@inproceedings{geigle-etal-2024-mblip,
title = "m{BLIP}: Efficient Bootstrapping of Multilingual Vision-{LLM}s",
author = "Geigle, Gregor and
Jain, Abhay and
Timofte, Radu and
Glava{\v{s}}, Goran",
editor = "Gu, Jing and
Fu, Tsu-Jui (Ray) and
Hudson, Drew and
Celikyilmaz, Asli and
Wang, William",
booktitle = "Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.alvr-1.2/",
doi = "10.18653/v1/2024.alvr-1.2",
pages = "7--25",
abstract = "Modular vision-language models (Vision-LLMs) align pretrained image encoders with (frozen) large language models (LLMs) and post-hoc condition LLMs to `understand' the image input. With the abundance of readily available high-quality English image-text data as well as strong monolingual English LLMs, the research focus has been on English-only Vision-LLMs. Multilingual vision-language models are still predominantly obtained via expensive end-to-end pretraining, resulting in comparatively smaller models, trained on limited multilingual image data supplemented with text-only multilingual corpora. We present mBLIP, the first Vision-LLM leveraging multilingual LLMs, which we obtain in a computationally efficient manner on consumer-level hardware. To this end, we \textit{re-align} an image encoder previously tuned to an English LLM to a new, multilingual LLM using only a few million multilingual training examples derived from a mix of vision-and-language tasks, which we obtain by machine-translating high-quality English data to 95 languages. On the IGLUE benchmark and XM3600, mBLIP yields results competitive with state-of-the-art models and it greatly outperforms strong English-only Vision-LLMs like Llava 1.5. We release our model, code, and train data at \url{https://github.com/gregor-ge/mBLIP}."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="geigle-etal-2024-mblip">
<titleInfo>
<title>mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gregor</namePart>
<namePart type="family">Geigle</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhay</namePart>
<namePart type="family">Jain</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="family">Timofte</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tsu-Jui</namePart>
<namePart type="given">(Ray)</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Drew</namePart>
<namePart type="family">Hudson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Asli</namePart>
<namePart type="family">Celikyilmaz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">William</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Modular vision-language models (Vision-LLMs) align pretrained image encoders with (frozen) large language models (LLMs) and post-hoc condition LLMs to ‘understand’ the image input. With the abundance of readily available high-quality English image-text data as well as strong monolingual English LLMs, the research focus has been on English-only Vision-LLMs. Multilingual vision-language models are still predominantly obtained via expensive end-to-end pretraining, resulting in comparatively smaller models, trained on limited multilingual image data supplemented with text-only multilingual corpora. We present mBLIP, the first Vision-LLM leveraging multilingual LLMs, which we obtain in a computationally efficient manner on consumer-level hardware. To this end, we re-align an image encoder previously tuned to an English LLM to a new, multilingual LLM using only a few million multilingual training examples derived from a mix of vision-and-language tasks, which we obtain by machine-translating high-quality English data to 95 languages. On the IGLUE benchmark and XM3600, mBLIP yields results competitive with state-of-the-art models and it greatly outperforms strong English-only Vision-LLMs like Llava 1.5. We release our model, code, and train data at https://github.com/gregor-ge/mBLIP.</abstract>
<identifier type="citekey">geigle-etal-2024-mblip</identifier>
<identifier type="doi">10.18653/v1/2024.alvr-1.2</identifier>
<location>
<url>https://aclanthology.org/2024.alvr-1.2/</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>7</start>
<end>25</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs
%A Geigle, Gregor
%A Jain, Abhay
%A Timofte, Radu
%A Glavaš, Goran
%Y Gu, Jing
%Y Fu, Tsu-Jui (Ray)
%Y Hudson, Drew
%Y Celikyilmaz, Asli
%Y Wang, William
%S Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F geigle-etal-2024-mblip
%X Modular vision-language models (Vision-LLMs) align pretrained image encoders with (frozen) large language models (LLMs) and post-hoc condition LLMs to ‘understand’ the image input. With the abundance of readily available high-quality English image-text data as well as strong monolingual English LLMs, the research focus has been on English-only Vision-LLMs. Multilingual vision-language models are still predominantly obtained via expensive end-to-end pretraining, resulting in comparatively smaller models, trained on limited multilingual image data supplemented with text-only multilingual corpora. We present mBLIP, the first Vision-LLM leveraging multilingual LLMs, which we obtain in a computationally efficient manner on consumer-level hardware. To this end, we re-align an image encoder previously tuned to an English LLM to a new, multilingual LLM using only a few million multilingual training examples derived from a mix of vision-and-language tasks, which we obtain by machine-translating high-quality English data to 95 languages. On the IGLUE benchmark and XM3600, mBLIP yields results competitive with state-of-the-art models and it greatly outperforms strong English-only Vision-LLMs like Llava 1.5. We release our model, code, and train data at https://github.com/gregor-ge/mBLIP.
%R 10.18653/v1/2024.alvr-1.2
%U https://aclanthology.org/2024.alvr-1.2/
%U https://doi.org/10.18653/v1/2024.alvr-1.2
%P 7-25
Markdown (Informal)
[mBLIP: Efficient Bootstrapping of Multilingual Vision-LLMs](https://aclanthology.org/2024.alvr-1.2/) (Geigle et al., ALVR 2024)
ACL