasks.

The contributions of this paper close a gap in the
aforementioned efforts: Given our goal of applying
the VEL process on Wikimedia Commons, we do
not provide additional textual queries as input, as
we would not have a source for them on Commons.
Instead, we aim to predict the depicted items only
from the image itself, which gives rise to a multi-
label problem, i.e., multiple entities depicted in
one image. Additionally, we are not limited to a
certain group of items but seek to provide a domain-
independent solution. This combination makes it a
very difficult problem worth exploring.

2.2 Pre-trained CLIP

Modern deep learning models, such as ResNet-
50 (He et al., 2015), excel in computer vision
tasks such as image classification, achieving an
accuracy of around 80% across the 1,000 differ-
ent pre-defined candidate classes of the ImageNet
dataset. OpenAI introduced Contrastive Language-
Image Pre-training (CLIP; Radford et al., 2021) to
address the limitation of being confined to prede-
fined classes. CLIP is a multimodal model trained
to map images and natural language text to high-
dimensional embeddings close to each other based
on cosine similarity. It uses two separate encoders
for image and text input, allowing for inference
comparing image embeddings against text embed-
dings of freely chosen labels. Different experimen-
tal settings for CLIP are investigated in depth by
Shen et al. (2021) and Gao et al. (2024).
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3 Dataset

On Wikimedia Commons, the community con-
tributes meta-data for the uploaded images. This
includes descriptions and licensing information as
well as structured data in the form of Wikidata
items. In our work, we focus on the structured data
describing entities in the images. To express this re-
lation, the property depicts is used on Wikimedia
Commons.

3.1 Collection

Wikimedia regularly publishes database dumps of
its projects2, including Commons structured data
and Wikidata entities. These dumps3 are used in
this project, providing basic information on all
Commons images, descriptions and categories, and
labels for all current Wikidata items. The advan-
tage of using dumps is that they only need to be
downloaded once, and all processing can be done
offline afterwards. The following initial data pre-
processing is employed to extract relevant informa-
tion for the dataset:

• For Commons images, we only retain the
unique image ID (Commons page ID), descrip-
tion, categories, and list of depicted items. Im-
ages without any annotated depicted item are
discarded completely at this stage. Also, we
only consider images with the (case-insensitive)
file name extensions .jpg, .jpeg, .png, and .svg.

• For Wikidata, we only keep the unique item ID
(known as QID), label (short descriptive name),
and description. Along with these, the ID of the
first linked image from the image property (if
any) is saved. Items that are never annotated as
depicted across the entire Commons dump are
discarded completely at this stage.

We employ a heuristic filtering strategy to retain
only commonly depictable items in the Wikidata
dumps, removing other items such as scholarly
articles or metadata items. This further ensures that
all textual input is in English. Commons categories
are assumed to be in English but are filtered to
only include categories descriptive of the image.
For example, categories merely relating to specific
users or upload dates are eliminated via simple
pattern matching, using patterns such as User: or
Photographs by:.

2https://dumps.wikimedia.org/commonswiki/
3extracted as of November 7, 2023

Additional information on the depicts state-
ments such as the prominence flag or item qualifiers
(e.g., "color: blue") is omitted.

A data structure is built while parsing Wikidata
to capture the item hierarchy according to Wiki-
data’s subclass of and instance of properties. This
allows for the association of items of differing gran-
ularity, as subclassed or instantiated items can also
be considered as their respective superclass(es).
The data structure is a mapping of an item’s QID to
all QIDs of its superclasses, for different numbers
of hops (for up to three hops).

3.2 Hierarchy-Aware Item Filtering
The distribution of depicts annotations across all
2.3 million items is severely skewed, as shown in
Figure 3a, with around 50% occurring merely once
as ground-truth, and 90% occurring fewer than ten
times. This suggests poor model performance on
rare items among the large pool of candidates. To
mitigate this, we promote the long-tail items to
more frequent and generic Wikidata items using
Wikidata’s class hierarchy and a threshold f . This
filtering removes items depicted fewer than f times
in the training split generated from the intermedi-
ate data. However, item appearances accumulate
across three hops in the Wikidata hierarchy, poten-
tially affecting generic items. This accumulation
is relevant for more generic Wikidata items such
as human, for which specific people are often an-
notated using the depicts statement, but rarely
annotated as human.

To adjust the images’ ground-truth, we check if
every original ground-truth item fulfils the thresh-
old. If so, it is kept, otherwise, we probe the KG
hierarchy for more generic substitute items. Once
one or more items fulfil f , they are taken as replace-
ments for the original ground-truth item. To retain
as many images as possible and their distribution,
an image is only discarded if no replacement item
can be found within three hops.

3.3 Experimental Dataset
In the following experiments, we use a dataset con-
sisting of 1 million Commons images. It is created
by randomly shuffling the order of the intermedi-
ate file to eliminate biases such as by upload date
or batch uploads. The dataset is split into 80%
training, 10% validation, and 10% testing splits, as
shown in Table 1. It also illustrates that the number
of rows for train and validation splits is higher than
the number of images, as many images have multi-
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f = 0 f = 10
#images train
(#rows)
(#gt_items)

800,000
(1,377,684)
(490,876)

800,000
(1,498,026)
(17,287)

#images validation
(#rows)
(#gt_items)

100,000
(195,535)
(72,055)

100,000
(212,885)
(14,253)

#images test
(#rows)
(#gt_items)

100,000
(100,000)
(72,271)

100,000
(100,000)
(14,351)

#Wikidata items 2,305,611 18,522

Table 1: Statistics of the Experimental Dataset. #rows
= no. of labels available for the images, #gt_items = no.
of unique Wikidata items as ground-truth labels.

ple ground-truth labels, which are used in the ex-
periments for training and validation mini-batches.
Most experiments use an item frequency of f = 10.
Figure 2 and Table 2 show the item super-category
distributions and most frequent items in the entire
dataset for f = 0 and f = 10.

The super-categories are arbitrary selections of
generic classes an item can belong to, inferred from
the Wikidata dump by certain properties. Figure 2
shows many items that depict humans, animals,
plants, or natural objects. Following the skewed
distribution as illustrated in Figure 3a, the most
frequent items in the train split without applying
a threshold are highly overrepresented and fairly
generic, as shown in Table 2.

With a threshold of f = 10, we have 18,522
items left that are depicted often enough in the train
split. Still, only 6,034 images were discarded be-
cause of lacking suitable ground-truth items, show-
ing that the KG hierarchy helps in retaining most
images. Overall, with one ground-truth item per
datapoint, there are about 1.5 million train data-
points and 213,000 validation datapoints, averaging
roughly two ground-truth items per image.

This also causes the super-category distribution
in the dataset to change, with human becoming the
most frequent item and painting or taxon being as-
signed to specific paintings or species. As shown in
Figure 3b, every remaining item occurs ten times
or more (across three hops) in the training dataset.
This implies that a few items are highly overrepre-
sented among candidates (see Table 2). Instead of
balancing the frequencies in the dataset, this work
intends to produce a dataset that is a reasonably rep-
resentative sample of all Commons images. This

f=0 f=10
Label Freq. Label Freq.

road 34,615 human 119,233
village 16,186 painting 55,213

agriculture 16,117 taxon 44,461
path 15,601 village 37,040

house 14,943 road 36,159

Table 2: Most frequent items in the training split.

approach allows fine-tuned models to work well
on the generality of Commons images, rather than
ensuring similar performance across all depictable
items, many of which are very rare. Therefore,
the experiments conducted in this work are on an
imbalanced real-world dataset.

3.4 Challenges

While preparing the dataset, we identified the fol-
lowing challenges:
Depicts statements. The guidelines for the
depicts statement, as many community guide-
lines, vary across the project, e.g., sometimes sug-
gesting not to add generic items if more specific
ones are already marked4, while with others the
recommendation is to add both generic and specific
items.5 Therefore, different images with similar
content might be annotated differently.
Depicted items. The number of items marked in
images on Commons varies considerably, as shown
in Figure 4a, due to differing understanding of the
guidelines on adding depicts statements. Fig-
ure 4b contrasts two images that both have tree
marked, while the red house in the background is
very prominent. This inconsistency in ground-truth
data can lead to inconsistencies in the diversity of
images, making it difficult for models to predict
the correct items accurately.
Specific items. Even after filtering with our thresh-
old of 10, there are items that appear overly spe-
cific. For example, the item Flintenweg 8, Orvelte
(Q17447776) is still present in the dataset, as rel-
atively many images are annotated with this item
despite it not even having a description on Wiki-
data.
Similar and Dissimilar Items. The KG hierar-

4https://commons.wikimedia.org/wiki/Commons:
Depicts#What_items_not_to_add

5https://commons.wikimedia.org/wiki/Commons:
Depiction_guidelines#Depicts_level_of_detail
(marked as disputed)
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(a) f = 0: 2.3 million items (b) f = 10: 18,522 items

Figure 2: Distribution of inferred item super-categories.

(a) f = 0: 2.3 million items (no hops) (b) f = 10: 18,522 items (over three hops)

Figure 3: Number of depicts mentions across items.

QID Label

Q466066 BMW Series 3
Q608824 BMW Series 3
Q730915 BMW Series 3
Q756792 BMW Series 3 (E46)
Q838837 BMW Series 3

Table 3: Excerpt of highly similar items.

chy captures candidate items of varying granular-
ity, while multiple items with QIDs and statements
share labels and descriptions. For example, Table 3
lists an excerpt of Wikidata items related to the
same car model series. However, there are many
near-identical items, describing similar concepts
with different labels.

4 Experimental Setup

In the following, we describe the CLIP variants
used in the proposed Wiki-VEL framework to link

the WikiCommons images to Wikidata entities.

4.1 Naive CLIP

Our Naive CLIP model (see Figure 5) is a multi-
modal approach to the VEL task, leveraging the
CLIP’s image encoder for the Wikimedia Com-
mons images and each item’s label concatenated
with its description is passed through CLIP’s text
encoder. The resulting image and text embeddings
are then normalized and compared by their co-
sine similarity to determine a relevance score. Ad-
ditional multi-layer perceptron (MLP) heads are
added to the image and text encoders to adjust the
semantically rich CLIP features to the task. Each
MLP head consists of a linear layer of double the
input dimensionality, followed by a ReLU activa-
tion function, a dropout layer with probability 0.5,
and a final linear layer mapping back to the input di-
mensionality. A residual connection is added to the
CLIP embeddings to facilitate training. This model
is named Naive CLIP because it does not utilize all

190



(a) Greatly varying number of depicts statements. (b) Contrary ways on how to add depicts statements.

Figure 5: Architecture of the Naive CLIP model.

available information, such as image descriptions
and categories.

4.2 CLIP Fusion

The CLIP Fusion architecture (Hu et al., 2023)
uses two separate encoders for the query and the
entity, each relying on a CLIP backbone for image
and text embeddings. A transformer-model head
outputs a single embedding per encoder, which
can be matched against each other. We adopt this
architecture, with the CLIP backbone shared by
both encoders, referred to as Commons encoder
and Wikidata encoder, as shown in Figure 6. For
the Commons encoder, the Wikimedia Commons
image description and categories are concatenated
to form the textual input. In the Wikidata encoder,
in addition to the Wikidata labels, we use their item
images. Since Wikidata item images also come
from Commons, there is a risk that item images

Figure 6: Architecture of the CLIP Fusion model.

could be part of the test dataset. To avoid leaking
test data, we removed these images from the test
dataset, which was the case for 74 items in the
f = 10 dataset.

4.3 Loss Targets

The in-batch contrastive loss function of CLIP’s
pre-training assumes all matching pairs (the loss
targets) of images and texts to lie on the diagonal
of the input matrix. The composed loss function is:
0.5× (image_to_text_loss + text_to_image_loss),
where both the individual loss functions are the
cross-entropy loss. We aim to relax the diagonal re-
quirement by allowing all combinations of images
to be set as loss targets. This means that the same
Wikidata item can be depicted in multiple images
and potentially multiple ground-truth items. This
means that each batch must determine the corre-
sponding matches before setting them as equally
weighted loss targets. Our method also allows the
loss targets to be dependent on the number of hops
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between a ground-truth item and another item in
the batch, using the Wikidata item hierarchy. This
is to force the model to move embeddings of related
specific and generic items closer together.

4.4 Experimental Details

The models described in Section 4 are trained with
two validation loops per epoch and early stopping
before evaluation on the test split. The optimal hy-
perparameters for our model include a learning rate
of 0.001, a batch size of 1,024, and AdamW opti-
mization. We also rescale item gradients by inverse
batch frequency and set one loss target hops. The
inverse batch frequency accounts for the fact that
Wikidata items like human occur frequently. The
train split contains 800,000 small images, which
creates a massive IO overhead during finetuning.
However, at the cost of increased memory usage,
latency is reduced, speeding up finetuning. Due to
resource limitations, the experiments use ViT-B/32
as CLIP’s image encoder, limiting the batch size
to 256, despite a larger batch size being preferable
in contrastive learning (Chen et al., 2022) for fine-
tuning experiments. The study focuses on testing
common learning rates and optimizer values with-
out sophisticated hyperparameter tuning, retaining
those that initially yielded good results. We use the
following evaluation metrics to analyse the mod-
els. Recall@k measures the proportion of relevant
items retrieved within the top-k results. Diversity
Recall@k measures the percentage of the relevant
items matched by the top-k predictions. Mean
Average Precision@k (mAP) measures the per-
centage of predictions matching any relevant item
for every rank up to k, considering their order.

5 Results

5.1 Empirical Evaluation

Zero-shot model & baseline algorithms. The
zero-shot CLIP model, without output head, per-
forms poorly on the test split, but achieves a recall
score of over 15 at the tenth rank. In a qualita-
tive analysis, we find that the model predicts more
specific items, e.g., people in an image often get
predicted with their specific names. We believe
this results from CLIP’s pre-training, where the
ground-truth texts were more specific to the im-
age compared to our dataset’s labels. The random
baseline algorithm randomly picks items from the
candidate pool with a probability equal to their fre-
quency in the train split, but results are comparably

poor compared to the zero-shot model. The top-k
baseline algorithm predicts the same ten items for
every image, namely the most frequent ones in the
train split, which performs well based on metrics.
However, no rare item is predicted correctly, which
is the main shortcoming of this baseline.
MLP Naive CLIP model. The Naive CLIP model
with both CLIP encoders frozen and a simple MLP
head performs well with a recall score of over 50 at
rank ten. It suggests a correct item on every second
image, making it the best Naive CLIP model. How-
ever, the precision is lower at the top rank. The
recall scores at ranks 20, 50, and 100 increased,
with rank 100 still being among the first 0.5% of
all candidate items. The actual prediction scores
are close to each other, with an average of 0.29 at
rank one and 0.25 at rank 100. The model achieves
a good balance between more specific and generic
items, considering image content instead of out-
putting specific persons’ names. This makes it a
good choice for predicting diverse kinds of items.
For example, it accurately predicts presenters, mi-
crophones, awards, and human6 instead of suggest-
ing specific names of people.
CLIP Fusion model. The CLIP Fusion model out-
performs all tested models, with double precision
and recall and a recall value of 92.4 at rank 100.
We found that this is due to the Commons category
input often revealing the correct answer, especially
for infrequent items. The corresponding image cat-
egory in some cases may be named almost or even
exactly the same as the name of the item, such as
“London Victoria station”7.

However, the effectiveness of the model drops
when no descriptive text input is available for the
existing Wikicommons images or when a new
image is uploaded. Combining categories and a
threshold dataset can make tasks harder when spe-
cific categories are provided but mapped to generic
items with little in common in textual representa-
tion. While fitting the model on the full pool of
candidate items might be promising, it does not
address the issue of input dependency.

5.2 Human Evaluation

We evaluated the model performance of the Naive
CLIP model with a human evaluation study. The
simplicity of the Naive CLIP model, and its re-
duced reliance on large amounts of training data,

6https://commons.wikimedia.org/?curid=28127864
7https://commons.wikimedia.org/?curid=12289864
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Model Recall Div. Recall mAP
@1 @5 @10 @1 @5 @10 @1 @5 @10

Zero-shot 4.7 11.5 15.9 4.7 7.5 10.3 4.7 4.7 5.1
Random baseline 2.1 9.6 17.2 2.1 6.5 11.5 2.1 3.1 3.7
Top-k baseline 12.4 29.8 40.8 12.4 20.5 29.8 12.4 14.3 15.9
MLP Naive CLIP 16.2 40.5 51.8 16.2 27.5 37.2 16.2 17.1 18.7
TE Naive CLIP BS 256 20.6 37.5 45.0 20.6 26.0 31.8 20.6 19.0 20.0
MLP Naive CLIP BS 256 14.2 38.8 49.8 14.2 26.3 35.6 14.2 15.7 17.3

CLIP Fusion 36.4 62.4 71.8 36.4 45.5 56.3 36.4 32.3 34.3

Table 4: Comparison of the performance of various model setups on our test split (zero hops in the metrics).
Default batch size is 1,024. "MLP" = CLIP encoders frozen, "TE" = finetuned text encoder, "BS" = batch size.

CC TG OR CI IDK

k=1 43.1 5.2 20.7 24.8 6.2
k=5 34.3 6.6 28.0 24.4 6.7
k=10 29.8 6.8 28.7 26.4 8.3

Table 5: Human Evaluation Results in %. CC = com-
pletely correct, TG = too general, OR = only related, CI
= completely incorrect, IDK = I don’t know.

make it more realistic for this model to be deployed
on Wikimedia Commons.

With this study, we aim to understand to what
extent a model genuinely predicts reasonable items.
Given the large variety in data, and the data chal-
lenges enumerated in Section 3, we believe the
actual model output may be more useful than is ev-
ident from the metrics relying on the ground-truth
data. To this end, we set up a website using a subset
of test split images, their ground-truth items, and
the top 10 model predictions. For each prediction,
participants choose between four qualitative rat-
ings (“completely correct”, “too generic”, “only
related”, or “completely incorrect”), as well as an
alternative “I don’t know” option. In our human
evaluation study, 100 random images from the test
split were annotated, each image by three people.

Our study focuses on quantifying the inter-
annotator agreement in image evaluations using
Fleiss’ Kappa measure (Fleiss, 1971). The average
agreement across all images for rank one is 0.54.
To estimate model performance, the chosen options
are aggregated over all users and images. We cal-
culate distributions across ranks k = 1, k = 5,
and k = 10 to compare previous metric-based eval-
uation results. The results illustrated in Table 5
show a value of 43.1 for the top prediction being
completely correct, which is over 2.5 times the pre-
cision/recall value of 16.2 (cf. Table 4) with MLP
Naive CLIP, indicating better model performance
than the metric-based evaluation results.

The value for “completely correct” decreases
for later ranks, as only a few completely correct
answers per image are predicted for later ranks.
The option with the highest percentage is “only
related”, as it is the model’s best next guess. “Too
general” predictions occur in certain model setups,
and completely incorrect and obscure predictions
are observed at rank ten.

6 Conclusion

In this paper, we propose the Wiki-VEL framework,
linking the items portrayed in images with struc-
tured knowledge stemming from Wikidata. We
create a dataset from community-contributed, open-
licensed Wikimedia Commons images labeled with
the depicted entities in the form of Wikidata enti-
ties. In our VEL experiments, we show that the
Naive CLIP model shows promising performance
by outperforming the zero-shot model and simple
baselines. The performance of the CLIP Fusion
model also improved with more input data. How-
ever, all setups reached a plateau in learning due
to the noisy real-world data. In our human eval-
uation, we show that the data quality also affects
the metrics to evaluate model performance – hu-
mans perceive the model to be correct more than
the automated metrics.

Looking towards the future, our results are
promising for automatically providing structured
labels for Wikimedia Commons images. To realise
this vision, the Wikimedia community could par-
ticipate in a large-scale human evaluation to assess
the integration of the model into Commons to sup-
port contributors on image uploads and achieve the
desired benefits from the structured data project.
Further, the dataset can easily be extended to a
multilingual dataset by extracting the image de-
scription and item names in different languages
from structured data.
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