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Abstract

Object hallucination poses a significant chal-
lenge in vision-language (VL) models, often
leading to the generation of nonsensical or un-
faithful responses with non-existent objects.
However, the absence of a general measure-
ment for evaluating object hallucination in VL
models has hindered our understanding and
ability to mitigate this issue. In this work, we
present NOPE (Negative Object Presence Eval-
uation), a novel benchmark designed to assess
object hallucination in VL models through vi-
sual question answering (VQA). We propose a
cost-effective and scalable approach utilizing
large language models to generate 29.5k syn-
thetic negative pronoun (NegP) data of high
quality for NOPE. We extensively investigate
the performance of 10 state-of-the-art VL mod-
els in discerning the non-existence of objects
in visual questions, where the ground truth an-
swers are denoted as NegP (e.g., "none"). Ad-
ditionally, we evaluate their standard perfor-
mance on visual questions on 9 other VQA
datasets. Through our experiments, we demon-
strate that no VL model is immune to the vul-
nerability of object hallucination, as all models
achieve accuracy below 10% on NegP. Further-
more, we uncover that lexically diverse visual
questions, question types with large scopes, and
scene-relevant objects capitalize the risk of ob-
ject hallucination in VL models.

1 Introduction

In recent years, vision-language (VL) research has
witnessed a proliferation of studies focusing on
diverse methods, models, and learning strategies
aimed at bridging the performance gap between
human and model capabilities (Yang et al., 2021;
Yi et al., 2018; Zhou et al., 2020; Ray et al., 2019;
Gokhale et al., 2020; Dai et al., 2021, 2022; Ishii
et al., 2021; Lovenia et al., 2022; Ji et al., 2022b;

∗ The majority of the work was done when the author
was studying at HKUST.

† Joint second authors.

Figure 1: Example of object hallucination and incor-
rectness in VQA. The model hallucinates a non-existent
man sitting on the closest bench in the left image, while
in the right image, it simply answers inaccurately.

Lovenia et al., 2023). Furthermore, researchers
have constructed more rigorous VL benchmarks to
continually raise the performance standard (Antol
et al., 2015; Sheng et al., 2021; Li et al., 2021b;
Goyal et al., 2017; Marino et al., 2019). However,
despite these efforts, VL models continue to grap-
ple with the persistent issue of object hallucination,
where generated responses unfaithfully contain ob-
jects non-existent in the input images (Ji et al.,
2022a; Rohrbach et al., 2018; Dai et al., 2023b;
Kayhan et al., 2021). As illustrated in Figure 1, the
failure of the model to faithfully ground the visual
input leads to the production of unfaithful answers.
These instances of object hallucination not only
result in incorrect responses but also shed light
on fundamental issues within VL models, such as
over-reliance on unimodal priors (Jing et al., 2020;
Agrawal et al., 2018; Gupta et al., 2022; Niu et al.,
2021a) and statistical bias (Agrawal et al., 2016;
Goyal et al., 2017; Agarwal et al., 2020). These
underlying problems impede the models’ ability to
comprehend the concept of non-existence.

Despite the critical importance of addressing ob-
ject hallucination in VL models, only a limited
number of previous works have focused on miti-
gating this issue, primarily due to the challenges
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posed by the existing evaluation method in terms of
generalization and scalability. CHAIR (Rohrbach
et al., 2018) has primarily concentrated on eval-
uating non-existent objects based on handcrafted
parsing criteria as well as a predefined list of object
categories and their synonyms in the context of im-
age captioning tasks, typically utilizing 80 object
categories from MSCOCO (Rohrbach et al., 2018;
Biten et al., 2022; Yi et al., 2018). However, the ap-
plicability of CHAIR to other datasets requires the
generation of a new object category list, which ex-
hibits varying levels of granularity across different
studies (Dai et al., 2023b; Biten et al., 2022).

In this paper, we present NOPE (Negative Object
Presence Evaluation) to quantitatively assess object
hallucination through VQA. We establish a clear
distinction between object hallucination and incor-
rectness as follows: a) object hallucination refers
to the phenomenon in VQA where a VL model’s
response includes a non-existent object, despite the
ground truth answer being a negative indefinite pro-
noun (e.g., "none", "no one", "nobody", "nowhere",
"neither") (Quirk et al., 1985) (NegP); and b) in-
correctness occurs when a VL model fails to ac-
curately respond to a question with a ground truth
answer that is anything other than NegP, denoted
as Others = P\NegP, where P represents the set
of all phrases. By leveraging NegP, we evaluate
object hallucination in NOPE, while Others allows
us to assess normative correctness across diverse
corpora. Our contributions are as follows:

1. By utilizing NOPE, we construct a VQA diag-
nostic benchmark to measure the object hallu-
cination rate of VL models. Our experiment
covers a balanced proportion of NegP and
Others data with a total of ∼30k and ∼36k
data in the dev and test sets, and includes 10
state-of-the-art VL baselines performances.
We provide an in-depth analysis of the per-
formances and limitations of the baselines.

2. We propose a novel automatic data generation
pipeline to produce high-quality NegP VQA
data from existing image captioning data by
multi-turn prompting instruction-tuned large
language models (LLMs). We verify and
analyze our generated NegP data through
automatic validation and human validation.
Our list-then-rewrite method produces high-
quality NegP VQA data with 92% validity.

3. Through extensive analysis in NOPE, we find

that VL models tend to hallucinate more on
data with higher lexical diversity, more scene-
relevant objects, and larger answer scopes.

2 Related Work

2.1 Hallucination in Vision-Language

Only a few works study hallucination in vision-
language, with the vast majority of them focus-
ing on the task of image captioning. Rohrbach
et al. (2018) propose CHAIR, an automatic eval-
uation metric to measure object hallucination in
generated image captions, which is defined as a
phenomenon where the models produce captions
containing objects that do not exist in the input
visual context. Rohrbach et al. (2018); Dai et al.
(2023b); Sharma et al. (2018) also show that stan-
dard captioning metrics, e.g., CIDEr (Vedantam
et al., 2015), METEOR (Banerjee and Lavie, 2005),
SPICE (Niu et al., 2022), under-penalize object hal-
lucination. These evaluations open up a way for
efforts to mitigate hallucination in image caption-
ing (Biten et al., 2022; Zhang et al., 2021; Xiao
and Wang, 2021; Dai et al., 2023b). Concurrent
to our work, Li et al. (2023b) propose POPE and
frame the task of evaluating object hallucination as
a binary-class VQA with only "yes/no" answer.

2.2 Question Generation for VQA Data

Most works rely on human annotators to generate
visual questions with ensured quality: VQAv2.0
and VQAv1.0 (Goyal et al., 2017; Antol et al.,
2015), Visual Genome (Krishna et al., 2016),
Visual7W (Zhu et al., 2016), AdVQA (Sheng
et al., 2021), Vizwiz (Gurari et al., 2018, 2019),
TextVQA (Singh et al., 2019), R-VQA (Lu et al.,
2018), VQA-Rephrasings (Shah et al., 2019), etc.

However, the cost of human annotation is expen-
sive, thus encouraging the exploration of a more
scalable option: automatic VQA data generation.
Ren et al. (2015) present a simple question gen-
eration algorithm with a syntactic parser to con-
vert image descriptions into QA forms. Johnson
et al. (2017) use a functional program to generate
synthetic images of objects as well as their rela-
tionships and relevant QA pairs using the ground-
truth annotations. Kafle and Kanan (2017) popu-
late multiple question templates with the image
annotations (e.g., region descriptions, relationship
graphs, bounding boxes) obtained from image cap-
tioning data to construct TDIUC. Changpinyo et al.
(2022) annotate candidate answers by syntactically
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Figure 2: Only 0.4% of existing VQA corpora consist
of NegP data. The rest 99.6% is Others.

parsing the captions, then derive questions from
them. While prior studies focus on generating
Others VQA data, we aim to generate NegP VQA
data, which has never been done by past works.

3 NOPE to Overcome Limited NegP

As shown in Figure 2, there is only a minuscule
amount of NegP data in the existing VQA datasets.
In total, there are only ∼0.4% of the existing
VQA datasets are NegP, which are not sufficient
to assess object hallucination in VL. For this rea-
son, we create NOPE through a novel NegP data
generation method that aims to produce ques-
tions whose ground truth answers point to the ab-
sence of appropriate existent objects. Such ground
truth NegP answers are denoted as ANegP =
{”none”, ”nothing”, ”nowhere”, ”zero”, ”0”,
”no one”, ”nobody”, ”neither”}. We automati-
cally generate synthetic NegP VQA data by lever-
aging the zero-shot prompting abilities of pre-
trained LLMs. To ensure the quality, we analyze
the generated synthetic NegP VQA data through
both automatic and manual human evaluation. The
resulting NegP dataset is referred to as NOPE
(Negative Object Presence Evaluation).

3.1 Prompting Methodology

We utilize an image captioning dataset Dcap =
{(vi, ci, li}ni=1, where vi denotes a visual context,
ci denotes a textual caption, and li denotes the
relevant image label annotations (i.e., names of ob-
jects in vi). We rely on ci to describe the objects
and the relationship between objects depicted in
vi. We explore two prompting methods with vary-
ing degrees of flexibility to generate NegP ques-
tions from image captions: generate-from-scratch
and list-then-rewrite. For clarity, we include all
prompt templates with the examples in Appendix A

Figure 3: Human evaluation results of NegP questions
by generate-from-scratch and list-then-rewrite ac-
cording to the categories in §3.2.

and the automatic validation methods to ensure the
validity of the generated questions in Appendix C.

Generate-from-scratch In this method, we
prompt an LLM to generate a question qi given
three different variables: 1) an interrogative word
wi ∈ {”what”, ”where”, ”how many”, ”who”,
”which”} to assert the question type needed for qi,
2) a ground truth NegP answer ai ∈ ANegP that
matches wi, and 3) an image caption ci.

List-then-rewrite LLMs can infer conversa-
tional contexts and follow instructions over multi-
ple turns (Nijkamp et al., 2023; Volum et al., 2022;
Bang et al., 2023). Leveraging this multi-turn capa-
bility of LLMs, we frame our question generation
task into two steps. (1) For object listing, given
an image caption ci and the relevant object anno-
tations li, we prompt an LLM to list m objects
oi = {oi,j}mj=1 that are “closely related”1 but not
mentioned. (2) For question rewriting, the LLM
has to paraphrase a provided reference question,
which is sourced from a diverse pool of human-
generated question templates with an object place-
holder in Appendix B. After obtaining m listed
objects from (1), we pick m random question tem-
plates from the pool and replace the object place-
holders with the listed objects oi to construct the
reference questions ri = {ri,j}mj=1. We prompt the
LLM to paraphrase ri to qi = {qi,j}mj=1 to increase
the lexical variety of the rewritten questions qi.

3.2 Human Evaluation Guidelines

We conduct a human evaluation to verify and ana-
lyze the quality of the generated questions obtained
from §3.1, as well as measure the effectiveness

1We use “closely related” (hard) for brevity. However,
this object-scene relevance can be switched to “loosely related”
or “completely unrelated” in practice.
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Figure 4: Distribution of NOPE’s NegP questions by
their starting phrases. The arc length is proportional to
the number of questions containing the word.

of the automatic validations performed. We em-
ploy three human annotators to perform the human
evaluations. Detailed guidelines and examples are
given prior to evaluation. We collect generated
questions that are judged as valid and invalid by
their automatic validation methods. Given a visual
context, an image caption, a ground truth answer
∈ ANegP, and a generated question, the annotators
are asked to determine whether: 1) the question is
valid, 2) the question has a possible Others answer
alternative, 3) the question does not match the an-
swer (according to both the image caption and the
image), 4) the question does not match the answer
(only according to the image), or 5) the question is
unclear or confusing. The examples provided for
each category can be seen in Appendix E.

3.3 Results and Quality Analysis

Using automatic validation approaches explained
in §3.1 and implementation details in Appendix D,
we compare the capabilities of various instruction-
tuned LLMs in generating NegP VQA data. From
the automatic validation results and analysis pre-
sented in Appendix F, we find that employing
ChatGPT yields the highest-quality generated
NegP questions by both generate-from-scratch
and list-then-rewrite prompting methods, hence
its use in the human evaluations. We conduct a
human evaluation on randomly selected 150 gener-
ated questions from each method. For each sample,
we ask 3 human experts to judge each generated
question into one of the 5 options defined in §3.2.

Figure 3 shows the result of our human evalua-
tion. For generate-from-scratch, only ±50% out

Figure 5: Object-scene relevance in the NOPE dataset.
Related denotes “closely related” and unrelated de-
notes “completely unrelated” for brevity.

of the subset that is judged as valid by the auto-
matic validation is actually a valid and appropriate
NegP question according to the human annotators,
and the rest is judged as incorrect by human anno-
tators. The list-then-rewrite prompting approach,
on the other hand, displays a significantly better
question-answer generation quality with ±92% of
the generated questions denoted as valid by the
human annotators. This fact demonstrates that ex-
isting LLMs still fail to perform complex tasks in
an end-to-end manner, while decomposing the com-
plex tasks into several subtasks and coupling them
with simple rule-based approaches can significantly
improve the LLMs’ ability to perform the complex
task effectively and efficiently.

A closer look at the questions generated by the
generate-from-scratch method shows that while
LLMs usually succeed in making questions in an
end-to-end manner, 12% of the NegP generated
questions include an existing object even though
this information is sufficiently provided by the
image caption. Moreover, 14% of the time, the
generated questions also fail to include any ob-
jects and are overly generic, e.g., “What is not
included in this image?”, which aligns with the
observations of (Jang et al., 2023; Hosseini et al.,
2021; Ettinger, 2020; Kassner and Schütze, 2020)
that LMs perform poorly on negation and strug-
gles to understand that negation changes semantics.
These facts show that LLMs cannot consistently
perform this implicit task breakdown. From this
human evaluation result, we can conjecture that the
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dev test

NegP 14718 17983
NOPE (§3.4) 14718 14773
AdVQA 0 88
R-VQA 0 9
TDIUC 0 6
Visual7W 0 1276
VQAv1 Abstract Scenes 0 180
VQAv2 Balanced Real 0 1651

dev test

Others 14850 18150
AdVQA 1350 1650
R-VQA 2700 3300
TDIUC 1350 1650
TextVQA 1350 1650
Visual7W 2700 3300
VizWiz 1350 1650
VQA-Rephrasings 1350 1650
VQAv1 Abstract Scenes 1350 1650
VQAv2 Balanced Real 1350 1650

Table 1: The data statistics of NegP (left) and Others (right) subsets used in the evaluation.

generate-from-scratch prompting method is not
reliable and fails to elicit the LLMs’ understand-
ing of complex tasks such as question generation.
Using the list-then-rewrite method, we generate
29.5k NegP VQA data to build the NOPE dataset
from OpenImagesV7 (Kuznetsova et al., 2020).

3.4 Dataset Statistics

NegP Question Distribution We cluster the
generated questions into various types based on
the starting n-grams in Figure 4. NOPE dataset ex-
hibits a very broad lexical diversity of the generated
questions, including variations in which the ques-
tions start with words other than the typical inter-
rogative words (e.g., “what”, “where”, “how”, etc.),
such as “Could you tell...”, “In what location...”,
“Do you know...”, and more. This is vital to resist
VL models’ notorious brittleness against linguis-
tic variations (Shah et al., 2019; Ray et al., 2019;
Kervadec et al., 2021; Whitehead et al., 2020).

Object-Scene Relevance Based on the descriptor
used in the object listing step in list-then-rewrite1,
the data in NOPE are divided into three categories.
Figure 5 illustrates how these object-scene rele-
vance descriptors of the generated NegP VQA data
correspond to the relationship between the textual
semantic similarity of the selected object and the
image caption, as well as the image-text seman-
tic similarity of the image and the QA pair. We
compute the textual similarity using the Sentence-
Transformer library2 and the image-text similarity
using CLIPScore (Hessel et al., 2021).

2https://www.sbert.net/docs/usage/semantic_
textual_similarity.html

4 Experimental Settings

The object hallucination benchmark consists of the
validation and test sets of 10 VQA corpora, includ-
ing NOPE (§3.4) with balanced object-scene rele-
vance proportions. It displays the comparison be-
tween incorrectness and object hallucination over
various baselines, which serves as a foundation for
assessing object hallucination in addition to the
standard incorrectness in 10 VL models.

4.1 Datasets

Table 1 describes the data distribution of the dev
and test sets of the benchmark. Each set re-
spectively comprises ∼30k and ∼36k data, main-
taining near-balanced proportions of NegP and
Others data. To ensure the quality of the visual
questions in the benchmark, we also analyze the
lexical diversity and the fluency of the compris-
ing datasets, which are useful to assert a robust
evaluation using questions that are linguistically
diverse and coherent. In Figure 6, we show that
the datasets whose data construction utilizes auto-
matic question generation, i.e., NOPE and TDIUC,
have comparable lexical diversity and fluency to
the other datasets, which entirely rely on question
generation by human annotators.

For lexical diversity, we employ length-agnostic
lexical diversity metrics, i.e., moving average
type-token ratio (MATTR) (Covington and Mc-
Fall, 2010), measure of textual lexical diversity
(MTLD) (McCarthy, 2005), and hypergeometric
distribution diversity (HDD) (McCarthy and Jarvis,
2007, 2010), and average them. We use Lexical-
Richness (Shen, 2021, 2022) v0.5.03 to calculate
these metrics. We also employ a large pre-trained
LM GPT-Neo (Black et al., 2021) with 2.7B param-

3https://pypi.org/project/lexicalrichness/
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Figure 6: Question quality in the benchmark in terms of
lexical diversity and fluency.

eters to compute the perplexity of the questions,
which is often used as a measure of both lexical di-
versity (Lewis et al., 2017; Tevet and Berant, 2021)
and fluency (Fan et al., 2018; Wang et al., 2019;
Cahyawijaya et al., 2021; Anonymous, 2023).

4.2 Baselines
For the baselines in our benchmark, we employ
various vision-language model architectures on the
benchmark in both zero-shot & few-shot and fine-
tuned fashion. For the fine-tuned setting, we uti-
lize five models: 1) OFA (Wang et al., 2022b),
which unifies architectures, tasks, and modalities
by formulating a unified sequence-to-sequence ab-
straction via handcrafted instructions to achieve
task agnosticism; 2) and 3) BLIP (Li et al., 2022),
which incorporates two key contributions, i.e., mul-
timodal mixture of encoder-decoder (MED) to
operate as either a unimodal encoder, an image-
grounded text encoder, or an image-grounded text
decoder, and CapFilt as a new dataset bootstrapping
method for learning from noisy image-text pairs;
4) ALBEF (Li et al., 2021a), which is trained using
momentum distillation to improve learning from
noisy web data; 5) GIT (Wang et al., 2022a), which
employs an image encoder and a text decoder pre-
trained using a language modeling objective to map
the input image to its corresponding description.

For the zero-shot setting, we employ: 1) BLIP-
2 (Li et al., 2023a), which utilizes a scalable mul-
timodal pre-training method to enable any LLMs
to ingest and understand images; 2) and 3) Prompt-
Cap (Hu et al., 2022), which is trained to gener-
ate captions that help downstream LMs answer vi-
sual questions; 4) InstructBLIP (Dai et al., 2023a),
which is an instruction-tuned version of BLIP-2
on various tasks including VQA. We also employ
5) OpenFlamingo (Alayrac et al., 2022; Awadalla
et al., 2023), which is an open-source version of

Model
size

# Pre-train
images

Zero-shot & Few-shot
PromptCapBASE 696M 34M
PromptCap 3B 34M
BLIP-2 3.8B 129M
OpenFlamingo 9B ∼2.5B

VQA fine-tuned
OFA 929M 34M
BLIP 385M 129M
BLIPCapFilt−L 385M 129M
ALBEF 628M 14M
GITLARGE 347M 1.4B
InstructBLIPFLANXL

3.8B 129M+

Table 2: VL baseline models in the benchmark.

a large pre-trained VL model specialized in few-
shot prompting, in the two-shot setting. Table 2
provides the model and data sizes of the baselines
and Appendix H lists the model variants.

4.3 Evaluation Settings

For both NegP and Others, we compute accu-
racy and METEOR (Banerjee and Lavie, 2005)
to measure the performance of vision-language
models on the benchmark. While accuracy mea-
sures the performance based on an exact match
between the generated answer and the ground truth
answer, METEOR caters to partial (i.e., unigram)
matches by computing a score for this matching us-
ing a combination of unigram-precision, unigram-
recall, and alignment between the unigrams in the
generated answer and ground truth answer. Addi-
tionally, for NegP, we employ a rule-based accu-
racy, referred to as NegP accuracy, which focuses
on determining whether the generated answer is
a negative indefinite pronoun (i.e., ∈ ANegP =
{”none”, ”nothing”, ”nowhere”, ”zero”, ”0”,
”no one”, ”nobody”, ”neither”}) or not. All
scores are computed per task and then the weighted
averages according to each task size are retrieved.

5 Results

We present the results on the test set of the bench-
mark in Table 3. Examples of object hallucination
are in Appendix I. While the VQA-finetuned base-
lines are slightly better at NegP and comparable
to the zero-shot & few-shot baselines on Others,
as in Figure 7, we observe that all zero-shot and
VQA-finetuned baselines notably perform much
worse on NegP tasks that Others with the aver-
aged discrepancies of ±22% and ±18% accuracy,
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Others test (%) NegP test (%)

Overall Existing datasets NOPE test (§3.4) Overall

Acc. METEOR Acc. METEOR Acc. METEOR NegP Acc. Acc. METEOR

Zero-shot & few-shot
PromptCapBASE 30.18 21.45 2.87 3.05 0.21 0.29 0.95 0.68 0.78
PromptCap 32.69 22.66 3.61 2.20 0.42 0.56 1.67 0.99 0.85
BLIP-2 19.84 17.94 4.39 1.49 2.11 1.22 5.25 2.51 1.27
OpenFlamingo 14.29 24.32 0.09 7.96 0.00 0.08 0.02 0.02 1.49

VQA fine-tuned
OFA 29.43 17.06 3.24 4.10 2.75 9.11 8.21 2.84 8.21
BLIP 23.27 12.07 5.95 5.12 1.60 3.63 6.48 2.38 3.90
BLIPCapFilt−L 23.28 12.08 5.95 5.12 1.60 3.61 6.47 2.37 3.88
ALBEF 16.33 21.87 19.31 26.31 1.86 6.76 8.18 4.98 10.25
GITLARGE 41.00 21.75 34.89 20.43 4.00 5.90 17.92 9.51 8.49
InstructBLIP 40.62 22.55 21.40 13.50 5.08 5.19 17.69 7.99 6.67

Table 3: Weighted model performances on the test set of the benchmark. Errors made on Others VQA data represent
incorrectness, while errors made on NegP VQA data represent object hallucination. Bold and underline denote the
best performances overall and in the group, respectively.

respectively. This demonstrates that all baselines
are more vulnerable and susceptible to object hal-
lucination than standard incorrectness. In addition,
less incorrectness does not entail less object hallu-
cination. For instance, PromptCapBASE , Prompt-
Cap, and BLIP have lower scores on NegP than
ALBEF despite outperforming it on Others setting.
It also means that existing evaluations that solely
utilize Others cases cannot effectively capture the
models’ risk of object hallucination.

Another point that we observe is, GIT out-
performs the other baselines on both NegP and
Others data, as well as manages to surpass much
bigger models (e.g., InstructBLIP and Flamingo),
showing that GIT is more robust against both ob-
ject hallucination and general incorrectness, despite
being the smallest in size (Table 2) and having a
simple architecture. This achievement could be at-
tributed to its substantial number of pre-training
images, which is an order of magnitude larger
than those of the other baselines. This also aligns
with (Hoffmann et al., 2022), in which for the same
compute budget, a smaller model trained on more
data outperforms a larger model trained on fewer
data and achieves more optimal performance.

6 Analysis and Discussions

6.1 Object hallucination and lexical diversity

Table 3 also show that NegP performance scores
on existing datasets are significantly higher than
on NOPE across the metrics, indicating that ob-

Figure 7: All baselines consistently score lower on
NegP (%NegP Acc.) than Others (%Acc.).

ject hallucination is more likely to occur when the
models attempt to solve the questions in NOPE.
This is mainly due to the NOPE dataset having
a relatively higher lexical diversity compared to
the other NegP corpora, which are mostly com-
posed of VQAv2 and Visual7W (see in Figure 6).
This also aligns with the fact that NegP model
performances have a strong negative Pearson cor-
relation with the lexical diversity measures (r =
{−0.8,−0.66,−0.65,−0.7} for METEOR and
HDD, MTLD, MATTR, perplexity) and proves that
corpora with higher lexical diversity (e.g., NOPE)
provide more challenging NegP VQA problems to
assess object hallucination.

6.2 Object hallucination and language bias

As shown in Figure 9, among 5 NegP ques-
tion types, all VQA-finetuned VL models fail on
NegP questions about color (e.g., “What is the
color of...?”), object (e.g., “What is the object
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Figure 8: VL models are more prone to object halluci-
nation on lexically diverse NegP VQA data. Dot size
represents dataset size (§4.1).

Figure 9: NegP performance of VQA fine-tuned base-
lines over different question types.

beside...?”), and location (e.g., “Where is...?”),
while most VL models tend to hallucinate less
on NegP questions about counting (e.g., “How
many...?”) and person (e.g., “Who is using...?”). A
similar trend is observed for the zero-shot & few-
shot baselines. We further inspect these two cate-
gories and find out that their answer scopes are of
a smaller scope than the others in the training data.
For instance, the answers to counting questions are
often numbers ≤ 5, and the answers to the person
questions are often the generic "man", "woman",
"person", "people", and others which have fewer
variations compared to object types, color names,
or absolute and relative places. These facts suggest
that existing VL models have a strong language
bias (KV and Mittal, 2020; Niu et al., 2021b; Wu
et al., 2022) toward certain question types, which
result in acceptable NegP performances on those
question types. Nevertheless, language bias does
not solve object hallucination and even might make
it worse, due to the VL models having weak vi-
sual grounding skills to verify the answer to the
visual context, which might lead to errors on both
NegP and Others questions.

Figure 10: NegP performance of (left) zero-shot & few-
shot and (right) VQA fine-tuned baselines per object-
scene relevance.

6.3 Object hallucination and object-scene
relevance

As shown in Figure 10, all VQA fine-tuned models
perform lower when the object is closely related to
the scene compared to when the object is loosely
related or unrelated. This indicates that VL models
have some degree of understanding NegP based
on the relevance of the object in question with the
scene. Although this helps VL models to under-
stand about objects better in some cases, this also
causes VL models to hallucinate more on objects
that are relevant to the scene (Rohrbach et al., 2018;
Kayhan et al., 2021; Dai et al., 2023b). On the other
hand, the performance on loosely related or unre-
lated objects tend to be similar, which aligns with
the similarity analysis provided in Figure 5. In
contrast, for zero-shot & few-shot baselines, the
differences between object-scene relevance are less
apparent. However, in general, the NegP scores
are also very low, except for BLIP-2, which sug-
gests that most zero-shot models do not have an
adequate understanding of NegP.

7 Conclusion

We have addressed the critical issue of object hal-
lucination in VL models, which has been lacking a
general measurement. We have introduced NOPE
to assess object hallucination in VL models, investi-
gating the discernment of objects’ non-existence in
visual questions by 10 state-of-the-art VL models,
alongside their standard performances. Addition-
ally, we have presented a cost-effective and scal-
able method for generating high-quality synthetic
data with over 90% validity to overcome the severe
underrepresentation of NegP cases. Through our
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comprehensive experiments, we have demonstrated
that no VL model is exempt from object halluci-
nation, highlighting their lack of understanding of
negative object presence. Furthermore, we have
identified lexical diversity, question type, and the
relevance of the object to the visual scene as influ-
ential factors impacting VL models’ susceptibility
to object hallucination. These findings provide
valuable insights into the assessment of object hal-
lucination in VL, thereby paving the way for the
future development of enhanced VL models.

8 Limitation and Future Work

Evaluation Metrics for Object Hallucination
In this work, we show three metrics to measure
object hallucination and incorrectness, i.e., the ex-
act match accuracy, METEOR, and NegP accu-
racy. Nevertheless, in some cases, these metrics
fail to capture some equivalent answer that has the
same semantic meaning. For example, given an
NegP question “Where is the spoon in the picture?”
with the corresponding label “Nowhere”, a system
that answers with “There is no spoon in the picture”
will get 0 scores on these three metrics, despite the
answer is actually correct. We argue that the limi-
tation of the existing metrics might hinder further
research in alleviating object hallucination and we
expect future works to focus on developing better
metrics for measuring object hallucination.

Object Hallucination Outside of NegP Since
object hallucination refers to an effect (i.e., gen-
erating non-existent objects) and not a cause, our
measurement of object hallucination is limited to
NegP cases, in which a VL model unfaithfully in-
fers a supposedly non-existent object as existent in
the visual context. For cases where a VL model
provides an incorrect answer to Others VQA, the
fine line between misclassification and object hal-
lucination has not yet been defined.

Performances on Full Others Test Sets In or-
der to observe the incorrectness of VL models on
Others on various datasets, we compose a bal-
anced set of ∼15k data in our dev split and ∼18k
data in our test split from diverse VQA corpora. Ob-
taining the full performance on each of the source
datasets requires re-running the baselines on the
full test sets of each source dataset.

9 Ethics Statement

This research on object hallucination in vision-
language models aims to improve the reliability
and faithfulness of these models, which have sig-
nificant applications in various fields such as health-
care and autonomous driving. We acknowledge the
potential impact of our findings and commit to pro-
moting responsible and ethical use of these models.
We recognize that such models have the potential
to perpetuate biases and stereotypes, and we have
taken steps to mitigate this risk. For instance, we
ensured that the synthetic data used in this study
was generated in a manner that respects privacy and
does not perpetuate biases or stereotypes. Further-
more, we recognize the importance of transparency
and accountability in the development and use of
these models. Therefore, we commit to sharing
our findings and methodologies openly and making
them accessible to the wider research community.
We also acknowledge that these models can have
unintended consequences and commit to ongoing
monitoring and evaluation of their impact. Finally,
we recognize that the development and use of these
models must be guided by ethical principles that
prioritize human well-being and social responsibil-
ity. We are committed to upholding these principles
and contributing to the development of responsible
and ethical practices in the field of vision-language
modeling.
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A Prompt Templates

We provide the prompt templates and examples for the generate-from-scratch and list-then-rewrite
methods in Table 4 and Table 5, respectively.

Template 1
Create a question beginning with "<INTERROGATIVE_WORD>" from this image caption: "<IM-
AGE_CAPTION>" with an answer of "<ANSWER>".
Example: Create a question beginning with "who" from this image caption: "This image consists of an
airplane in the air. On which, we can see the text. In the background, there is sky." with an answer of
"nobody".
Generated question: Who is in the airplane in this image?

Template 2
Turn the text "<IMAGE_CAPTION>" into a "<INTERROGATIVE_WORD>" question with an answer
"<ANSWER>":
Example: Turn the text "This is an outside view. Here I can see the cars on the ground and there are two
persons standing. In the background there is a tent, shelter and trees. At the top of the image there is the
sky. At the bottom there is grass." into a "how many" question with an answer "none":
Generated question: How many buildings are visible in the outside view?

Template 3
Given an answer "<ANSWER>", generate an appropriate question starting with "<INTERROGA-
TIVE_WORD>" from the text "<IMAGE_CAPTION>".
Example: Given an answer "nowhere", generate an appropriate question starting with "where" from the
text "In this picture, we see a woman. She is staring at something and she might be posing for the photo.
We see a nail is pierced on her face. She might be taking bath. In the background, we see a wall and a
white color object which looks like a bathtub.".
Generated question: Where is the ideal location to put a nail on a person’s face while they are taking a
bath?

Template 4
Write a question that begins with "<INTERROGATIVE_WORD>" and is answered by "<ANSWER>"
based on the text "<IMAGE_CAPTION>".
Example: Write a question that begins with "what" and is answered by "nothing" based on the text "In
this image I can see food item in a cooking vessel, which is on the stove. In the background there are
some objects.".
Generated question: What can you see in the background of the image?

Template 5
Rewrite the statement "<IMAGE_CAPTION>" as a question that starts with interrogative phrase "<IN-
TERROGATIVE_WORD>" and has an answer of "<ANSWER>".
Example: Rewrite the statement "In the image I can see food item in the bowl. The background of
the image is blurred." as a question that starts with interrogative phrase "which" and has an answer of
"neither".
Generated question: Which part of the image is not blurred and which object is visible in the bowl?

Table 4: Prompt templates used in the generate-from-scratch (§3.1) and their corresponding examples.
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Object Listing Template
Description:
"<IMAGE_CAPTION>"

List 10 tangible objects that are closely related to the description, but are not mentioned there. Also avoid
these objects: <IMAGE_LABELS>.
Example:
Description:
"In this picture we can see some food products in the glass jars."

List 10 tangible objects that are closely related to the description, but are not mentioned there. Also avoid
these objects: Vegetable.
Response:
1. Spices, 2. Canned fruits, 3. Nuts, 4. Sugar, 5. Coffee beans, 6. Honey, 7. Pasta, 8. Chocolates, 9. Tea
leaves, 10. Jams and preserves

Question Rewriting Template
Question templates:
<REFERENCE_QUESTIONS_BASED_ON_FIRST_TURN_ANSWER>

Paraphrase each of these <NUMBER> questions while keeping the sentence as a question with a question
mark.
Example:
Question templates:
1. Who is using the object above the spices?
2. What object is located under the canned fruits?
3. Who is holding the object on the right of the nuts?
4. What is the color of the sugar?
5. Who is using the coffee beans?
6. What object is located on the left of the honey?
7. What object is located on the left of the pasta?
8. What object is located on the left of the chocolates?
9. What is the color of the tea leaves?
10. Where is the jams and preserves located in the image?

Paraphrase each of these 10 questions while keeping the sentence as a question with a question mark.
Generated question:
1. Who is the user of the spices in the picture?
2. Which product can be found below the canned fruits?
3. Who is the individual holding the object to the right of the nuts?
4. Can you tell me the color of the sugar in the glass jars?
5. Who might be utilizing the coffee beans shown in the image?
6. What is the item on the right side of the honey?
7. What comes up on the left of the pasta in the photograph?
8. What is situated on the left of the chocolates in the picture?
9. What is the color of the tea leaves displayed in the glass jars?
10. Where exactly can the jams and preserves be found in this image?

Table 5: Prompt templates used in the list-then-rewrite (§3.1) and their corresponding examples.
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B Reference Question Templates

Table 6 presents the pool of question templates used to automatically build the reference questions for the
list-then-rewrite in §3.1.

No Question template NegP answer

1 What is the color of the <OBJECT>? none / nothing
2 What object is located above / under / on the left of / on the right of the

<OBJECT>?
none / nothing

3 Where is the <OBJECT> located in the image? nowhere
4 How many <OBJECT> are there in the image? zero / 0 / none
5 Who is holding / using the <OBJECT>? no one / nobody
6 Who is holding / using the object above / under / on the left of / on the right of

the <OBJECT>?
no one / nobody

Table 6: Question templates utilized to construct the reference questions for the question rewriting step in the
list-then-rewrite prompting methodology in §3.1.

C Automatic Validation Methodologies of NegP VQA Data Generation

Generate-from-scratch To ensure the validity of qi, we use a model fine-tuned on natural language
inference (NLI) to determine whether a generated question qi and answer ai pair (i.e., hypothesis) logically
entails its corresponding image caption ci (i.e., premise). We also utilize a fine-tuned binary classifier to
determine whether a generated question qi and answer ai pair fits a given visual context vi. If the question
qi and answer ai pair is true (entailment) or undetermined (neutral) given ci as well as matches with vi,
then the generated question qi is judged as valid by the automatic validation.

List-then-rewrite For the automatic validation of a listed object oi,j , we extract lemmatized noun tokens
from its corresponding image caption ci and obtain the object names from li as the objects present in
vi. If oi,j does not match with any of the extracted objects, then oi,j is a valid non-existent object. For
the automatic validation of a generated question qi,j , if qi,j does not contradict its respective reference
question ri,j , then the generated question qi,j is considered valid.

D Implementation Details of NegP VQA Data Generation

We implement §3.1 with the following LLMs that employ: 1) multi-task prompted fine-tuning, i.e.,
BLOOMZ (Muennighoff et al., 2022) and T0 (Sanh et al., 2022); 2) instruction meta-learning, i.e.,
OPT-IML (Iyer et al., 2022); 3) synthetic self-instruct, i.e., Alpaca (Wang et al., 2022c); 4) instruc-
tion (Wei et al., 2022a) and chain-of-thought fine-tuning (Wei et al., 2022b), i.e., FLAN T5 and FLAN
Alpaca (Chung et al., 2022); 5) multi-task instruction pre-training, i.e., ChatGLM (Zeng et al., 2023); 6)
conversation-style instruction tuning and reinforcement learning with human feedback (RLHF) (Christiano
et al., 2017; Stiennon et al., 2020), i.e., ChatGPT (GPT-3.5). More details are presented in Table 7.

We utilize Open Images v7 as our image captioning dataset Dcap with respect to the provided splits.
For automatic validation with NLI, we use the RoBERTa model fine-tuned on various NLI corpora that
achieves the best performance on the Adversarial NLI benchmark (Nie et al., 2020).4 For automatic
validation with image-QA pair classification, we build a simple CLIP-based (Radford et al., 2021) binary
classifier. We provide the details in Appendix D.1. For the list-then-rewrite method, we use m = 10.

D.1 Image-QA Pair Classification

To construct a model for our image-QA pair classification, we construct a balanced image-QA corpus
using NegP and Others VQA data randomly selected from 9 existing VQA datasets, i.e., VQAv2

4https://huggingface.co/ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
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No Model Size References Access
1 BLOOMZ (3B) 3B (Muennighoff et al., 2022; Scao et al., 2022) https://huggingface.co/bigscience/bloomz-3b
2 BLOOMZ (7.1B) 7.1B (Muennighoff et al., 2022; Scao et al., 2022) https://huggingface.co/bigscience/bloomz-7b1
3 T0 3B (Sanh et al., 2022) https://huggingface.co/bigscience/T0_3B
4 OPT-IML 1.3B (Iyer et al., 2022; Zhang et al., 2022) https://huggingface.co/facebook/opt-iml-max-1.3b
5 Alpaca 7B (Wang et al., 2022c; Touvron et al., 2023) https://huggingface.co/chavinlo/alpaca-native
6 FLAN T5 XL 3B (Chung et al., 2022; Raffel et al., 2020) https://huggingface.co/google/flan-t5-xl
7 FLAN T5 XXL 11B (Chung et al., 2022; Raffel et al., 2020) https://huggingface.co/google/flan-t5-xxl
8 FLAN Alpaca XL 3B (Chung et al., 2022; Wang et al., 2022c) https://huggingface.co/declare-lab/flan-alpaca-xl
9 ChatGLM 6B (Zeng et al., 2023; Du et al., 2022) https://huggingface.co/THUDM/chatglm-6b
10 ChatGPT 175B - https://platform.openai.com/docs/models/gpt-3-5

Table 7: Instruction-tuned LLMs used in Appendix D.

(Balanced Real) (Antol et al., 2015), AdVQA (Sheng et al., 2021), VizWiz (Gurari et al., 2018, 2019),
TextVQA (Singh et al., 2019), R-VQA (Lu et al., 2018), Visual7W (Zhu et al., 2016), TDIUC (Kafle and
Kanan, 2017), VQA-Rephrasings (Shah et al., 2019), and VQAv1 (Abstract Scenes) (Antol et al., 2015).

For the image-QA pairs from the NegP VQA data, we assign a binary label of 1 (valid), which means
that the QAs correctly fit the corresponding images as valid pairs. For the Others VQA data, we replace
the Others ground truth answers with NegP answers ∈ ANegP to make the invalid image-QA pairs (a
binary label of 0). We split the corpus into 6k training, 2k validation, and 2k test set.

Using this corpus, we train a simple classifier with one hidden layer on top of a frozen CLIP (Radford
et al., 2021). We leverage the image-text alignment learned by CLIP (Radford et al., 2021), which has
been pre-trained on 400M image-text pairs using contrastive learning, to extract the image features of the
images and the textual features of their question-answer counterparts. We simply concatenate both image
and text features, then input them into the classifier. Our image-QA pair classifier yields an F1-score of
91.29% on the test set.

E Human Evaluation Category Examples

We provide the human evaluation categories (§3.2) in Figure 11.

Figure 11: Examples of the human evaluation judgments for the generate-from-scratch prompting method in §3.2.
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F Automatic Validation Results of NegP VQA Data Generation

Figure 12: Automatic validation results on 1000 NegP questions generated using generate-from-scratch (§3.1)
over five prompt templates.

Proportion of human eval. judgement

Both Valid

Wrong Text 
Entailment

Wrong Image-
QA

Both Wrong

0% 25% 50% 75%

Valid NP Question Possible ~NP Question ~NP Question (Caption)
~NP Question (Image) Question is confusing / unclear

Figure 13: Human evaluation results on NegP questions generated by ChatGPT using generate-from-scratch
(§3.1). The Y-axis denotes the verdict from the automatic validators, i.e., caption-QA and image-QA entailment
models.

Generate-from-scratch Figure 12 shows the proportions of valid generated NegP VQA data using 10
instruction-tuned LLMs listed in Appendix D over five different prompt templates, where each model
generates 1k questions per template. The prompt templates are provided in Appendix A. The result shows
that only ∼25% of the generated questions by the best-performing model, ChatGPT, are valid according
to the automatic validation, while other models’ valid generated questions range from 6%-23%. This
indicates that the task of NegP question generation is more complex and difficult than the instructions
used to fine-tune the LLMs.

Next, we conduct a human evaluation on randomly selected 240 generated questions (i.e., 60 for each
category in §3.2) by ChatGPT, which is the best-performing model. We ask 3 human experts to judge each
generated question and answer pair into one of the five options defined in §3.2. Figure 13 demonstrates the
result of our human evaluation. The result shows that automatic validation judgments do not agree with
the human judgments on a considerable amount of the data, even for simple valid/invalid classification, the
automatic validation judgments misclassify 27%-50% of the subsets. From this result, we can conjecture
that our automatic validation approach is not effective at verifying whether the generated NegP questions
are valid or invalid and that the generate-from-scratch prompting method is not reliable and fails to elicit
the LLMs’ understanding of the task.
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Instruction-tuned LLM % Valid objects % Valid objects & questions

FLAN T5 XL 11 10
FLAN T5 XXL 5 17
Alpaca 44 53
FLAN Alpaca XL 25 11
ChatGLM 84 44
ChatGPT 99 98

Table 8: Automatic validation results on 100 NegP questions generated using list-then-rewrite (§3.1).

Proportion of human eval. judgement

Correct

Wrong Textual 
Entailment

Wrong Object

0% 25% 50% 75%

Valid NP Question Possible ~NP Question ~NP Question (Caption)
~NP Question (Image) Question is confusing / unclear

Figure 14: Human evaluation results on NegP questions generated by ChatGPT using list-then-rewrite (§3.1).

List-then-rewrite The automatic validation results on 100 generated questions (i.e., with the category
proportion of 50, 35, and 15, respectively) by list-then-rewrite are provided in Table 8. The best-
performing model, ChatGPT, yields 98% valid questions with a valid non-existent object according to
the automatic validation judgments, which is a huge improvement compared to generate-from-scratch.
Similarly, Alpaca and ChatGLM also experience the same increase in validity (albeit not as significant),
while the FLAN family models deteriorate due to their inability to handle lists inside the instructions, thus
forcing them to respond with only one object instead of 10 objects (§D).

Our human evaluation on 300 generated questions by ChatGPT (presented in Figure 14) also proves
that, when we omit the question generation on the wrong object, we can achieve around 90% high-quality
NegP questions generated by the list-the-rewrite method. However, this method would benefit from
the establishment of a more suitable penalizing method to filter out the generated questions that are
inconsistent with the image captions.
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G Question Diversity of Existing VQA Datasets

We provide the illustrations of question diversity of existing VQA datasets: VQAv2 dataset (Antol et al.,
2015) which utilizes a manual data generation method (presented in Figure 15a) and VQA-Rephrasings
dataset (Shah et al., 2019) which utilizes an automatic data generation method (presented in Figure 15b).

(a) VQAv2 dataset (Antol et al., 2015) (b) VQ2A dataset (Changpinyo et al., 2022)

Figure 15: Question diversity of existing datasets. The figures are taken from the respective original papers.

H Baselines in NOPE Benchmark

The variant details of the baselines used in NOPE are presented in Table 9.

No Model References Access
Zero-shot & Few-shot

1 PromptCapBASE (Hu et al., 2022) https://huggingface.co/tifa-benchmark/promptcap-coco-vqa,
https://huggingface.co/allenai/unifiedqa-t5-base

2 PromptCap (Hu et al., 2022) https://huggingface.co/tifa-benchmark/promptcap-coco-vqa,
https://huggingface.co/allenai/unifiedqa-t5-3b

3 BLIP-2 (Li et al., 2023a) https://huggingface.co/Salesforce/blip2-opt-2.7b
4 OpenFlamingo (Alayrac et al., 2022;

Awadalla et al., 2023)
https://huggingface.co/OpenFlamingo/OpenFlamingo-9B

5 InstructBLIP (Dai et al., 2023a) https://huggingface.co/Salesforce/instructblip-flan-t5-xl

VQA fine-tuned
1 OFA (Wang et al., 2022b) https://huggingface.co/OFA-Sys/ofa-huge-vqa
2 BLIP (Li et al., 2022) https://huggingface.co/Salesforce/blip-vqa-base
3 BLIPCapFilt−L (Li et al., 2022) https://huggingface.co/Salesforce/blip-vqa-capfilt-large
4 ALBEF (Li et al., 2021a) https://github.com/salesforce/ALBEF#download#

Finetuned-checkpoint-for-VQA
5 GITLARGE (Wang et al., 2022a) https://huggingface.co/microsoft/git-large-vqav2

Table 9: Variant details of the baselines in NOPE (§4.2).

I Examples of Object Hallucination in NOPE

We list the examples of object hallucination from the dev set of NOPE in Table 10.
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ID Object-scene
relevance

Visual context Question-answer

390 Related

Question can you point out the location of the dog collar in the image?
GT answer nowhere

PromptCap yes
OpenFlamingo The dog collar is located on the dog’s neck.

BLIP-2 yes, it is on the dog’s collar
OFA no
BLIP no

ALBEF dog’s neck
GITLARGE no

InstructBLIP no

822 Related

Question how many menu cards have been captured in the image?
GT answer none

PromptCap 1
OpenFlamingo 10

BLIP-2 none
OFA 8
BLIP six

ALBEF 2,3
GITLARGE 0

InstructBLIP 0

982 Related

Question where can the clouds be spotted in the image?
GT answer nowhere

PromptCap in the sky
OpenFlamingo On the head of a goose.

BLIP-2 the clouds are in the sky
OFA the sky
BLIP yes

ALBEF in the snow.
GITLARGE no

InstructBLIP sky

9165 Partially related

Question who can you see using the fishing rod?
GT answer nobody

PromptCap a gray van
OpenFlamingo The owner of this Dodge B250 van.

BLIP-2 the guy in the back of the van
OFA no 1
BLIP no idea

ALBEF man dancing
GITLARGE no

InstructBLIP no one

10135 Unrelated

Question which color is the pillow in the image?
GT answer nothing

PromptCap blue
OpenFlamingo blue

BLIP-2 blue
OFA black
BLIP red and white

ALBEF red black white
GITLARGE blue

InstructBLIP white

Table 10: Examples of object hallucination in the dev set of NOPE. The hallucinated answers are shown in pink.
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