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Abstract

Designing reward functions is a pivotal yet
challenging task for Reinforcement Learning
(RL) practices, often demanding domain ex-
pertise and substantial effort. Recent studies
have explored the utilization of Large Language
Models (LLMs) to generate reward functions
via evolutionary search techniques (Ma et al.,
2023). However, these approaches overlook the
potential of multimodal information, such as
images and videos. In particular, prior meth-
ods predominantly rely on numerical feedback
from the RL environment for doing evolution,
neglecting the incorporation of visual data ob-
tained during training. This study introduces
a novel approach by employing Multimodal
Large Language Models (MLLMs) to craft re-
ward functions tailored for various RL tasks.
The methodology involves providing MLLM
with the RL environment’s code alongside its
image as context and task information to gener-
ate reward candidates. Then, the chosen agent
undergoes training, and the numerical feedback
from the environment, along with the recorded
video of the top-performing policy, is provided
as feedback to the MLLM. By employing an
iterative feedback mechanism through evolu-
tionary search, MLLM consistently refines the
reward function to maximize accuracy. Testing
on two different agents points to the preemi-
nence of our approach over previous methodol-
ogy, which themselves outperformed 83% (Ma
et al., 2023) of reward functions designed by
human experts.

1 Introduction

Large Language Models (LLMs) have shown re-
markable success in distinct tasks. State-of-the-art
models such as Gemini (Anil et al., 2023), Palm
(Chowdhery et al., 2023), and GPT-4 (OpenAI
et al., 2023) have achieved results comparable to hu-
man experts on different benchmarks. In this paper,
we are specifically interested in their capabilities
in designing Reward functions for Reinforcement

Learning practices. Recent studies have shown that
GPT-4 can autonomously generate reward func-
tions for multiple agents in IsaacGYM by taking
the environment code as context and employing
evolutionary search (Ma et al., 2023). Impressively,
it achieved results similar to and sometimes even
better than those of human experts.

This result is very important for two reasons:
firstly, the task of designing effective reward
functions is notoriously challenging and time-
consuming, and this approach streamlines the pro-
cess by creating an end-to-end pipeline; secondly,
by requiring no additional task-specific modifica-
tions, it showcases the generalization capabilities
of evolutionary search on reward design.

However, a significant shortcoming of this ap-
proach, and LLMs in general, is that they can only
operate on textual and numerical data. In contrast,
when designing reinforcement learning strategies,
human experts often leverage visual data to gain a
deeper understanding of the problems that can be
solved and improvements that can be made. It is
our hypothesis that incorporating visual data could
provide the model with enhanced comprehension,
thus leading to improved accuracy.

We introduce EROM: "Evolutionary Reward De-
sign and Optimization with Multimodal Large Lan-
guage Models (MLLMs)" method as a novel way to
generate reward functions. In the EROM method,
we utilize MLLMs’ zero-shot coding abilities to
generate reward functions. First, we provide the
MLLM with the environment as context by provid-
ing the source code; then, we give it the description
of the task, guidelines for reward function gen-
eration, and an image of the idle agent. After it
generates the first iteration of the reward function,
we provide feedback from the environment both
numerically and visually by providing the video of
the agent . Using evolutionary search, it generates
a better set of reward functions, and this process
iteratively continues.
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Our contributions with the EROM method are as
follows:

1. To the best of our knowledge, this is the first
work that tests the MLLMs’ abilities on re-
ward function generation using evolutionary
search.

2. We show that capturing the video (or image
of an idle agent) of the top-performing policy
and providing it to the MLLMs as feedback
helps the performance, compared to just pro-
viding textual reflection.

3. By enhancing the qualities of an autonomous
method that outperformed 83% human ex-
perts, we contribute to the advancement of
autonomous reward design techniques with-
out introducing significant computational cost
or expenses.

Due to budget limitations, we mostly aimed to
show a proof-of-concept of our approach. All the
contributions listed above held true for our tests,
but without more experiments, the (2) and (3)’ rd
contributions above should be approached tenta-
tively.

2 Background

2.1 Reward Design
Reward design plays a pivotal role in reinforcement
learning, where a well-crafted reward function is
instrumental in achieving optimal outcomes. It
guides agents toward actions aligned with the de-
sired outcomes. Specifically, they provide positive
feedback for actions conducive to achieving spe-
cific goals, while also providing negative feedback
for actions that lack purpose or have a detrimental
impact on the situation.

2.2 Evolutionary Search with LLMs
Evolutionary search algorithms, drawing inspira-
tion from biological evolution, involve the gener-
ation of outputs by a generator, such as a LLM
(Lehman et al., 2024). The generated outputs un-
dergo evaluation, leading to feedback that informs
subsequent iterations of output generation. This
iterative process includes the generation of outliers,
thereby mitigating the risk of the algorithm con-
verging to a local optimum.

A recent study demonstrated notable success in
leveraging Evolution with LLMs for the design of
reward functions, incorporating textual feedback

and information from the environment (Ma et al.,
2023). In the present research, we extend this ap-
proach by introducing an additional modality of
feedback—visual feedback—into the evolutionary
process.

3 Methods

3.1 Environment as Context

The model needs to have a comprehensive under-
standing of the environment to generate a task-
specific reward design for that environment. To
achieve this, we give the environment source code
as context to the model (Ma et al., 2023). This helps
because providing the environment code gives the
MLLM essential information about the variables
used in the environment code and in what format
we expect an output. Additionally, we augment the
contextual information by presenting the MLLM
with visual representations of the environment and
agent. We believe this helps MLLM better un-
derstand the environment’s visual cues and agent
characteristics.

3.2 Evolutionary Search

We employ Evolutionary search for the iterative
refinement of reward design. Initially, the model
generates random samples of reward candidates,
which are then evaluated on the task, and the top
performer is selected. Subsequently, both reward
feedback and the top performers are collected and
fed back into the model for further enhancement.
This iterative process is crucial, as evidenced by
studies on LLMs demonstrating their capacity for
self-improvement over time (Madaan et al., 2023).
Moreover, this approach aligns with human intu-
ition, as trial-and-error is a common strategy em-
ployed in the design of reward functions (Booth
et al., 2023).

3.3 Reward Reflection

Previous studies utilizing LLMs to generate re-
ward samples have primarily relied on textual feed-
back provided by the environment for evolutionary
search (Ma et al., 2023). However, capturing the
visual behavior of an agent can also yield valuable
insights into necessary adaptations. For instance,
visual feedback can aid in identifying instances
of reward hacking or pinpointing areas where the
agent is not performing as intended. To address
this, following the initial iteration of reward sam-
pling, each reward function is individually tested,
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and both textual feedback from the environment
and video recordings of the agent’s performance
are collected. Subsequently, for the subsequent it-
eration of evolution, the MLLM is provided with
the code of the best-performing reward function,
along with its numerical and video feedback gath-
ered during training. The MLLM then reasons over
this information to iteratively design improved re-
ward functions. Through this process of reward
reflection, the accuracy of designed rewards con-
sistently improves, leading to notable outcomes in
our experiments.

4 Experiments

4.1 Baselines

4.1.1 Environment

IsaacGYM (Makoviychuk et al., 2021) is a GPU-
Accelerated Physics Simulation for robotics tasks.
It enables hundreds of trainings to run at the same
time, thus making it faster to conduct experiments.
Also, we can capture videos during training, which
is a prerequisite for our experiment. We picked
humanoid and ant agents on two different tasks for
our experiments on this simulator. The reason for
selecting these agents was the GPU memory limit
of our hardware.

4.1.2 Multimodal Large Language Model

GPT-4V(Vision) (OpenAI et al., 2023) is a MLLM
that can take both visual and textual input. Its
multimodal capabilities will allow it to reason over
videos and images, and its natural language and pro-
gramming capabilities will allow it to understand
tasks and generate reward functions as Python
codes, making it suitable to use in our experiments.

4.1.3 Eureka Method

Evolution-driven Universal Reward Kit for Agents
(Eureka) (Ma et al., 2023) is a method that inspired
us and the method that we built upon. The Eu-
reka method involves providing the environment
source code as context, evolutionary search to im-
prove rewards, and using reward reflection. The
only difference we made in our method is that we
added visuals to the feedback loop and the environ-
ment as context part. We used very similar prompts
to those of Eureka, with only minor changes indi-
cating to the MLMM that we have added visuals.
Also, Eureka has been shown to outperform 83%
of human-expert-designed reward functions, which

makes being able to outperform it a remarkable
achievement.

4.2 Experimental Setup
We conducted three different tests to evaluate the
effectiveness of our approach. Following the exper-
iments originally described in the Eureka paper, we
ran both EROM and Eureka for five iterations, gen-
erating 8 samples of reward function codes in each
iteration. Due to the stochastic nature of MLLMs,
when none of the codes worked in the first iteration,
we reran it until at least one worked, resulting in
guaranteed four rounds of feedback. We refer to
this as "general testing" in the results subsection of
our research.

We separately assessed the importance of provid-
ing an image of an agent in the first generation. We
ran EROM and Eureka for one iteration, generating
32 samples. We have increased the sample size to
have more examples to lower the chance factors
that could effect results. We refer to this as "Image
Testing" in the results subsection of our research.

We also separately assessed the importance of
providing video during the feedback loop by pro-
viding the MLLM with the same reward codes gen-
erated in another iteration: one with only numerical
feedback and the other with video feedback along-
side numerical feedback. We generated 32 samples
for both methods and compared them. We refer to
this as "Video Testing" in the results subsection of
our research.

Unless otherwise specified, when making ex-
periments with EROM method, we provided the
MLLM with a one-minute video of the agents train-
ing on the best policy generated during the training
process (divided into 200 frames due to the context
length of GPT-4V). In the reward sampling process,
we trained the ant agent for 1500 epochs and the
humanoid agent for 1000 epochs. In each training,
the environment size was set to default for both
agents. Each reward that achieved the best success
rate in the initial training process was chosen to
seed the next generation. We refer to the success
rate obtained by reward functions in the initial itera-
tion as "training-success" in the rest of the research.
We evaluated the final best reward by retraining it
over 5 different seeds and taking the average. We
refer to this average as "average success."

4.3 Results
All the "average-success" results can be found in
Table 1. Firstly, we observed that our method per-
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Table 1: Average Success Rates

Test Type Ant-EROM Ant-Eureka Humanoid-
EROM

Humanoid-
Eureka

General Testing 7.27|0.36σ 3.68|0.71σ 5.26|0.29σ 4.21|0.53σ
Video Testing 6.13|0.95σ 3.38|0.39σ 5.42|0.27σ 4.81|0.70σ
Image Testing 6.38|1.89σ 1.76|0.87σ 3.17|0.30σ 5.33|0.39σ
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Figure 1: Comparison of success rates in General Test-
ing on Ant agent.

formed better on general testing, where we ran
both codes for 5 iterations with 8 samples gen-
erated in each iteration. On ant and humanoid
agents, EROM achieved an average-success rate of
7.27 and 5.26, while Eureka achieved an average-
success rate of 3.68 and 4.21, respectively. We have
also plotted the difference between EROM and Eu-
reka over the "training-success" of each iteration
on Fig. 1, 2. These graphs effectively demonstrate
the effectiveness of evolutionary search for both
methods, as well as the value of video feedback
and providing the image of the agent.

Secondly, to test the importance of providing the
image of an agent in the first generation, we gen-
erated 32 samples using each method to increase
the sample size and obtain a better average. As
shown in Table 1, providing an image has shown to
increase the average success rate for the ant agent,
but not for the humanoid agent.

Lastly, by seeding the MLLM with the same
reward functions and reward reflection, one with
video and the other with only numerical feedback,
we generated 32 samples with each method. We
observed that providing the video also improved
the average success for both of the agents.
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Figure 2: Comparison of success rates in General Test-
ing on Humanoid agent.

5 Conclusion and Discussion

Designing effective reward functions is a labori-
ous task that requires expertise and time. Recent
researchers have sought to address this problem
by utilizing Large Language Models (LLMs) to
generate reward functions by taking the environ-
ment as context, employing evolutionary search,
and utilizing reward reflection (Ma et al., 2023).
However, they have only used numerical feedback
and textual information for reward sampling and
the reward reflection process. In this work, we
address this limitation by incorporating videos of
agents in training and their idle images into the
evolutionary process with the help of Multimodal
Large Language Models (MLLMs). Our aim is to
enhance the success rate of previous methodology,
which have already outperformed 83% (Ma et al.,
2023) of human experts in their focused tasks. Ex-
periments conducted with two agents across two
distinct tasks have indicated that our approach is
more effective than solely utilizing textual informa-
tion.
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Limitations

Since we utilized GPT-4V (OpenAI et al., 2023)
in our experiments, results largely depend on its
capabilities. Alongside that, the real-life applica-
tions of our method might not be as successful as
in online simulation environments because of the
complexity of the real world that is superficially
present in simulations.

Another limitation of our work was that, due to
the lack of GPU memory, we could only make tests
on two agents in IsaacGYM. An experiment on
more agents and different environments would bet-
ter show our approach’s generalization capabilities
and effectiveness.
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A Prompts

In this subsection, we provide the prompts used
in our research. We have used the same prompts
used in (Ma et al., 2023), with marginal changes
regarding visuals.

The Python environment is
{task_obs_code_string}. Write a
reward function for the following
task: {task_description}.

↪→

↪→

↪→

Here is an image of the agent.
Carefully analyze it for better
understanding.

↪→

↪→

<img src="{image_src}"
alt="{image_alt}">↪→

Figure 3: User Prompt

You are a reward engineer trying to
write reward functions to solve
reinforcement learning tasks as
effective as possible.

↪→

↪→

↪→

Your goal is to write a reward function
for the environment that will help
the agent learn the task described
in text.

↪→

↪→

↪→

Your reward function should use useful
variables from the environment as
inputs. As an example,

↪→

↪→

the reward function signature can be:
{task_reward_signature_string}↪→

Since the reward function will be
decorated with @torch.jit.script,↪→

please make sure that the code is
compatible with TorchScript (e.g.,
use torch tensor instead of numpy
array).

↪→

↪→

↪→

Make sure any new tensor or variable
you introduce is on the same device
as the input tensors.

↪→

↪→

Figure 4: System Prompt

We trained a RL policy using the
provided reward function code
and tracked the values of the
individual components in the
reward function as well as
global policy metrics such as
success rates and episode
lengths after every
{epoch_freq} epochs and the
maximum, mean, minimum values
encountered:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

{Reward Reflection}
Please carefully analyze the policy

feedback and provide a new,
improved reward function that
can better solve the task. Some
helpful tips for analyzing the
policy feedback:

↪→

↪→

↪→

↪→

↪→

(1) If the success rates are
always near zero, then you
must rewrite the entire
reward function

↪→

↪→

↪→

(2) If the values for a certain
reward component are near
identical throughout, then
this means RL is not able to
optimize this component as
it is written. You may
consider

↪→

↪→

↪→

↪→

↪→

↪→

(a) Changing its scale or
the value of its
temperature parameter

↪→

↪→

(b) Re-writing the reward
component↪→

(c) Discarding the reward
component↪→

(3) If some reward components'
magnitude is significantly
larger, then you must
re-scale its value to a
proper range

↪→

↪→

↪→

↪→

Please analyze each existing reward
component in the suggested
manner above first, and then
write the reward function code.

↪→

↪→

↪→

Figure 5: Feedback Prompt
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B Computational Resources and
Additional Expenses

We utilized an RTX 2060 6GB graphics card to
execute all experiments. None of the experiments
exceeded a runtime of 16 hours. We could only
train one policy at a time for the humanoid agent,
while two for the ant agent. The total cost of GPT-
4V(ision) API calls, to run all the experiments,
amounted to approximately $40.

C Task Details

In this section, we provide task details. For task
details, we follow the structure from (Ma et al.,
2023). We provide the task description, environ-
ment, observation and action dimensions, and the
task fitness function F .

Table 2: Task Details and Descriptions

Environment Obs.
Dim.

Act
Dim.

Task Descrip-
tion

Ant 60 8 To make the
ant run for-
ward as fast as
possible
(Fitness
Function:
cur_dist −
prev_dist)

Humanoid 108 21 To make the
humanoid run
as fast as pos-
sible
(Fitness
Function:
cur_dist −
prev_dist)
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