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Abstract

Verbs describe the dynamics of interactions be-
tween people, objects, and their environments.
They play a crucial role in language forma-
tion and understanding. Nonetheless, recent
vision-language models like CLIP predomi-
nantly rely on nouns and have a limited ac-
count of verbs. This limitation affects their
performance in tasks requiring action recog-
nition and scene understanding. In this work,
we introduce VerbCLIP, a verb-centric vision-
language model which learns meanings of
verbs based on a compositional approach to
statistical machine learning. Our methods sig-
nificantly outperform CLIP in zero-shot perfor-
mance on the VALSE, VL-Checklist, and SVO-
Probes datasets, with improvements of +2.38%,
+3.14%, and +1.47%, without fine-tuning. Fine-
tuning resulted in further improvements, with
gains of +2.85% and +9.2% on the VALSE and
VL-Checklist datasets.

1 Introduction

Trained on extensive datasets of image-caption
pairs, current vision-and-language models (VLMs)
excel in various applications, yet stall in tasks that
require structural knowledge and compositional
reasoning (Thrush et al., 2022; Liu et al., 2023).
Research by (Yuksekgonul et al., 2023; Lin et al.,
2024) demonstrates some of the difficulties they
face in understanding attributes, relationships, and
order information. More specifically, (Hendricks
and Nematzadeh, 2021) points out that VLMs often
fail to distinguish between different verbs, instead
relying predominantly on noun understanding. One
possible reason for this issue is the inherent biases
within the training datasets. These datasets host a
limited number of examples where captions share
similar contexts but differ in verbs. As a result, they
focus on specific objects and subjects, with mini-
mal emphasis on verbs. This tendency is a form
of shortcut learning, a phenomenon in deep neural

networks where models opt for simpler, superfi-
cial solutions over a deeper understanding (Geirhos
et al., 2020).

Conversely, Compositional Distributional Se-
mantic models (CDSMs) (Erk and Padó, 2008;
Mitchell and Lapata, 2008; Baroni and Zamparelli,
2010; Coecke et al., 2010) learn meaning represen-
tations of sentences by considering their composi-
tional linguistic structures, such as the relationships
between verbs and their subjects and objects. In the
model proposed by (Baroni et al., 2014), verbs are
represented as tensors that take lower-order word
representations, typically vectors, as arguments.
This means that intransitive verbs are represented
as matrices, transitive verbs as cubes, and ditransi-
tive verbs as hypercubes. These tensor-based rep-
resentations have shown promising results in tasks
such as verb disambiguation and sentence similar-
ity (Kartsaklis and Sadrzadeh, 2013; Grefenstette
et al., 2013). CDSMs have primarily been applied
to text-only data and tasks, and have recently been
used as text encoders for CLIP (Lewis et al., 2023).

The novel contribution of this paper lies in in-
tegrating VLMs with CDSMs within a framework
called VerbCLIP to enhance verb understanding.
We implement various methods for learning verb
tensors on an image-caption matching task and
evaluate these methods on VALSE, VL-Checklist,
and SVO-Probes datasets. Our best tensor learn-
ing method achieves improvements of +2.38%,
+3.14%, and +1.47% over CLIP. Beyond these
quantitative improvements, a significant advantage
of VerbCLIP is that it does not require training
from scratch. Our code and data are available at
https://github.com/lanlos-lab/verbclip.

2 Methodology

We present an overview of our framework, illus-
trated in Figure 1. It utilises frozen CLIP as the
backbone. Initially, we input the original sentence
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and image into CLIP’s encoders to obtain a similar-
ity score, reflecting the overall alignment between
the general semantics of the text and the image.
Simultaneously, we extract the subject-verb-object
triplet from the sentence. These components are en-
coded separately: the subject and object as vectors,
and the verb as matrices, forming a compositional
text embedding that captures the detailed seman-
tic relationships. We then calculate a similarity
score between the compositional text embedding
and the image embedding. We add the two scores
to produce the final matching score.

2.1 Compositional Distributional Semantics
Models (CDSMs)

We consider a number of compositional distribu-
tional semantics models, which have been proposed
in past work but have not been applied to a visually
grounded language setting. Table 1 represents the
algebraic formulas used in our experiments.

Vector-based Models Following the work of
(Mitchell and Lapata, 2008), vector-based mod-
els compute a sentence vector as a mixture of the
original word vectors, using simple operations such
as element-wise multiplication and addition. Mul-
tiplication can be seen as the intersection of fea-
tures, while addition resembles the union. The
main characteristic of these models is that they do
not distinguish between the type-logical identities
of different words. For example, an intransitive
verb is considered of the same order as its subject
(a noun), and both will contribute equally to the
composite sentence vector.

Tensor-based Models Following the work of
(Baroni and Zamparelli, 2010) and (Coecke et al.,
2010), relational words such as verbs and adjec-
tives are represented by multilinear maps (tensors).
Meanings of words are composed through the ap-
plication of these maps to vectors representing the
arguments (usually nouns). These models offer a
more linguistically motivated solution to the prob-
lem of composition, effectively addressing the ‘bag
of words’ issue. However, a practical difficulty is
that the creation and usage of third-order tensors
can be computationally expensive. One solution
is to first create a matrix presentation of the verb,
which is then expanded to a tensor by applying
the Frobenius coproduct (copying) map to either
the left or right axis, resulting in the Copy-Subject
and Copy-Object methods (Kartsaklis et al., 2012;
Kartsaklis and Sadrzadeh, 2014). This map can

be visualised as placing a matrix along a specific
diagonal of a tensor. In this work, we propose a
new method: Copy-Add.
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Figure 1: The VerbCLIP framework makes use of two
types of text embeddings: the Text Embedding, which
captures the meaning of the entire caption; and the Com-
positional Text Embedding, which captures the syntac-
tically sensitive meaning by combining word-level em-
beddings of the subject, verb, and object.

Copy-Subject The semantic interpretation of a
transitive sentence involves a two-step composi-
tional process. Initially, the verb’s meaning is ap-
plied to the object, creating an intermediate rep-
resentation that highlights how the verb’s action
targets the object. This result is then applied to the
subject, integrating the roles of both subject and
object with the verb’s action to construct the over-
all sentence meaning. This approach effectively
combines the individual meanings to reflect the
sentence’s complete semantic structure.

−−−−−−−−−→
subj verb obj =

−−→
subj ⊙

(
verb×−→

obj
)

Copy-Object The meaning of a transitive sen-
tence is derived by first applying the verb’s mean-
ing to the subject, and then combining the result
with the meaning of the object. Similarly, this
process helps form a coherent semantic output by
sequentially engaging the subject and object with
the verb.

−−−−−−−−−→
subj verb obj =

(−−→
subj × verb

)
⊙−→
obj

Copy-Add Combining the Copy-Subject and
Copy-Object methods provides a more comprehen-
sive representation of the verb and enhances the
sentence meaning. Here the parameters α and β
can be trained to balance and optimise the com-
bination, reducing biases and improving overall
semantic interpretation.
−−−−−−−−−→
subj verb obj = α

[−−→
subj ⊙

(
verb×−→

obj
)]

+

β
[(−−→
subj × verb

)
⊙−→
obj

]

196



Method Algebric Formula

Add −−→
Tsent · −−→Iimg + (−→s +−→v +−→o ) · −−→Iimg

Mult −−→
Tsent · −−→Iimg + (−→s ⊙−→v ⊙−→o ) · −−→Iimg

Copy-Subject −−→
Tsent · −−→Iimg + (−→s ⊙ (V ×−→o )) · −−→Iimg

Copy-Object −−→
Tsent · −−→Iimg + ((−→s ×V)⊙−→o ) · −−→Iimg

Copy-Add −−→
Tsent · −−→Iimg + (α[−→s ⊙ (V ×−→o )] + β[(−→s ×V)⊙−→o ]) · −−→Iimg

Table 1: Compositional methods used in this study with their corresponding algebraic formulas. We make use of
element-wise product ⊙, matrix multiplication ×, and · dot product. The vectors −→s , −→v , and −→o are text embeddings
for the subject, verb, and object entities respectively. −−−→Tsent and −−→

Iimg are holistic embeddings for the input text and
image. By default, we let α, β = 1.

2.2 Creating verb tensors
We review several proposals for constructing ten-
sors for verbs and opt to use matrices in our work.
Matrices often perform as well as, or even better
than, full tensors, thereby reducing the number
of parameters needed in our framework (Polajnar
et al., 2014).

Kronecker In work of (Grefenstette and
Sadrzadeh, 2011b), the verb matrix is created as
the outer product1 of the verb vector with itself:

verb =
−−→
verb⊗−−→

verb

Relational Following ideas from the set-
theoretic view of formal semantics, (Grefenstette
and Sadrzadeh, 2011a) suggest that the meaning
of a verb is the sum of the outer product of its
arguments (subject, object) over all occurrences of
the verb in a corpus. This is represented as:

verb =
1

N

N∑

i=1

−−→
subji ⊗

−→
obji

where N is the number of examples. The intuition
is that the matrix encodes higher weights to the
contextual features of subjects and objects that are
frequently observed together.

Linear Regression Building on the concept in-
troduced by (Baroni and Zamparelli, 2010) of creat-
ing adjective matrices, we propose a verb matrix A,
when applied to the vector representation of a noun
(as either a subject or object), yields a vector that
effectively captures the distributional semantics of
the combined subject-verb or verb-object phrase.
For example, for the verb-object compound “eat

1It is the tradition in the literature to use the Kronecker
product to form a vector in a tensor-product space. In this
work we use the outer product to obtain a matrix instead.

food”, we compute the verb matrix Aeat, such that
−→y = Aeat × −−→

food, where
−−→
food represents the

distributional vector of “food” and −→y reflects the
semantic composition of “eat food”. To find matrix
A, we minimise the discrepancy between the pre-
dicted vectors and the actual distributional vectors.
This optimisation can be achieved through gradient
descent or analytically2, AT

eat = (XTX)−1XTY ,
where the rows of matrix X are vectors of objects
found in the corpus as arguments of the verb, and
the rows of Y are the vectors of the corresponding
verb-object phrases. A similar procedure is used to
create matrices for subject-verb phrases.

3 Experiment

We focus on the task of matching images with cor-
rect captions. An image is described by both a
positive and a negative caption; the negative cap-
tion differs from the positive only by a verb. Our
aim is to achieve a higher matching score between
the image and the positive caption compared to the
negative one.

Evaluation Datasets We test our methods on
VALSE (Parcalabescu et al., 2022), VL-Checklist
(Zhao et al., 2023), and SVO-Probes (Hendricks
and Nematzadeh, 2021). Detailed descriptions of
the datasets are in the above papers; however, for
this study, we selected only those entries where the
verb differs between the positive and negative cap-
tions, while the subjects and objects are the same.
For the SVO-Probes, we create negative captions
by substituting the verb in the positive caption with
its corresponding negative form from the given neg-
ative (SVO) triplet. For example, given a positive
caption ‘a woman is running in the field’ and a

2The analytical formula fails when X is not full rank. In
such cases, the Moore-Penrose pseudoinverse shall be used.
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VALSE VL-Checklist SVO-Probes

Method Kron Rel Reg Kron Rel Reg Kron Rel Reg

Copy-Subject 74.76 74.29 74.29 59.53 58.80 58.49 78.74 78.90 69.28
Copy-Object 72.86 72.86 73.33 58.53 56.62 52.56 78.35 78.85 70.63
Copy-Add 75.24 72.86 75.24 60.41 57.85 59.53 77.30 78.44 69.27

Copy-Add FT 75.71 74.29 77.62 66.47 65.47 62.90 77.30 78.49 69.28

Table 2: Comparison of accuracy (%) across three datasets using tensor-based methods. Verb matrices are built with
Kronecker (Kron), Relational (Rel), and Regression (Reg) methods using the ViT-B/32 variant of CLIP.

Method VALSE VL-Checklist SVO-Probes

Add 74.76 60.00 77.64
Mult 73.33 57.83 78.68

CLIP 72.86 57.27 77.43

Table 3: The accuracies (%) of vector-based methods
using ViT-B/32. For CLIP, image embeddings are gen-
erated by CLIP’s vision encoder (ViT-B/32); and text
embeddings are generated by CLIP’s text encoder. We
compute the dot product between the image and the text
embeddings to obtain the matching score.

negative verb ‘walk’, the resulting negative caption
would be ‘a woman is walking in the field’. Out
of the 14,097 images in the SVO-Probes dataset,
11,769 images were accessible from the internet in
February 2024.

Data We extracted all subject-verb-object (SVO)
triplets associated with each verb in the three
datasets from the March 2022 English Wikipedia
dump, using the dependency parser in spaCy. Then,
we removed entries with pronouns, stop-words, and
tokens that were less than three characters long. We
prioritised the triplets, selecting only the top 2,000
subject-object pairs based on the frequency of oc-
currence. We ensured that for each verb, there
were sufficient corresponding entries to build high-
quality representation matrices. Verbs that failed
to meet all the criteria were dropped. We ended
up experimenting with 100 unique verbs in 210
entries from VALSE, 274 unique verbs in 9,407
entries from VL-Checklist, and 290 unique verbs
in 14,544 entries from SVO-Probes.

4 Results and Discussion

The compositional tensor-based methods signif-
icantly outperform CLIP and vector-based mod-
els, with Copy-Add showing the highest perfor-

mance in most cases. Copy-Add appears capable
of utilising information from the combination of
subject-verb and verb-object, and incorporating fur-
ther information from the object and subject. This
highlights the importance of ordering and syntactic
information in the compositional methods. Upon
fine-tuning the weights, α and β, we noticed further
improvement (+2.85% and +9.2% on the VALSE
and VL-Checklist datasets respectively).

We noticed lower performance improvements on
the SVO-Probes dataset compared to VALSE and
VL-Checklist. This discrepancy is likely due to the
nature of the SVO-Probes dataset, which contains
sketchy samples and tends to be noisy, with signifi-
cant issues such as object mismatches, as detailed
in (Castro et al., 2023; Jiang et al., 2024).

In terms of learning verb matrices, regression
methods demonstrated lower accuracies, whereas
the Kronecker (Kron) and Relational (Rel) meth-
ods performed better. The fact that Kron requires
no training data makes it an effortless choice for
constructing verb matrices, while still providing
competitive performance.

In terms of verb-type performance, the Copy-
Add model significantly improved accuracy for
interaction-based verbs such as “hang” (+12.5%),
“hold” (+11.6%), “attached” (+3.7%), and “take”
(+29.62%). However, while it struggled with some
visually static verbs like “stand” (-5.8%) and “sit”
(-6.0%), it showed improvement in others such as
“observe” (+50%) and “look” (+10.87%). Further-
more, we tested sentence pairs where the subject
and object nouns are swapped, such as “A man lies
on the sofa” vs “A sofa lies on the man”. CLIP of-
ten misinterprets these as equally plausible, reflect-
ing its approach of processing text as independent
words, similar to a bag-of-words approach. In con-
trast, Copy-Add model correctly identifies “A man
lies on the sofa” as the correct caption by capturing
structured detailed semantics. Overall, VerbCLIP

198



A baby speaks on the telephone.

A baby sits on the telephone.

A person holding ski-poles.

A person crossing ski-poles.

The goat stands in the grass.

The goat lies in the grass.

CLIP 28.71 28.73

VerbCLIP 37.28 37.12

CLIP 28.01 28.11

VerbCLIP 36.51 36.06

CLIP 28.65 28.68

VerbCLIP 35.16 34.87✔

❌ ❌ ❌

✔ ✔

Positive Positive PositiveNegative Negative Negative

A man threw the ball.

A man holding the ball.

CLIP 18.50 19.54

VerbCLIP 5.095 4.759

❌

✔

Positive Negative

Figure 2: Examples where CLIP pairs images with incorrect text captions, as indicated by higher similarity scores
for negative captions. In contrast, our framework achieves more accurate matching. The positive captions (marked
in green) and negative captions (marked in red) are semantically very close, with the verb being different.

incorporates syntactic and semantic structures, al-
lowing it to better understand context and dynamic
actions.

5 Limitations

Creating verb matrices or tensors is computation-
ally intensive, which poses a significant challenge
when scaling to very large pretraining datasets. Ad-
ditionally, our approach assumes a fixed linguis-
tic structure, typically the subject-verb-object for-
mat, which does not account for the varied and
flexible ways verbs are used in natural language.
However, tensors are natural components of quan-
tum systems, and quantum computing resources
can efficiently learn them. The Quantum Natural
Language Processing (QNLP) framework (Lorenz
et al., 2023; Wazni and Sadrzadeh, 2023), inspired
by categorical quantum mechanics and the Dis-
CoCat (Distributional Compositional Categorical)
framework, uses string diagrams to translate gram-
matical structures into quantum processes. This
advanced option could offer a promising solution.

6 Conclusion

The CLIP model is noted for its limited ability to
understand verbs, often relying heavily on nouns.
Our approach seeks to mitigate this issue by in-
troducing verb-focused compositional methods,
which have demonstrated enhanced performance
across the SVO-Probes, VL-Checklist and VALSE
datasets. Our framework can boost the zero-shot
inference capability of other models, such as SLIP
(Mu et al., 2021) and BLIP (Li et al., 2022), without
the need for further training or fine-tuning. Scal-
ing to longer and more complicated sentences with
varied grammatical structures is a work in progress.
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